Advertisement

Gut microbiota and undernutrition

Poor nutrition during the early years of life can have severe consequences for subsequent skeletal, immunological, and intellectual development. Blanton et al. review the evidence showing that undernutrition is not caused by food insecurity alone. Other factors range from the length of the breastfeeding period and the availability of milk oligosaccharides, enteropathogen exposure, and enteric dysfunction marked by villus atrophy and loss of gut barrier function. Unfortunately, the current practice of nutritional restoration with or without antibiotic treatment may not be effective in the longer term. Differences in the succession of microbial establishment and maturity might contribute to family discordances in nutritional status. Thus, microbiota-directed therapeutics could be a promising route to nutritional restoration in these children.
Science, this issue p. 1533

Structured Abstract

BACKGROUND

Childhood undernutrition is a global health challenge. Undernutrition in early life is associated with a number of adverse outcomes, including persistent stunting, immune dysfunction, and neurocognitive deficits. Current approaches to treatment have only modest effects in correcting these long-term sequelae, suggesting that certain features of host biology are not being adequately repaired. This has led to the hypothesis that healthy growth is dependent, in part, on normal postnatal development of the gut microbiota and that perturbations in its development are causally related to undernutrition. Testing this hypothesis illustrates a number of the challenges that human microbial ecology research faces: (i) defining “normal,” both in terms of community structure and expressed functions; (ii) determining whether normal in one population generalizes to other populations; (iii) ascertaining whether deviations from normal correlate with disease and are a cause rather than an effect of pathology; (iv) determining whether abnormal microbial community configurations can be repaired in a sustained fashion, and what route and time course are optimal for such repair; (v) deciphering the short- and long-term effects and safety of repair; and (vi) proactively addressing the ethical, regulatory, and other societal implications of microbiota-directed food and/or microbial interventions designed to deliberately manipulate this facet of postnatal human development.

ADVANCES

Culture-independent studies of the gut microbiota of members of birth cohorts with healthy growth phenotypes have identified a program of community assembly (“maturation”) defined by the changing representation of a group of age-discriminatory bacterial taxa. Features of this program are shared across individuals living in several low-income countries. Applying metrics for defining deviations from this program (microbiota-for-age Z score) has disclosed that children with severe acute malnutrition have gut microbial communities that appear younger than would be expected on the basis of their chronological age. The resulting microbiota “immaturity” is not repaired by current therapeutic food interventions. Compared with healthy children, microbiota from undernourished children transmit impaired growth phenotypes to recipient gnotobiotic mice fed diets representative of those of the human donors; moreover, some of the transplanted age-discriminatory strains are growth-discriminatory. These findings provide early preclinical proof-of-concept that gut microbiota immaturity is causally related to a number of the manifestations of childhood undernutrition.

OUTLOOK

Gnotobiotic animal models can be used to test a number of concepts. Gut microbiota immaturity, increased enteropathogen burden, and gut barrier dysfunction are interrelated factors that affect disease risk and pathogenesis. Microbiota development is linked to maturation of the gut mucosal immune system, metabolic function in multiple host tissues, plus musculoskeletal and brain development. Age- and growth-discriminatory bacterial strains identified in the normally developing microbiota represent therapeutic targets in children with undernutrition. The representation of these strains provides a way not only for defining the efficacy of these therapeutic interventions but also for assessing the effects of various parameters postulated to contribute to disease risk and pathogenesis (such as maternal health status, breast milk composition, history and quality of complementary feeding, poor sanitation and enteropathogen burden, and antibiotic exposures). Microbiota-directed strategies for treating and ultimately preventing childhood undernutrition raise intriguing questions about the mechanisms that define human development. They also highlight the need to add a microbial dimension to our conceptualization of human biological immaturity and its associated adaptations and compensations, and to consider whether interventions that promote healthy microbiota development can spawn a form of preventative medicine that has lifelong benefits.
The concept that impaired postnatal gut microbiota development (maturation) is causally related to childhood undernutrition.
The representation of age-discriminatory bacterial taxa defines a program of normal gut microbiota development. Disrupting the coordinated functional codevelopment of microbiota and host affects multiple biological regulatory systems through largely unknown mechanisms. Developing effective strategies for sustained repair of microbiota immaturity though food or microbial interventions requires preclinical studies of these mechanisms and modeling of the effects of different rates and routes of repair.

