Skip to main content

Vascular Genetical Embryology

  • Living reference work entry
  • First Online:
PanVascular Medicine
  • 252 Accesses

Abstract

Normal vertebrate embryologic development and viability depends upon the proper development and patterning of the vascular system and its intricate vascular networks due to its importance in delivering oxygen and nutrients to cells and removing metabolic waste from cells of the embryo. Due to the critical nature of the vascular system in the survival of the embryo, the blood vessels and the heart are the first organs to function during mammalian development due to their critical nature, but vessel networks continue to form and further remodel over time. The events leading to vascular development are complex and highly regulated, requiring complex interactions at all stages between genetic programs, molecular cues, and cellular responses, with genetics playing a significant role in the normal development of the embryo. When disturbed by mutations, pathologic disorders characterized by aberrant vessel formation or function occur. In this chapter, the genetic aspects of vascular development and disease will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Angiogenesis:

The process of developing new blood vessels.

Choanal atresia:

Congenital anomaly in which a bony or membranous occlusion blocks the passageway between the nose and pharynx.

Coarctation of the aorta:

Congenital anomaly of the heart in which there is a narrowing of the aorta (usually transverse or descending aorta), resulting in abnormal/obstructed blood flow.

Haploinsufficiency:

Genetically, when an individual who is heterozygous for a certain gene mutation or hemizygous at a particular locus, often due to a deletion of the corresponding allele, is clinically affected because a single copy of the normal gene is incapable of providing sufficient protein production as to assure normal function.

Hemangioma:

Benign tumor formed by a collection of excess blood vessels and may be visible through the skin (“birthmark,” called a “strawberry mark”).

Hemizygous:

Having only one of a pair of genes.

Hereditary hemorrhagic telangiectasia (HHT):

Autosomal dominant disorder characterized by telangiectasias (permanent dilation of preexisting small blood vessels, creating focal red lesions) on the face, lips, tongue, fingers, and chest and arteriovenous malformations (AVMs, an abnormal tangle of arteries and veins in which the arteries feed directly into the veins without a normal intervening capillary bed.) within the lungs, liver, and brain are common.

Hypomorphic allele:

Mutation that reduces but does not eliminate the functionality of a gene.

Left ventricular outflow tract obstruction (LVOTO) disorders:

Cardiovascular disorders in which blood flowing from the left ventricle to the body via the aorta is blocked, usually anatomically. The most common LVOTO disorders include coarctation of the aorta, aortic valve stenosis, supravalvar aortic stenosis, and hypoplastic left heart syndrome.

Leukoencephalopathy:

Diseases of brain white matter. Multiple acquired and hereditary/genetic causes are known.

Lymphoscintigraphy:

A method used to evaluate the lymphatic system for disease using a radioactive substance and tracking scanner.

Pericytes:

Multipotent mesenchymal-like cells found in association with small blood vessel walls.

Vasculogenesis:

The formation and differentiation of the vascular system and the formation of new vessels by endothelial cell progenitors.

References

  • Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43:97–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    CAS  PubMed  Google Scholar 

  • Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17:1371–1380

    CAS  PubMed  Google Scholar 

  • Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    CAS  PubMed  Google Scholar 

  • Argraves WS, Drake CJ (2005) Genes critical to vasculogenesis as defined by systematic analysis of vascular defects in knockout mice. Anat Rec A Discov Mol Cell Evol Biol 286:875–884

    PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    CAS  PubMed  Google Scholar 

  • Arnold SJ, Maretto S, Islam A, Bikoff EK, Robertson EJ (2006) Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev Biol 296:104–118

    CAS  PubMed  Google Scholar 

  • Arthur HM, Ure J, Smith AJ, Renfort G, Wilson DI, Torsney E, Charlton R, Parums DV, Jowett T, Marchuk DA, Burn J, Diamond AG (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217:42–53

    CAS  PubMed  Google Scholar 

  • Bautch VL (2009) Endothelial cells form a phalanx to block tumor metastasis. Cell 136:810–812

    CAS  PubMed  Google Scholar 

  • Beets K, Huylebroeck D, Moya IM, Umans L, Zwijsen A (2013) Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet 29:140–149

    CAS  PubMed  Google Scholar 

  • Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    CAS  PubMed  Google Scholar 

  • Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley K, Gerhardt H, Bates PA (2008) Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialization. J Theor Biol 250:25–36

    CAS  PubMed  Google Scholar 

  • Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5:e1000549

    PubMed Central  PubMed  Google Scholar 

  • Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapo WML, Miyazono K, Li E, Bloch KD (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    CAS  PubMed  Google Scholar 

  • Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322

    CAS  PubMed  Google Scholar 

  • Borges L, Iacovino M, Mayerhofer T, Koyano-Nakagawa N, Baik J, Garry DJ, Kyba M, Letarte M, Perlingeiro RCR (2012) A critical role for endoglin in the emergence of blood during embryonic development. Blood 119:5417–5428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borges L, Iacovino M, Koyano-Nakagawa N, Baik J, Garry DJ, Kyba M, Perlingeiro RC (2013) Expression levels of endoglin distinctively identify hematopoietic and endothelial progeny at different stages of yolk sac hematopoiesis. Stem Cells 31:1893–1901

