Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells

Abstract

Liver X receptors (LXRs), including LXRα and LXRβ isoforms, have important roles in the metabolic regulation of glucose, cholesterol and lipid. Moreover, activation of LXRs also represses the expression of cyclin D1 and cyclin B1, and thus suppresses the proliferation of multiple cancer cells, but the relevant mechanism is not well known. Forkhead box M1 (FOXM1) is a proliferation-specific member of forkhead box family, which is highly expressed in proliferating normal cells and numerous cancer cells. FOXM1 directly activates transcription of cyclin D1 and cyclin B1, resulting in the enhancement of cell cycle progression and cell proliferation. However, it is unclear whether LXRs are involved in the regulation of FOXM1. In this study, we demonstrated that specific LXRs agonists downregulated expression of FOXM1, cyclin D1 and cyclin B1 in hepatocellular carcinoma (HCC) cells, which led to cell cycle and cell proliferation arrest. Knockdown of FOXM1 significantly alleviated LXRs activation-mediated cell cycle arrest and cell growth suppression. Reporter assays showed that the activation of LXRs significantly reduced the transcriptional activity of FOXM1 promoter. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrated that LXRα but not LXRβ could bind to an inverted repeat IR2 (-52CCGTCAcgTGACCT-39) in the promoter region of FOXM1 gene. Moreover, the xenograft tumor growth and the corresponding FOXM1 expression in nude mice were dramatically repressed by LXRs agonists. Taken together, we conclude that LXRα but not LXRβ functions as a transcriptional repressor for FOXM1 expression. The pathway ‘LXRα–FOXM1–cyclin D1/cyclin B1’ is a novel mechanism by which LXRs suppress the proliferation of HCC cells, suggesting that the pathway may be a novel target for HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

LXR:

liver X receptor

FOXM1:

forkhead box M1

EMSA:

electrophoretic mobility shift assay

ChIP:

chromatin immunoprecipitation

CCK-8:

cell counting kit-8

HCC:

hepatocellular carcinoma

IR:

inverted repeat

References

  1. Repa JJ, Mangelsdorf DJ . The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 2000; 16: 459–481.

    Article  CAS  Google Scholar 

  2. Annicotte JS, Schoonjans K, Auwerx J . Expression of the liver X receptor alpha and beta in embryonic and adult mice. Anatomical Record Pt A Disc Mol Cell Evol Biol 2004; 277: 312–316.

    Article  Google Scholar 

  3. Ratni H, Wright MB . Recent progress in liver X receptor-selective modulators. Curr Opin Drug Discov Dev 2010; 13: 403–413.

    CAS  Google Scholar 

  4. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ . LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9: 1033–1045.

    Article  CAS  Google Scholar 

  5. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289: 1524–1529.

    Article  CAS  Google Scholar 

  6. Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N et al. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem 2001; 276: 39438–39447.

    Article  CAS  Google Scholar 

  7. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 2001; 98: 507–512.

    Article  CAS  Google Scholar 

  8. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93: 693–704.

    Article  CAS  Google Scholar 

  9. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ . Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 2002; 277: 18793–18800.

    Article  CAS  Google Scholar 

  10. Zhao C, Dahlman-Wright K . Liver X receptor in cholesterol metabolism. J Endocrinol 2010; 204: 233–240.

    Article  CAS  Google Scholar 

  11. Chuu CP, Lin HP . Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer Res 2010; 30: 3643–3648.

    CAS  Google Scholar 

  12. Scoles DR, Xu X, Wang H, Tran H, Taylor-Harding B, Li A et al. Liver X receptor agonist inhibits proliferation of ovarian carcinoma cells stimulated by oxidized low density lipoprotein. Gynecol Oncol 2010; 116: 109–116.

    Article  CAS  Google Scholar 

  13. Chuu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, Liao S . Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res 2006; 66: 6482–6486.

