Skip to main content
Log in

Qualitative and Semiquantitative Analysis of Fecal Bifidobacterium Species in Centenarians Living in Bama, Guangxi, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Centenarians constitute a significant subpopulation in the Bama County of Guangxi province in China. The beneficial effects of intestinal microbiota, especially bifidobacteria of centenarians, have been widely accepted; however, knowledge about Bifidobacterium species in centenarians is not adequate. The aim of this study was to investigate the quantity and prevalence of fecal Bifidobacterium in healthy longevous individuals. Fecal samples from eight centenarians from Bama (aged 100 to 108 years), eight younger elderlies from Bama (aged 80 to 99 years), and eight younger elderlies from Nanning (aged 80 to 99 years) were analyzed using denaturing gradient gel electrophoresis, species-specific clone library, and quantitative polymerase chain reaction technology (qPCR). A total of eight different Bifidobacterium species were detected. B. dentium, B. longum, B. thermophilum, B. pseudocatenulatum/B. catenulatum, and B. adolescentis were common in fecal of centenarians and young elderly. B. minimum, B. saecularmay/B. pullorum/B. gallinarum, and B. mongoliense were found in centenarians but were absent in the younger elderlies. In addition, Bifidobacterium species found in centenarians were different from those found in Bama young elderly and Nanning young elderly, and the principal differences were the significant increase in the population of B. longum (P < 0.05) and B. dentium (P < 0.05) and the reduction in the frequency of B. adolescentis (P < 0.05), respectively. Centenarians tend to have more complex fecal Bifidobacterium species than young elderlies from different regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andriantsoanirina V, Allano S, Butel MJ, Aires J (2013) Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe 21:39–42. doi:10.1016/j.anaerobe.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  2. Anonymous (1996) Use of geographic information systems in epidemiology (GIS-Epi). Epidemiological Bulletin 17(1): 1-6

  3. Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T (1989) Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol 55(5):1100–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132(12):1323–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dong P, Yang Y, W-p Wang (2010) The role of intestinal bifidobacteria on immune system development in young rats. Early Hum Dev 86(1):51–58. doi:10.1007/s00439-013-1342-z

    Article  CAS  PubMed  Google Scholar 

  6. Drago L, Toscano M, Rodighiero V, De Vecchi E, Mogna G (2012) Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J Clin Gastroenterol 46(9):S81–S84. doi:10.1097/MCG.0b013e3182693982

    Article  PubMed  Google Scholar 

  7. Gagnon M (2007) Rôle des probiotiques lors d’ infections entériques d’ origine bactérienne et virale: analysesin vitroet étudesin vivo chez des modèles murins, Université Laval

  8. Junick J, Blaut M (2012) Quantification of Human Fecal Bifidobacterium Species by Use of Quantitative Real-Time PCR Analysis Targeting the groEL Gene. Appl Environ Microbiol 78(8):2613–2622. doi:10.1128/AEM.07749-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kaur IP, Kuhad A, Garg A, Chopra K (2009) Probiotics: delineation of prophylactic and therapeutic benefits. J Med Food 12(2):219–235. doi:10.1089/jmf.2007.0544

    Article  CAS  PubMed  Google Scholar 

  10. Kubota A, He F, Kawase M, Harata G, Hiramatsu M, Iino H (2011) Diversity of intestinal bifidobacteria in patients with Japanese cedar pollinosis and possible influence of probiotic intervention. Curr Microbiol 62(1):71–77. doi:10.1007/s00284-010-9667-5

    Article  CAS  PubMed  Google Scholar 

  11. Lederberg J (2000) Infectious history. Science 288(5464):287–293. doi:10.1126/science.288.5464.287

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Zou Q, Zeng B, Fang Y, Wei H (2013) Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol 6 7(2):170–176. doi:10.1007/s00284-013-0338-1

    Article  Google Scholar 

  13. Liu Y, Li Y, Jiang Y, Li H, Wang W, Yang L (2013) Effects of soil trace elements on longevity population in China. Biol Trace Elem Res 153(1–3):119–126. doi:10.1007/s12011-013-9673-0

    Article  CAS  PubMed  Google Scholar 

  14. Mathys S, Lacroix C, Mini R, Meile L (2008) PCR and real-time PCR primers developed for detection and identification of Bifidobacterium thermophilum in faeces. BMC Microbiol 8:1–8. doi:10.1186/1471-2180-8-179

    Article  Google Scholar 

  15. Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16S rRNA-Gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70(1):167–173. doi:10.1128/AEM.70.1.167-173.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJF, Dore J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033. doi:10.1128/AEM.72.2.1027-1033.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ouwehand AC, Bergsma N, Parhiala R, Lahtinen S, Gueimonde M, Finne-Soveri H, Strandberg T, Pitkala K, Salminen S (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. Fems Immunol Med Microbial 53(1):18–25. doi:10.1111/j.1574-695X.2008.00392.x

    Article  CAS  Google Scholar 

  19. Partridge L (2012) Diet and healthy aging. New Engl J Med 367(26):2550–2551. doi:10.1056/NEJMcibr1210447

    Article  CAS  PubMed  Google Scholar 

  20. Reichald A, Brenne SA, Spruss A, Forster-Fromme K, Bergheim I, Bischoff SC (2014) Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25(2):118–125. doi:10.1016/j.jnutbio.2013.09.011

