Skip to main content
Log in

Chelation of Free Zn2+ Impairs Chemotaxis, Phagocytosis, Oxidative Burst, Degranulation, and Cytokine Production by Neutrophil Granulocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Neutrophil granulocytes are the largest leukocyte population in the blood and major players in the innate immune response. Impaired neutrophil function has been reported in in vivo studies with zinc-deficient human subjects and experimental animals. Moreover, in vitro formation of neutrophil extracellular traps has been shown to depend on free intracellular Zn2+. This study investigates the requirement of Zn2+ for several other essential neutrophil functions, such as chemotaxis, phagocytosis, cytokine production, and degranulation. To exclude artifacts resulting from indirect effects of zinc deprivation, such as impaired hematopoietic development and influences of other immune cells, direct effects of zinc deprivation were tested in vitro using cells isolated from healthy human donors. Chelation of Zn2+ by the membrane permeable chelator N,N,N′,N′-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) reduced granulocyte migration toward N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF) and IL-8, indicating a role of free intracellular Zn2+ in chemotaxis. However, a direct action of Zn2+ as a chemoattractant, as previously reported by others, was not observed. Similar to chemotaxis, phagocytosis, oxidative burst, and granule release were also impaired in TPEN-treated granulocytes. Moreover, Zn2+ contributes to the regulatory role of neutrophil granulocytes in the inflammatory response by affecting the cytokine production by these cells. TPEN inhibited the lipopolysaccharide-induced secretion of chemotactic IL-8 and also anti-inflammatory IL-1ra. In conclusion, free intracellular Zn2+ plays essential roles in multiple neutrophil functions, affecting extravasation to the site of the infection, uptake and killing of microorganisms, and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. doi:10.1146/annurev-immunol-020711-074942

    Article  CAS  PubMed  Google Scholar 

  2. Lee WL, Harrison RE, Grinstein S (2003) Phagocytosis by neutrophils. Microbes Infect 5:1299–1306

    Article  CAS  PubMed  Google Scholar 

  3. Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704. doi:10.1042/BJ20020691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  CAS  PubMed  Google Scholar 

  5. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    CAS  PubMed  Google Scholar 

  6. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. doi:10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  7. Cassatella MA (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol Today 16:21–26

    Article  CAS  PubMed  Google Scholar 

  8. Schröder AK, von der Ohe M, Kolling U et al (2006) Polymorphonuclear leucocytes selectively produce anti-inflammatory interleukin-1 receptor antagonist and chemokines, but fail to produce pro-inflammatory mediators. Immunology 119:317–327. doi:10.1111/j.1365-2567.2006.02435.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar V, Sharma A (2010) Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 10:1325–1334. doi:10.1016/j.intimp.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  10. Keen CL, Gershwin ME (1990) Zinc deficiency and immune function. Annu Rev Nutr 10:415–431. doi:10.1146/annurev.nu.10.070190.002215

    Article  CAS  PubMed  Google Scholar 

  11. Björkstén B, Bäck O, Gustavson KH et al (1980) Zinc and immune function in Down’s syndrome. Acta Paediatr Scand 69:183–187

    Article  PubMed  Google Scholar 

  12. Briggs WA, Pedersen MM, Mahajan SK et al (1982) Lymphocyte and granulocyte function in zinc-treated and zinc-deficient hemodialysis patients. Kidney Int 21:827–832

    Article  CAS  PubMed  Google Scholar 

  13. Dreno B, Vandermeeren MA, Boiteau HL et al (1986) Plasma zinc is decreased only in generalized pustular psoriasis. Dermatologica 173:209–212

    Article  CAS  PubMed  Google Scholar 

  14. Weston WL, Huff JC, Humbert JR et al (1977) Zinc correction of defective chemotaxis in acrodermatitis enteropathica. Arch Dermatol 113:422–425

    Article  CAS  PubMed  Google Scholar 

  15. Sheikh A, Shamsuzzaman S, Ahmad SM et al (2010) Zinc influences innate immune responses in children with enterotoxigenic Escherichia coli-induced diarrhea. J Nutr 140:1049–1056. doi:10.3945/jn.109.111492

    Article  CAS  PubMed  Google Scholar 

  16. Hujanen ES, Seppä ST, Virtanen K (1995) Polymorphonuclear leukocyte chemotaxis induced by zinc, copper and nickel in vitro. Biochim Biophys Acta 1245:145–152

    Article  PubMed  Google Scholar 

  17. Hasegawa H, Suzuki K, Nakaji S, Sugawara K (2000) Effects of zinc on the reactive oxygen species generating capacity of human neutrophils and on the serum opsonic activity in vitro. Luminescence 15:321–327. doi:10.1002/1522-7243(200009/10)15:5<321::AID-BIO605>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  18. Hasan R, Rink L, Haase H (2012) Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immunol 19:253–264. doi:10.1177/1753425912458815

    Article  Google Scholar 

  19. Haase H, Rink L (2014) Multiple impacts of zinc on immune function. Metallomics 6:1175–1180. doi:10.1039/c3mt00353a

    Article  CAS  PubMed  Google Scholar 

  20. Yamasaki S, Sakata-Sogawa K, Hasegawa A et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645. doi:10.1083/jcb.200702081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haase H, Ober-Blöbaum JL, Engelhardt G et al (2008) Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J Immunol 181:6491–6502. doi:10.4049/jimmunol.181.9.6491

    Article  CAS  PubMed  Google Scholar 

  22. Kitamura H, Morikawa H, Kamon H et al (2006) Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol 7:971–977. doi:10.1038/ni1373