    Article  CAS  Google Scholar 

  14. Koo CY, Muir KW, Lam EW . FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta 2012; 1819: 28–37.

    Article  CAS  Google Scholar 

  15. Perrakis A, Littler DR, Alvarez-Fernandez M, Stein A, Hibbert RG, Heidebrecht T et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res 2010; 38: 4527–4538.

    Article  Google Scholar 

  16. Korver W, Roose J, Wilson A, Clevers H . The winged-helix transcription factor Trident is expressed in actively dividing lymphocytes. Immunobiology 1997; 198: 157–161.

    Article  CAS  Google Scholar 

  17. Sun HC, Li M, Lu JL, Yan DW, Zhou CZ, Fan JW et al. Overexpression of forkhead box M1 protein associates with aggressive tumor features and poor prognosis of hepatocellular carcinoma. Oncol Rep 2011; 25: 1533–1539.

    Google Scholar 

  18. Xia JT, Wang H, Liang LJ, Peng BG, Wu ZF, Chen LZ et al. Overexpression of FOXM1 is associated with poor prognosis and clinicopathologic stage of pancreatic ductal adenocarcinoma. Pancreas 2012; 41: 629–635.

    Article  CAS  Google Scholar 

  19. Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Gene Dev 2004; 18: 830–850.

    Article  CAS  Google Scholar 

  20. Calvisi DF, Pinna F, Ladu S, Pellegrino R, Simile MM, Frau M et al. Forkhead box M1B is a determinant of rat susceptibility to hepatocarcinogenesis and sustains ERK activity in human HCC. Gut 2009; 58: 679–687.

    Article  CAS  Google Scholar 

  21. Sun H, Teng M, Liu J, Jin D, Wu J, Yan D et al. FOXM1 expression predicts the prognosis in hepatocellular carcinoma patients after orthotopic liver transplantation combined with the Milan criteria. Cancer Lett 2011; 306: 214–222.

    Article  CAS  Google Scholar 

  22. Wang X, Quail E, Hung NJ, Tan Y, Ye H, Costa RH . Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc Natl Acad Sci USA 2001; 98: 11468–11473.

    Article  CAS  Google Scholar 

  23. Liu C, Wu QF, Tai MH, Liu D, Lei L, Wang RT et al. Knockdown of FoxM1 by siRNA interference decreases cell proliferation, induces cell cycle arrest and inhibits cell invasion in MHCC-97H cells in vitro. Acta Pharmacol Sin 2010; 31: 361–366.

    Article  Google Scholar 

  24. Chen H, Yang C, Yu L, Xie L, Hu J, Zeng L et al. Adenovirus-mediated RNA interference targeting FOXM1 transcription factor suppresses cell proliferation and tumor growth of nasopharyngeal carcinoma. J Gene Med 2012; 14: 231–240.

    Article  CAS  Google Scholar 

  25. Uddin S, Ahmed M, Hussain A, Abubaker J, Al-Sanea N, AbdulJabbar A et al. Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy. Am J Pathol 2011; 178: 537–547.

    Article  CAS  Google Scholar 

  26. Huang WD, Chen WD, Wang YD, Zhang LS, Shiah S, Wang MH et al. Farnesold X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology 2010; 51: 953–962.

    Google Scholar 

  27. Lam EWF, Millour J, Constantinidou D, Stavropoulou AV, Wilson MSC, Myatt SS et al. FOXM1 is a transcriptional target of ER alpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 2010; 29: 2983–2995.

    Article  Google Scholar 

  28. Chuu CP, Kokontis JM, Hiipakka RA, Liao S . Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci 2007; 14: 543–553.

    Article  CAS  Google Scholar 

  29. Pommier AJ, Alves G, Viennois E, Bernard S, Communal Y, Sion B et al. Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 2010; 29: 2712–2723.

    Article  CAS  Google Scholar 

  30. Vedin LL, Lewandowski SA, Parini P, Gustafsson JA, Steffensen KR . The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 2009; 30: 575–579.