Abstract

Childhood undernutrition is a major global health challenge. Although current therapeutic approaches have reduced mortality in individuals with severe disease, they have had limited efficacy in ameliorating long-term sequelae, notably stunting, immune dysfunction, and neurocognitive deficits. Recent work is providing insights about the role of impaired development of the human gut microbiota in disease pathogenesis, leading to new concepts for treatment and prevention. These findings raise intriguing basic questions about the mechanisms that direct normal gut microbial community assembly and functional maturation. Designing and implementing new microbiota-directed therapeutics for undernutrition highlights the need to simultaneously consider a variety of features of human biology as well as broader societal issues.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
Bhutta Z. A., Das J. K., Rizvi A., Gaffey M. F., Walker N., Horton S., Webb P., Lartey A., Black, R. E., and Lancet Nutrition Interventions Review Group, Maternal and Child Nutrition Study Group, Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 382, 452–477 (2013). 10.1016/S0140-6736(13)60996-410.1016/S0140-6736(13)60996-4
2
de Onis M., Onyango A. W., Van den Broeck J., Chumlea W. C., and Martorell R., Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr. Bull. 25 (suppl.), S27–S36 (2004). 10.1177/15648265040251S10410.1177/15648265040251S104
3
UNICEF, World Health Organization, W. B. Group, Levels and trends in child malnutrition, 1–6 (WHO, 2015).
4
Prendergast A. J. and Humphrey J. H., The stunting syndrome in developing countries. Paediatr. Int. Child Health 34, 250–265 (2014). 10.1179/2046905514Y.000000015810.1179/2046905514Y.0000000158
5
Martorell R. and Zongrone A., Intergenerational influences on child growth and undernutrition. Paediatr. Perinat. Epidemiol. 26 (suppl. 1), 302–314 (2012). 10.1111/j.1365-3016.2012.01298.x10.1111/j.1365-3016.2012.01298.x
6
Smith M. I., Yatsunenko T., Manary M. J., Trehan I., Mkakosya R., Cheng J., Kau A. L., Rich S. S., Concannon P., Mychaleckyj J. C., Liu J., Houpt E., Li J. V., Holmes E., Nicholson J., Knights D., Ursell L. K., Knight R., and Gordon J. I., Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013). 10.1126/science.122900010.1126/science.1229000
7
World Health Organization, Infant and young child feeding; Fact sheet no. 342, 1–5 (WHO, 2016).
8
B. L. Horta, C. G. Victora, Short-term effects of breastfeeding. World Health Organization, 1–54 (2013).
9
Smilowitz J. T., Lebrilla C. B., Mills D. A., German J. B., and Freeman S. L., Breast milk oligosaccharides: Structure-function relationships in the neonate. Annu. Rev. Nutr. 34, 143–169 (2014). 10.1146/annurev-nutr-071813-10572110.1146/annurev-nutr-071813-105721
10
Huda M. N., Lewis Z., Kalanetra K. M., Rashid M., Ahmad S. M., Raqib R., Qadri F., Underwood M. A., Mills D. A., and Stephensen C. B., Stool microbiota and vaccine responses of infants. Pediatrics 134, e362–e372 (2014). 10.1542/peds.2013-393710.1542/peds.2013-3937
11
Weng M., Ganguli K., Zhu W., Shi H. N., and Walker W. A., Conditioned medium from Bifidobacteria infantis protects against Cronobacter sakazakii-induced intestinal inflammation in newborn mice. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G779–G787 (2014). 10.1152/ajpgi.00183.201310.1152/ajpgi.00183.2013
12
Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J. M., Topping D. L., Suzuki T., Taylor T. D., Itoh K., Kikuchi J., Morita H., Hattori M., and Ohno H., Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011). 10.1038/nature0964610.1038/nature09646
13
Charbonneau M. R., O’Donnell D., Blanton L. V., Totten S. M., Davis J. C., Barratt M. J., Cheng J., Guruge J., Talcott M., Bain J. R., Muehlbauer M. J., Ilkayeva O., Wu C., Struckmeyer T., Barile D., Mangani C., Jorgensen J., Fan Y. M., Maleta K., Dewey K. G., Ashorn P., Newgard C. B., Lebrilla C., Mills D. A., and Gordon J. I., Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016). 10.1016/j.cell.2016.01.02410.1016/j.cell.2016.01.024