    Article  Google Scholar 

  21. Riedel CU, Foata F, Goldstein DR, Blum S, Eikmanns BJ (2006) Interaction of bifidobacteria with Caco-2 cells—adhesion and impact on expression profiles. Int J Food Microbiol 110(1):62–68. doi:10.1016/j.ijfoodmicro.2006.01.040

    Article  CAS  PubMed  Google Scholar 

  22. Ritchie LE, Burke KF, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS (2010) Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 144(1–2):140–146. doi:10.1016/j.vetmic.2009.12.045

    Article  CAS  PubMed  Google Scholar 

  23. Robine J-M, Herrmann FR, Arai Y, Willcox DC, Gondo Y, Hirose N, Suzuki M, Saito Y (2012) Exploring the impact of climate on human longevity. Exp Gerontol 47(9):660–671. doi:10.1016/j.exger.2012.05.009

    Article  PubMed  Google Scholar 

  24. Russell DA, Ross RP, Fitzgerald GF, Stanton C (2011) Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 149(1):88–105. doi:10.1016/j.ijfoodmicro.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  25. Satokari RM, Vaughan EE, Akkermans ADL, Saarela M, de Vos WM (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(2):504–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shi S, Liu S, Huang Q, Huang F, Wei Y (2012) Guangxizhuang autonomous county’s 2010 population census. Beijing, China

    Google Scholar 

  27. Suzuki S, Shimojo N, Tajiri Y, Kumemura M, Kohno Y (2007) Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clin Exp Allergy 37(4):506–511. doi:10.1111/j.1365-2222.2007.02676.x

    Article  CAS  PubMed  Google Scholar 

  28. Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9(2):107–116. doi:10.1016/j.arr.2009.10.004

    Article  PubMed  Google Scholar 

  29. Toure R, Kheadr E, Lacroix C, Moroni O, Fliss I (2003) Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J Appl Microbiol 95(5):1058–1069. doi:10.1046/j.1365-2672.2003.02085.x

    Article  CAS  PubMed  Google Scholar 

  30. Ventura M, Turroni F, Zomer A, Foroni E, Giubellini V, Bottacini F, Canchaya C, Claesson MJ, He F, Mantzourani M, Mulas L, Ferrarini A, Gao B, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Gupta RS, Zhang Z, Beighton D, Fitzgerald GF, O’Toole PW, van Sinderen D (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 5(12):1–18. doi:10.1371/journal.pgen.1000785

    Article  Google Scholar 

  31. Watanabe K, Makino H, Sasamoto M, Kudo Y, Fujimoto J, Demberel S (2009) Bifidobacterium mongoliense sp nov., from airag, a traditional fermented mare’s milk product from Mongolia. Int J Syst Evol Microbial 59:1535–1540. doi:10.1099/ijs.0.006247-0

    Article  CAS  Google Scholar 

  32. Woodmansey EJ, McMurdo MET, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70(10):6113–6122. doi:10.1128/AEM.70.10.6113-6122.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Xu M, Wang B, Fu Y, Chen Y, Yang F, Lu H, Chen Y, Xu J, Li L (2012) Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. Microb Ecol 63(2):304–313. doi:10.1007/s00248-011-9925-5

    Article  PubMed  Google Scholar 

  34. Yuan J, Wei H, Zeng B, Tang H, Li W, Zhang Z (2010) Impact of neonatal antibiotic treatment on the biodiversity of the murine intestinal Lactobacillus community. Curr Microbiol 60(1):6–11. doi:10.1007/s00284-009-9492-x

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L, Qiao X, Zhu J, Zhang X, Jiang J, Hao Y, Ren F (2011) Correlations of fecal bacterial communities with age and living region for the elderly living in Bama, Guangxi, China. J Microbiol 49(2):186–192. doi:10.1007/s12275-011-0405-x

    Article  PubMed  Google Scholar 

  36. Zhao L, Xu W, Ibrahim SA, Jin J, Feng J, Jiang J, Meng J, Ren F (2011) Effects of age and region on fecal microflora in elderly subjects living in Bama, Guangxi, China. Curr Microbiol 62(1):64–70. doi:10.1007/s00284-010-9676-4

    Article  CAS  PubMed  Google Scholar 

  37. Zihler A (2010) In vitro assessment of bacteriocinogenic probiotics for prevention and treatment of Salmonellain children using novelin vitrocontinuous colonic fermentation and cellular models, ETH Zurich

  38. Zihler A, Gagnon M, Chassard C, Lacroix C (2011) Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiol 11:1–13. doi:10.1186/1471-2180-11-264

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by the grants from the National Natural Science Foundation of China (No. 31371762), the “Bagui Scholars Distinguished Professor” Special Project and Innovation Project of Guangxi Graduate Education (No.YCBZ2014019). We thank Dr. Bo Wu (Guangxi University) and Dr. Peihong Shen (Guangxi University) for providing the experiment guidance for denaturing gradient gel electrophoresis (DGGE). We have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mouming Zhao or Quanyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Huang, G., Cai, D. et al. Qualitative and Semiquantitative Analysis of Fecal Bifidobacterium Species in Centenarians Living in Bama, Guangxi, China. Curr Microbiol 71, 143–149 (2015). https://doi.org/10.1007/s00284-015-0804-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0804-z

Keywords

Navigation