    Article  CAS  Google Scholar 

  31. Uno S, Endo K, Jeong Y, Kawana K, Miyachi H, Hashimoto Y et al. Suppression of beta-catenin signaling by liver X receptor ligands. Biochem Pharmacol 2009; 77: 186–195.

    Article  CAS  Google Scholar 

  32. Blaschke F, Leppanen O, Takata Y, Caglayan E, Liu J, Fishbein MC et al. Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ Res 2004; 95: e110–e123.

    Article  CAS  Google Scholar 

  33. Pascual-Garcia M, Carbo JM, Leon T, Matalonga J, Out R, Van Berkel T et al. Liver X receptors inhibit macrophage proliferation through downregulation of cyclins D1 and B1 and cyclin-dependent kinases 2 and 4. J Immunol 2011; 186: 4656–4667.

    Article  CAS  Google Scholar 

  34. Wang X, Krupczak-Hollis K, Tan Y, Dennewitz MB, Adami GR, Costa RH . Increased hepatic forkhead box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J Biol Chem 2002; 277: 44310–44316.

    Article  CAS  Google Scholar 

  35. Ye H, Holterman AX, Yoo KW, Franks RR, Costa RH . Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase. Mol Cell Biol 1999; 19: 8570–8580.

    Article  CAS  Google Scholar 

  36. Kalin TV, Ustiyan V, Kalinichenko VV . Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle 2011; 10: 396–405.

    Article  CAS  Google Scholar 

  37. Li Y, Hong X, Hussain M, Sarkar SH, Li R, Sarkar FH . Gene expression profiling revealed novel molecular targets of docetaxel and estramustine combination treatment in prostate cancer cells. Mol Cancer Ther 2005; 4: 389–398.

    CAS  Google Scholar 

  38. McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS et al. Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 2009; 8: 582–591.

    Article  CAS  Google Scholar 

  39. Bhat UG, Halasi M, Gartel AL . FoxM1 is a general target for proteasome inhibitors. PLoS One 2009; 4: e6593.

    Article  Google Scholar 

  40. Gusarova GA, Wang IC, Major ML, Kalinichenko VV, Ackerson T, Petrovic V et al. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J Clin Invest 2007; 117: 99–111.

    Article  CAS  Google Scholar 

  41. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008; 134: 97–111.

    Article  CAS  Google Scholar 

  42. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR . Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012; 33: 394–404.

    Article  CAS  Google Scholar 

  43. Beaudet MJ, Desrochers M, Lachaud AA, Anderson A . The CYP2B2 phenobarbital response unit contains binding sites for hepatocyte nuclear factor 4, PBX-PREP1, the thyroid hormone receptor beta and the liver X receptor. Biochem J 2005; 388: 407–418.

    Article  CAS  Google Scholar 

  44. Mak PA, Kast-Woelbern HR, Anisfeld AM, Edwards PA . Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J Lipid Res 2002; 43: 2037–2041.

    Article  CAS  Google Scholar 

  45. Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 2002; 277: 11019–11025.

    Article  CAS  Google Scholar 

  46. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 2008; 38: 1122–1129.

    Article  CAS  Google Scholar 

  47. Cha JY, Repa JJ . The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 2007; 282: 743–751.

    Article  CAS  Google Scholar 

  48. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000; 14: 2819–2830.

    Article  CAS  Google Scholar 

  49. Kim KH, Lee GY, Kim JI, Ham M, Won Lee J, Kim JB . Inhibitory effect of LXR activation on cell proliferation and cell cycle progression through lipogenic activity. J Lipid Res 2010; 51: 3425–3433.

    Article  CAS  Google Scholar 

  50. He F, Li J, Mu Y, Kuruba R, Ma Z, Wilson A et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ Res 2006; 98: 192–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 81273226 and 81102276) and the Key Project of the Natural Science Foundation of Chongqing (no. cstc2013jjB10015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F He.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Liu, D., Zhang, Y. et al. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells. Oncogene 33, 2888–2897 (2014). https://doi.org/10.1038/onc.2013.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.250

Keywords

This article is cited by

Search

Quick links