14
Muoio D. M., Metabolic inflexibility: When mitochondrial indecision leads to metabolic gridlock. Cell 159, 1253–1262 (2014). 10.1016/j.cell.2014.11.03410.1016/j.cell.2014.11.034
15
Liu J., Gratz J., Amour C., Kibiki G., Becker S., Janaki L., Verweij J. J., Taniuchi M., Sobuz S. U., Haque R., Haverstick D. M., and Houpt E. R., A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J. Clin. Microbiol. 51, 472–480 (2013). 10.1128/JCM.02658-1210.1128/JCM.02658-12
16
Acosta A. M., Chavez C. B., Flores J. T., Olotegui M. P., Pinedo S. R., Trigoso D. R., Vasquez A. O., Ahmed I., Alam D., Ali A., Bhutta Z. A., Qureshi S., Shakoor’ S., Soofi S., Turab A., Yousafzai A. K., Zaidi A. K. M., Bodhidatta L., Mason C. J., Babji S., Bose A., John S., Kang G., Kurien B., Muliyil J., Raghava M. V., Ramachandran A., Rose A., Pan W., Ambikapathi R., Carreon D., Charu V., Dabo L., Doan V., Graham J., Hoest C., Knobler S., Lang D., McCormick B., McGrath M., Miller M., Mohale A., Nayyar G., Psaki S., Rasmussen Z., Richard S., Seidman J., Wang V., Blank R., Gottlieb M., Tountas K., Amour C., Mduma E., Ahmed T., Ahmed A. M. S., Dinesh M., Tofail F., Haque R., Hossain I., Islam M., Mahfuz M., Chandyo R. K., Shrestha P. S., Shrestha R., Ulak M., Black R., Caulfield L., Checkley W., Chen P., Kosek M., Lee G., Yori P. P., Murray-Kolb L., Schaefer B., Pendergast L., Abreu C., Binda A., Costa H., Di Moura A., Filho J. Q., Leite A., Lima A., Lima N., Lima I., Maciel B., Moraes M., Mota F., Oria R., Quetz J., Soares A., Svensen E., Tor S., Patil C., Bessong P., Mahopo C., Mapula A., Nesamvuni C., Nyathi E., Samie A., Barrett L., Gratz J., Guerrant R., Houpt E., Olmsted L., Petri W., Platts-Mills J., Scharf R., Shrestha B., Shrestha S. K., and MAL-ED Network Investigators, The MAL-ED study: A multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin. Infect. Dis. 59 (suppl. 4), S193–S206 (2014). 10.1093/cid/ciu65310.1093/cid/ciu653
17
Korpe P. S. and Petri W. A. Jr., Environmental enteropathy: Critical implications of a poorly understood condition. Trends Mol. Med. 18, 328–336 (2012). 10.1016/j.molmed.2012.04.00710.1016/j.molmed.2012.04.007
18
McKay S., Gaudier E., Campbell D. I., Prentice A. M., and Albers R., Environmental enteropathy: New targets for nutritional interventions. In Health 2, 172–180 (2010). 10.1016/j.inhe.2010.07.00610.1016/j.inhe.2010.07.006
19
Kosek M., Guerrant R. L., Kang G., Bhutta Z., Yori P. P., Gratz J., Gottlieb M., Lang D., Lee G., Haque R., Mason C. J., Ahmed T., Lima A., Petri W. A., Houpt E., Olortegui M. P., Seidman J. C., Mduma E., Samie A., Babji S., and MAL-ED Network Investigators, Assessment of environmental enteropathy in the MAL-ED cohort study: Theoretical and analytic framework. Clin. Infect. Dis. 59 (suppl. 4), S239–S247 (2014). 25305293
20
Kosek M., Haque R., Lima A., Babji S., Shrestha S., Qureshi S., Amidou S., Mduma E., Lee G., Yori P. P., Guerrant R. L., Bhutta Z., Mason C., Kang G., Kabir M., Amour C., Bessong P., Turab A., Seidman J., Olortegui M. P., Quetz J., Lang D., Gratz J., Miller M., Gottlieb M., and MAL-ED network, Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am. J. Trop. Med. Hyg. 88, 390–396 (2013). 10.4269/ajtmh.2012.12-054910.4269/ajtmh.2012.12-0549
21
Naylor C., Lu M., Haque R., Mondal D., Buonomo E., Nayak U., Mychaleckyj J. C., Kirkpatrick B., Colgate R., Carmolli M., Dickson D., van der Klis F., Weldon W., Steven Oberste M., Ma J. Z., Petri W. A. Jr., and PROVIDE study teams, Environmental enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh. EBioMedicine 2, 1759–1766 (2015). 10.1016/j.ebiom.2015.09.03610.1016/j.ebiom.2015.09.036
22
