Skip to main content
Log in

Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs

  • Commentary
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Considering the increasing prevalence of obesity worldwide, new approaches for its control have been investigated. Recent evidences highlighted the role of the gut microbiome in weight management. Obesity-associated gut microbiota alters host energy uptake, insulin sensitivity, inflammation, and fat storage. Moreover, the gut microbiota-derived metabolites could control appetite directly by affecting the central nervous system or indirectly through modifying the gut hormones secretion. Metabolites of the gut microbiome-brain axis could be novel targets for designing drugs in obesity. They can be prescribed directly like butyrate or can be modulated by manipulating the gut microbiota through probiotics, prebiotics and other dietary components such as polyphenols. Microbiome studies are trying to identify novel microbial species as next-generation probiotics to restore healthy gut microbiota composition and combat obesity and its related complications. According to the relationships between the gut microbiota and microbial composition of other parts of the body, the mechanisms linking the gut-brain axis and the whole human microbiota should be elucidated to provide novel anti-obesity strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.

    Article  PubMed  Google Scholar 

  2. Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res. 2016;48(6):349–58.

    Article  CAS  PubMed  Google Scholar 

  3. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747–56.

    Article  PubMed  Google Scholar 

  4. Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48(8):735–53.

    Article  PubMed  Google Scholar 

  5. Ejtahed HS, Hasani-Ranjbar S, Larijani B. Human microbiome as an approach to personalized medicine. Altern Ther Health Med. 2017;23(6):8–9.

    PubMed  Google Scholar 

  6. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27(2):201–14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  8. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.

    Article  CAS  PubMed  Google Scholar 

  10. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  11. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044(1):127–31.

    Article  CAS  PubMed  Google Scholar 

  12. Berthoud HR. The vagus nerve, food intake and obesity. Regul Pept. 2008;149(1–3):15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of Liraglutide and Saxagliptin treatment. Sci Rep. 2016;6:33251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of Glp-1 and improves Glycemia in male mice. Endocrinology. 2017;158(10):3416–25.

    Article  PubMed  Google Scholar 

  15. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018.

  16. Liu H, Wang J, He T, Becker S, Zhang G, Li D, et al. Butyrate: a double-edged sword for health? Adv Nutr. 2018;9(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aguilar EC, da Silva JF, Navia-Pelaez JM, Leonel AJ, Lopes LG, Menezes-Garcia Z, et al. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice. Nutrition. 2018;47:75–82.

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79.

    Article  CAS  PubMed  Google Scholar 

  19. de Vadder F, Mithieux G. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J Endocrinol. 2018;236(2):R105–R8.

    Article  PubMed  Google Scholar 

  20. De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016;24(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39–51.

    Article  CAS  Google Scholar 

  22. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303–10.

    Article  CAS  PubMed  Google Scholar 

  23. O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the Spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HE drafted the manuscript. SH designed the study and helped to draft the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Shirin Hasani-Ranjbar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejtahed, HS., Hasani-Ranjbar, S. Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs. J Diabetes Metab Disord 18, 263–265 (2019). https://doi.org/10.1007/s40200-019-00384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-019-00384-4

Keywords

Navigation