Advertisement
No access
Reports

Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD

Science
23 Apr 2004
Vol 304, Issue 5670
pp. 596-600

Abstract

Acting as a signal, hydrogen peroxide circumvents antioxidant defense by overoxidizing peroxiredoxins (Prxs), the enzymes that metabolize peroxides. We show that sestrins, a family of proteins whose expression is modulated by p53, are required for regeneration of Prxs containing Cys-SO2H, thus reestablishing the antioxidant firewall. Sestrins contain a predicted redox-active domain homologous to AhpD, the enzyme catalyzing the reduction of a bacterial Prx, AhpC. Purified Hi95 (sestrin 2) protein supports adenosine triphosphate–dependent reduction of overoxidized PrxI in vitro, indicating that unlike AhpD, which is a disulfide reductase, sestrins are cysteine sulfinyl reductases. As modulators of peroxide signaling and antioxidant defense, sestrins constitute potential therapeutic targets.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (budanov.som.pdf)

References and Notes

1
T. Finkel, Curr. Opin. Cell Biol.15, 247 (2003).
2
Z. A. Wood, E. Schroder, J. Robin Harris, L. B. Poole, Trends Biochem. Sci.28, 32 (2003).
3
L. C. Seaver, J. A. Imlay, J. Bacteriol.183, 7173 (2001).
4
L. Chen, Q. W. Xie, C. Nathan, Mol. Cell1, 795 (1998).
5
R. Bryk, P. Griffin, C. Nathan, Nature407, 211 (2000).
6
C. M. Wong, Y. Zhou, R. W. Ng, H. F. Kung Hf, D. Y. Jin, J. Biol. Chem.277, 5385 (2002).
7
S. D. Barr, L. Gedamu, J. Biol. Chem.278, 10816 (2003).
8
Z. A. Wood, L. B. Poole, P. A. Karplus, Science300, 650 (2003).
9
T. Rabilloudet al., J. Biol. Chem.277, 19396 (2002).
10
K. S. Yanget al., J. Biol. Chem.277, 38029 (2002).
11
H. Z. Chae, S. J. Chung, S. G. Rhee, J. Biol. Chem.269, 27670 (1994).
12
H. Z. Chae, T. B. Uhm, S. G. Rhee, Proc. Natl. Acad. Sci. U.S.A.91, 7022 (1994).
13
H. A. Wooet al., Science300, 653 (2003).
14
G. Georgiou, L. Masip, Science300, 592 (2003).
15
A. Mitsumoto, Y. Takanezawa, K. Okawa, A. Iwamatsu, Y. Nakagawa, Free Radic. Biol. Med.30, 625 (2001).
16
M. Chevalletet al., J. Biol. Chem.278, 37146 (2003).
17
B. Biteau, J. Labarre, M. B. Toledano, Nature425, 980 (2003).
18
A. V. Budanovet al., Oncogene21, 6017 (2002).
19
H. Peeterset al., Hum. Genet.112, 573 (2003).
20
Materials and methods are available as supporting material on Science Online.
21
S. Velasco-Miguelet al., Oncogene18, 127 (1999).
22
S. F. Altschulet al., Nucleic Acids Res.25, 3389 (1997).
23
C. M. Nunn, S. Djordjevic, P. J. Hillas, C. R. Nishida, P. R. Ortiz de Montellano, J. Biol. Chem.277, 20033 (2002).
24
R. Bryk, C. D. Lima, H. Erdjument-Bromage, P. Tempst, C. Nathan, Science295, 1073 (2002); published online 17 January 2002; 10.1126/science.1067798.
25
L. A. Kelley, R. M. MacCallum, M. J. Sternberg, J. Mol. Biol.299, 499 (2000).
26
A. Koshkin, C. M. Nunn, S. Djordjevic, P. R. Ortiz de Montellano, J. Biol. Chem.278, 29502 (2003).
27
H. Sies, Eur. J. Biochem.215, 213 (1993).
28
O. W. Griffith, A. Meister, J. Biol. Chem.254, 7558 (1979).
29
J. Nordberg, L. Zhong, A. Holmgren, E. S. Arner, J. Biol. Chem.273, 10835 (1998).
30
A. V. Budanov, A. A. Sablina, E. Feinstein, E. V. Koonin, P. M. Chumakov, unpublished data.
31
Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
32
G. D. Schuler, S. F. Altschul, D. J. Lipman, Proteins9, 180 (1991).
33
We thank I. Verma for the lentivirus vector system used for expression experiments, M. Chernov for sharing expertise in 2D gel separations, and G. Stark and A. Gudkov for critical reading of the manuscript. The work was supported by funds provided by the Lerner Research Institute to P.M.C.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 304 | Issue 5670
23 April 2004

Submission history

Received: 12 January 2004
Accepted: 23 March 2004
Published in print: 23 April 2004

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/304/5670/596/DC1
Materials and Methods
Figs. S1 to S8
References and Notes

Authors

Affiliations

Andrei V. Budanov*
Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
Engelhardt Institute of Molecular Biology, 119991, Moscow, Russia.
Anna A. Sablina*
Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
Cancer Research Center, 1154785 Moscow, Russia.
Elena Feinstein
Quark Biotech Incorporated, Ness Ziona, 70400 Israel.
Eugene V. Koonin
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
Peter M. Chumakov [email protected]
Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
Engelhardt Institute of Molecular Biology, 119991, Moscow, Russia.

Notes

To whom corresponding should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling, Science Advances, 8, 26, (2022)./doi/10.1126/sciadv.abn3868
    Abstract
  2. Sestrin regulation of TORC1: Is Sestrin a leucine sensor?, Science Signaling, 9, 431, (re5-re5), (2021)./doi/10.1126/scisignal.aaf2885
    Abstract
  3. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway, Science, 351, 6268, (53-58), (2021)./doi/10.1126/science.aad2087
    Abstract
  4. Metabolic control of cell death, Science, 345, 6203, (2021)./doi/10.1126/science.1250256
    Abstract
  5. The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes, Science, 330, 6009, (1340-1344), (2021)./doi/10.1126/science.1193494
    Abstract
  6. Burn Out or Fade Away?, Science, 327, 5970, (1210-1211), (2021)./doi/10.1126/science.1187497
    Abstract
  7. Sestrin as a Feedback Inhibitor of TOR That Prevents Age-Related Pathologies, Science, 327, 5970, (1223-1228), (2021)./doi/10.1126/science.1182228
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media