Brown E. M., Wlodarska M., Willing B. P., Vonaesch P., Han J., Reynolds L. A., Arrieta M. C., Uhrig M., Scholz R., Partida O., Borchers C. H., Sansonetti P. J., and Finlay B. B., Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 6, 7806 (2015). 10.1038/ncomms880610.1038/ncomms8806
23
Winter S. E., Winter M. G., Xavier M. N., Thiennimitr P., Poon V., Keestra A. M., Laughlin R. C., Gomez G., Wu J., Lawhon S. D., Popova I. E., Parikh S. J., Adams L. G., Tsolis R. M., Stewart V. J., and Bäumler A. J., Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013). 10.1126/science.123246710.1126/science.1232467
24
Quévrain E., Maubert M. A., Michon C., Chain F., Marquant R., Tailhades J., Miquel S., Carlier L., Bermúdez-Humarán L. G., Pigneur B., Lequin O., Kharrat P., Thomas G., Rainteau D., Aubry C., Breyner N., Afonso C., Lavielle S., Grill J. P., Chassaing G., Chatel J. M., Trugnan G., Xavier R., Langella P., Sokol H., and Seksik P., Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016). 10.1136/gutjnl-2014-30764910.1136/gutjnl-2014-307649
25
Guo S., Guo Y., Ergun A., Lu L., Walker W. A., and Ganguli K., Secreted metabolites of Bifidobacterium infantis and Lactobacillus acidophilus protect immature human enterocytes from IL-1β-induced inflammation: A transcription profiling analysis. PLOS ONE 10, e0124549 (2015). 10.1371/journal.pone.012454910.1371/journal.pone.0124549
26
Isanaka S., Langendorf C., Berthé F., Gnegne S., Li N., Ousmane N., Harouna S., Hassane H., Schaefer M., Adehossi E., and Grais R. F., Routine amoxicillin for uncomplicated severe acute malnutrition in children. N. Engl. J. Med. 374, 444–453 (2016). 10.1056/NEJMoa150702410.1056/NEJMoa1507024
27
Trehan I., Goldbach H. S., LaGrone L. N., Meuli G. J., Wang R. J., Maleta K. M., and Manary M. J., Antibiotics as part of the management of severe acute malnutrition. N. Engl. J. Med. 368, 425–435 (2013). 10.1056/NEJMoa120285110.1056/NEJMoa1202851
28
Gough E. K., Moodie E. E., Prendergast A. J., Johnson S. M., Humphrey J. H., Stoltzfus R. J., Walker A. S., Trehan I., Gibb D. M., Goto R., Tahan S., de Morais M. B., and Manges A. R., The impact of antibiotics on growth in children in low and middle income countries: Systematic review and meta-analysis of randomised controlled trials. BMJ 348 (apr15 6), g2267 (2014). 10.1136/bmj.g226710.1136/bmj.g2267
29
Papathakis P. C., Singh L. N., and Manary M. J., How maternal malnutrition affects linear growth and development in the offspring. Mol. Cell. Endocrinol. (2016). 10.1016/j.mce.2016.01.02410.1016/j.mce.2016.01.024
30
Allen L. H., B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 3, 362–369 (2012). 10.3945/an.111.00117210.3945/an.111.001172
31
Salam R. A., MacPhail C., Das J. K., and Bhutta Z. A., Effectiveness of Micronutrient Powders (MNP) in women and children. BMC Public Health 13 (suppl. 3), S22 (2013). 24564207
32
Bartz S., Mody A., Hornik C., Bain J., Muehlbauer M., Kiyimba T., Kiboneka E., Stevens R., Bartlett J., St Peter J. V., Newgard C. B., and Freemark M., Severe acute malnutrition in childhood: Hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J. Clin. Endocrinol. Metab. 99, 2128–2137 (2014). 10.1210/jc.2013-401810.1210/jc.2013-4018
33
Chang C. Y., Trehan I., Wang R. J., Thakwalakwa C., Maleta K., Deitchler M., and Manary M. J., Children successfully treated for moderate acute malnutrition remain at risk for malnutrition and death in the subsequent year after recovery. J. Nutr. 143, 215–220 (2013). 10.3945/jn.112.16804710.3945/jn.112.168047
34
Lenters L. M., Wazny K., Webb P., Ahmed T., and Bhutta Z. A., Treatment of severe and moderate acute malnutrition in low- and middle-income settings: A systematic review, meta-analysis and Delphi process. BMC Public Health 13 (suppl. 3), S23 (2013). 10.1186/1471-2458-13-S3-S2310.1186/1471-2458-13-S3-S23
35