    CAS  PubMed  Google Scholar 

  • Boscolo E, Bischoff J (2009) Vasculogenesis in infantile hemangioma. Angiogenesis 12:197–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    CAS  PubMed  Google Scholar 

  • Brice G, Child AH, Evans A, Bell R, Mansour S, Burnand K, Sarfarazi M, Jeffery S, Mortimer P (2005) Milroy disease and the VEGFR-3 mutation phenotype. J Med Genet 42:98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caprioli A, Jaffredo T, Gautier R, Dubourg C, Dieterlen-Lievre F (1998) Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci U S A 95:1641–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    CAS  PubMed  Google Scholar 

  • Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13:331–342

    CAS  PubMed  Google Scholar 

  • Chabriat H, Vahedi K, Iba-Zizen MT, Joutel A, Nibbio A, Nagy TG, Krebs MO, Julien J, Dubois B, Ducrocq X, Levasseur M, Mas JL, Dubois B, Homeyer P, Lyon-Caen O (1995) Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 346:934–939

    CAS  PubMed  Google Scholar 

  • Chappell JC, Bautch VL (2010) Vascular development: genetic mechanisms and links to vascular disease. Curr Top Dev Biol 90:43–72, http://dx.doi.org/10.1016/S0070-2153(10)90002-1

    CAS  PubMed  Google Scholar 

  • Chappell JC, Taylor SM, Ferrara N, Bautch VL (2009) Local guidance of emerging vessel sprouts requires soluble flt-1. Dev Cell 17:377–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Chédotal A, He Z, Goodman CS, Tessier-Lavigne M (1997) Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19:547–559

    CAS  PubMed  Google Scholar 

  • Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML (2010) Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol 188:595–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi K (2002) The hemangioblast: a common progenitor of hematopoietic and endothelial cells. J Hematother Stem Cell Res 11:91–101

    PubMed  Google Scholar 

  • Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R, Esguerra C, Francis A, Ibrahimi A, Kroes R, Lesage F, Maas E, Moya I, Pereira PN, Stappers E, Stryjewska A, van den Berghe V, Vermeire L, Verstappen G, Seuntjens E, Umans L, Zwijsen A, Huylebroeck D (2011) Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFbeta/BMP signaling in vivo. Cytokine Growth Factor Rev 22:287–300

    CAS  PubMed  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    CAS  PubMed  Google Scholar 

  • Creamer D, Allen MH, Sousa A, Poston R, Barker JN (1997) Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br J Dermatol 136:859–865

    CAS  PubMed  Google Scholar 

  • Cueni LN, Detmar M (2006) New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol 126:2167–2177

    CAS  PubMed  Google Scholar 

  • Czirok A, Zamir EA, Szabo A, Little CD (2008) Multicellular sprouting during vasculogenesis. Curr Top Dev Biol 81:269–289

    PubMed Central  PubMed  Google Scholar 

  • Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibanez CF, Lendahl U (2003) Functional notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130:6089–6099

    CAS  PubMed  Google Scholar 

  • Damert A, Miquerol L, Gertsenstein M, Risau W, Nagy A (2002) Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 129:1881–1892

    CAS  PubMed  Google Scholar 

  • David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20:203–212

    CAS  PubMed  Google Scholar 

  • de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M (2009) Bone morphogenetic protein 2 induces pulmonary angiogenesis via wnt-beta-catenin and wnt-RhoA-rac1 pathways. J Cell Biol 184:83–99

    PubMed Central  PubMed  Google Scholar 

  • Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, Lowik CW (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143:1545–1553

    CAS  PubMed  Google Scholar 

  • Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor II gene. Am J Hum Genet 67:737–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730–2735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Downs KM, Gifford S, Blahnik M, Gardner RL (1998) Vascularization in the murine allantois occurs by vasculogenesis without accompanying erythropoiesis. Development 125:4507–4520

    CAS  PubMed  Google Scholar 

  • Drake CJ, Fleming PA (2000) Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95:1671–1679

    CAS  PubMed  Google Scholar 

  • Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004) Dosage-sensitive requirement for mouse dll4 in artery development. Genes Dev 18:2474–2478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949

    CAS  PubMed  Google Scholar 

  • Duval M, Bédard-Goulet S, Delisle C, Gratton JP (2003) Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 278:20091–20097

    CAS  PubMed  Google Scholar 

  • Fantin A, Herzog B, Mahmoud M, Yamaji M, Plein A, Denti L, Ruhrberg C, Zachary I (2014) Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141(3):556–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferkowicz MJ, Yoder MC (2005) Blood island formation: longstanding observations and modern interpretations. Exp Hematol 33:1041–1047

    PubMed  Google Scholar 

  • Fernandez LA, Sanz-Rodriguez F, Blanco FJ, Bernabeu C, Botella LM (2006) Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res 4:66–78

    Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    CAS  PubMed  Google Scholar 