    Article  CAS  PubMed  Google Scholar 

  23. Brieger A, Rink L, Haase H (2013) Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol 191:1808–1817. doi:10.4049/jimmunol.1301261

    Article  CAS  PubMed  Google Scholar 

  24. Altstaedt J, Kirchner H, Rink L (1996) Cytokine production of neutrophils is limited to interleukin-8. Immunology 89:563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park JH, Grandjean CJ, Antonson DL, Vanderhoof JA (1986) Effects of isolated zinc deficiency on the composition of skeletal muscle, liver and bone during growth in rats. J Nutr 116:610–617

    CAS  PubMed  Google Scholar 

  26. Luecke RW, Simonel CE, Fraker PJ (1978) The effect of restricted dietary intake on the antibody mediated response of the zinc deficient A/J mouse. J Nutr 108:881–887

    CAS  PubMed  Google Scholar 

  27. Shi HN, Scott ME, Stevenson MM, Koski KG (1998) Energy restriction and zinc deficiency impair the functions of murine T cells and antigen-presenting cells during gastrointestinal nematode infection. J Nutr 128:20–27

    CAS  PubMed  Google Scholar 

  28. Vruwink KG, Fletcher MP, Keen CL et al (1991) Moderate zinc deficiency in rhesus monkeys. An intrinsic defect of neutrophil chemotaxis corrected by zinc repletion. J Immunol 146:244–249

    CAS  PubMed  Google Scholar 

  29. Graves V, Gabig T, McCarthy L et al (1992) Simultaneous mobilization of Mac-1 (CD11b/CD18) and formyl peptide chemoattractant receptors in human neutrophils. Blood 80:776–787

    CAS  PubMed  Google Scholar 

  30. Sengeløv H, Boulay F, Kjeldsen L, Borregaard N (1994) Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils. Biochem J 299(Pt 2):473–479

    Article  PubMed  PubMed Central  Google Scholar 

  31. Condliffe AM, Kitchen E, Chilvers ER (1998) Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin Sci (Lond) 94:461–471

    Article  CAS  Google Scholar 

  32. Volk APD, Barber BM, Goss KL et al (2011) Priming of neutrophils and differentiated PLB-985 cells by pathophysiological concentrations of TNF-α is partially oxygen dependent. J Innate Immunol 3:298–314. doi:10.1159/000321439

    Article  CAS  Google Scholar 

  33. Mollinedo F, Nakajima M, Llorens A et al (1997) Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochem J 327(Pt 3):917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sengeløv H, Kjeldsen L, Kroeze W et al (1994) Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. J Immunol 153:804–810

    PubMed  Google Scholar 

  35. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    CAS  PubMed  Google Scholar 

  36. Lominadze G, Powell DW, Luerman GC et al (2005) Proteomic analysis of human neutrophil granules. Mol Cell Proteomics 4:1503–1521. doi:10.1074/mcp.M500143-MCP200

    Article  CAS  PubMed  Google Scholar 

  37. Schröder AK, Uciechowski P, Fleischer D, Rink L (2006) Crosslinking of CD66B on peripheral blood neutrophils mediates the release of interleukin-8 from intracellular storage. Hum Immunol 67:676–682. doi:10.1016/j.humimm.2006.05.004

    Article  PubMed  Google Scholar 

  38. Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33:657–670. doi:10.1016/j.immuni.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  39. Chavakis T, May AE, Preissner KT, Kanse SM (1999) Molecular mechanisms of zinc-dependent leukocyte adhesion involving the urokinase receptor and beta2-integrins. Blood 93:2976–2983

    CAS  PubMed  Google Scholar 

  40. Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629. doi:10.1038/nri1418

    Article  CAS  PubMed  Google Scholar 

  41. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691. doi:10.1083/jcb.201006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. May RC, Machesky LM (2001) Phagocytosis and the actin cytoskeleton. J Cell Sci 114:1061–1077

    CAS  PubMed  Google Scholar 

  43. Fällman M, Andersson R, Andersson T (1993) Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 151:330–338

    PubMed  Google Scholar 

  44. Mansfield PJ, Hinkovska-Galcheva V, Shayman JA, Boxer LA (2002) Granulocyte colony-stimulating factor primes NADPH oxidase in neutrophils through translocation of cytochrome b(558) by gelatinase-granule release. J Lab Clin Med 140:9–16

    Article  CAS  PubMed  Google Scholar 

  45. Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16:27–55. doi:10.1146/annurev.immunol.16.1.27

    Article  CAS  PubMed  Google Scholar 

  46. Prasad AS, Beck FWJ, Bao B et al (2008) Duration and severity of symptoms and levels of plasma interleukin-1 receptor antagonist, soluble tumor necrosis factor receptor, and adhesion molecules in patients with common cold treated with zinc acetate. J Infect Dis 197:795–802. doi:10.1086/528803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jörg Häseler, TU Berlin, for critically reading the manuscript. This study was supported in part by German Research Council (DFG) grant HA4318/3 to H. H. Furthermore, R. H. received a scholarship from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajo Haase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, R., Rink, L. & Haase, H. Chelation of Free Zn2+ Impairs Chemotaxis, Phagocytosis, Oxidative Burst, Degranulation, and Cytokine Production by Neutrophil Granulocytes. Biol Trace Elem Res 171, 79–88 (2016). https://doi.org/10.1007/s12011-015-0515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0515-0

Keywords

Navigation