Subramanian S., Huq S., Yatsunenko T., Haque R., Mahfuz M., Alam M. A., Benezra A., DeStefano J., Meier M. F., Muegge B. D., Barratt M. J., VanArendonk L. G., Zhang Q., Province M. A., Petri W. A. Jr., Ahmed T., and Gordon J. I., Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). 24896187
36
Blanton L. V., Charbonneau M. R., Salih T., Barratt M. J., Venkatesh S., Ilkaveya O., Subramanian S., Manary M. J., Trehan I., Jorgensen J. M., Fan Y. M., Henrissat B., Leyn S. A., Rodionov D. A., Osterman A. L., Maleta K. M., Newgard C. B., Ashorn P., Dewey K. G., and Gordon J. I., Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016). 10.1126/science.aad331110.1126/science.aad3311
37
Planer J. et al., Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 10.1038/nature17940 (2016). 10.1038/nature1794010.1038/nature17940
38
Reyes A., Blanton L. V., Cao S., Zhao G., Manary M., Trehan I., Smith M. I., Wang D., Virgin H. W., Rohwer F., and Gordon J. I., Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl. Acad. Sci. U.S.A. 112, 11941–11946 (2015). 10.1073/pnas.151428511210.1073/pnas.1514285112
39
Pfeiffer J. K. and Virgin H. W., Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351, aad5872 (2016). 10.1126/science.aad587210.1126/science.aad5872
40
Schwarzer M., Makki K., Storelli G., Machuca-Gayet I., Srutkova D., Hermanova P., Martino M. E., Balmand S., Hudcovic T., Heddi A., Rieusset J., Kozakova H., Vidal H., and Leulier F., Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016). 10.1126/science.aad858810.1126/science.aad8588
41
Kau A. L., Planer J. D., Liu J., Rao S., Yatsunenko T., Trehan I., Manary M. J., Liu T. C., Stappenbeck T. S., Maleta K. M., Ashorn P., Dewey K. G., Houpt E. R., Hsieh C. S., and Gordon J. I., Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24 (2015). 10.1126/scitranslmed.aaa487710.1126/scitranslmed.aaa4877
42
Hashimoto T. et al., ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012).
43
Gomez de Agüero M., Ganal-Vonarburg S. C., Fuhrer T., Rupp S., Uchimura Y., Li H., Steinert A., Heikenwalder M., Hapfelmeier S., Sauer U., McCoy K. D., and Macpherson A. J., The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). 10.1126/science.aad257110.1126/science.aad2571
44
Wu M., McNulty N. P., Rodionov D. A., Khoroshkin M. S., Griffin N. W., Cheng J., Latreille P., Kerstetter R. A., Terrapon N., Henrissat B., Osterman A. L., and Gordon J. I., Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350, aac5992 (2015). 10.1126/science.aac599210.1126/science.aac5992
45
Hsiao A., Ahmed A. M., Subramanian S., Griffin N. W., Drewry L. L., Petri W. A. Jr., Haque R., Ahmed T., and Gordon J. I., Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014). 10.1038/nature1373810.1038/nature13738
46
Kim H. J., Li H., Collins J. J., and Ingber D. E., Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. U.S.A. 113, E7–E15 (2016). 10.1073/pnas.152219311210.1073/pnas.1522193112
47
Casanova J.-L., Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc. Natl. Acad. Sci. U.S.A. 112, E7128–E7137 (2015). 26621750
48
Marginean C. O., Banescu C., Voidazan S., and Duicu C., IL-6 572 C/G, 190 C/T, and 174 G/C gene polymorphisms in children’s malnutrition. J. Pediatr. Gastroenterol. Nutr. 59, 666–673 (2014). 10.1097/MPG.000000000000049210.1097/MPG.0000000000000492
49
Faith J. J., McNulty N. P., Rey F. E., and Gordon J. I., Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101–104 (2011). 10.1126/science.120602510.1126/science.1206025
50
Kerac M., Bunn J., Seal A., Thindwa M., Tomkins A., Sadler K., Bahwere P., and Collins S., Probiotics and prebiotics for severe acute malnutrition (PRONUT study): A double-blind efficacy randomised controlled trial in Malawi. Lancet 374, 136–144 (2009). 10.1016/S0140-6736(09)60884-910.1016/S0140-6736(09)60884-9
51
Eddy S. R., “Antedisciplinary” science. PLOS Comput. Biol. 1, e6 (2005). 10.1371/journal.pcbi.001000610.1371/journal.pcbi.0010006

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 352 | Issue 6293
24 June 2016

Submission history

Published in print: 24 June 2016

Permissions

Request permissions for this article.

Acknowledgments

Work cited from the authors’ laboratory was supported in part by a grant from the Bill & Melinda Gates Foundation. J.I.G. is cofounder of Matatu, a company characterizing the role of diet-by-microbiota interactions in animal health. Upon completion of his Ph.D., M.R.C. has joined Matatu as a research scientist.

Authors

Affiliations

Laura V. Blanton
Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
Michael J. Barratt
Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
Mark R. Charbonneau
Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
Tahmeed Ahmed
Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh.
Jeffrey I. Gordon* [email protected]
Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA.

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice, Science, 379, 6634, (826-833), (2023)./doi/10.1126/science.ade9767
    Abstract
  2. Encoding bacterial colonization and therapeutic modality by wrapping with an adhesive drug-loadable nanocoating, Materials Today, 62, (98-110), (2023).https://doi.org/10.1016/j.mattod.2023.01.001
    Crossref
  3. Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State, Life, 12, 12, (1986), (2022).https://doi.org/10.3390/life12121986
    Crossref
  4. Nutritional status and function after high-calorie formula vs. Chinese food intervention in undernourished children with cerebral palsy, Frontiers in Nutrition, 9, (2022).https://doi.org/10.3389/fnut.2022.960763
    Crossref
  5. Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig Studies, Frontiers in Immunology, 13, (2022).https://doi.org/10.3389/fimmu.2022.826268
    Crossref
  6. Excess Growth Hormone Alters the Male Mouse Gut Microbiome in an Age-dependent Manner, Endocrinology, 163, 7, (2022).https://doi.org/10.1210/endocr/bqac074
    Crossref
  7. Developing shelf-stable Microbiota Directed Complementary Food (MDCF) prototypes for malnourished children: study protocol for a randomized, single-blinded, clinical study, BMC Pediatrics, 22, 1, (2022).https://doi.org/10.1186/s12887-022-03436-6
    Crossref
  8. Impact of helminth–microbiome interactions on childhood health and development—A clinical perspective, Parasite Immunology, 45, 4, (2022).https://doi.org/10.1111/pim.12949
    Crossref
  9. Intestinal Inflammation is Significantly Associated With Length Faltering in Preterm Infants at Neonatal Intensive Care Unit Discharge, Journal of Pediatric Gastroenterology & Nutrition, 74, 6, (837-844), (2022).https://doi.org/10.1097/MPG.0000000000003455
    Crossref
  10. Cancer and nutrition among children and adolescents in low- and middle-income countries, Hematology, 27, 1, (987-993), (2022).https://doi.org/10.1080/16078454.2022.2115437
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media