  • Ferrell RE (2002) Research perspectives in inherited lymphatic disease. Ann N Y Acad Sci 979:39–51

    CAS  PubMed  Google Scholar 

  • Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956

    CAS  PubMed  Google Scholar 

  • Flamme I, Frölich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210

    CAS  PubMed  Google Scholar 

  • Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    CAS  PubMed  Google Scholar 

  • Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2(1):3. doi:10.1186/2040-2384-2-3

    PubMed Central  PubMed  Google Scholar 

  • Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    CAS  PubMed  Google Scholar 

  • Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G, Yancopoulos GD (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101:15949–15954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852–859

    CAS  PubMed  Google Scholar 

  • Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, MGimbrone MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A 98:4478–4485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231:503–509

    CAS  PubMed  Google Scholar 

  • Ghabrial AS, Krasnow MA (2006) Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441:746–749

    CAS  PubMed  Google Scholar 

  • Giger RJ, Urquhart ER, Gillespie SK, Levengood DV, Ginty DD, Kolodkin AL (1998) Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 21:1079–1092

    CAS  PubMed  Google Scholar 

  • Goldie LC, Nix MK, Hirschi KK (2008) Embryonic vasculogenesis and hematopoietic specification. Organogenesis 4:257–263

    PubMed Central  PubMed  Google Scholar 

  • Gordon K, Spiden SL, Connell FC, Brice G, Cottrell S, Short J, Taylor R, Jeffery S, Mortimer PS, Mansour S, Ostergaard P (2013) FLT4/VEGFR3 and Milroy disease: novel mutations, a review of published variants and database update. Hum Mutat 34:23–31

    CAS  PubMed  Google Scholar 

  • Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama YS, Chen H, Shou W, Ballestar E, Esteller M, Rojas A, Perez-Pomares JM, de la Pompa JL (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo X, Wang XF (2009) Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19:71–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL, Harris AL (2008) Regulation of multiple angiogenic pathways by dll4 and notch in human umbilical vein endothelial cells. Microvasc Res 75:144–154

    CAS  PubMed  Google Scholar 

  • Harrison RE, Flanagan JA, Sankelo M, Abdalla SA, Rowell J, Machado RD, Elliott CG, Robbins IM, Olschewski H, McLaughlin V, Gruenig E, Kermeen F et al (2003) Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet 40:865–871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML et al (2007) Dll4 signalling through notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    PubMed  Google Scholar 

  • Hicke L (1997) Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J 11:1215–1226

    CAS  PubMed  Google Scholar 

  • High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA (2008) Endothelial expression of the notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 105:1955–1959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: who is talking to whom about what? Circ Res 100:1556–1568

    CAS  PubMed  Google Scholar 

  • Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    CAS  PubMed  Google Scholar 

  • Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16:222–231

    CAS  PubMed  Google Scholar 

  • Iso T, Maeno T, Oike Y, Yamazaki M, Doi H, Arai M, Kurabayashi M (2006) Dll4-selective notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun 341:708–714

    CAS  PubMed  Google Scholar 

  • Itoh F, Itoh S, Goumans MJ, Valdimarsdottir G, Iso T, Dotto GP, Hamamori Y, Kedes L, Kato M, ten Dijke P (2004) Synergy and antagonism between notch and BMP receptor signaling pathways in endothelial cells. EMBO J 23:541–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    CAS  PubMed  Google Scholar 

  • Jain RK, Booth MF (2003) What brings pericytes to tumor vessels? J Clin Invest 112:1134–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37:1233–1236

    CAS  PubMed  Google Scholar 

  • Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14:1236–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    CAS  PubMed  Google Scholar 

  • Jones EA, le Noble F, Eichmann A (2006) What determines blood vessel structure? Genetic prespecification vs. hemodynamics. Physiology (Bethesda) 21:388–395

    Google Scholar 

  • Jones EA, Yuan L, Breant C, Watts RJ, Eichmann A (2008) Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135:2479–2488

    CAS  PubMed  Google Scholar 

  • Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joutel A, Tournier-Lasserve E (1998) Notch signalling pathway and human diseases. Semin Cell Dev Biol 9:619–625

    CAS  PubMed  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710

    CAS  PubMed  Google Scholar 

  • Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA, Krantz ID (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109:1354–1358

    PubMed  Google Scholar 

  • Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    CAS  PubMed  Google Scholar 

  • Kappas NC, Zeng G, Chappell JC, Kearney JB, Hazarika S, Kallianos KG, Patterson C, Annex BH, Bautch VL (2008) The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J Cell Biol 181:847–858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80

    CAS  PubMed  Google Scholar 

  • Karpanen T, Wirzenius M, Makinen T, Veikkola T, Haisma HJ, Achen MG, Stacker SA, Pytowski B, Yla-Herttuala S, Alitalo K (2006a) Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 169:708–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karpanen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, Tamagnone L, Alitalo K (2006b) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 20:1462–1472

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  • Kearney JB, Bautch VL (2003) In vitro differentiation of mouse ES cells: hematopoietic and vascular development. Methods Enzymol 365:83–98

    PubMed  Google Scholar 

  • Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99:2397–2407

    CAS  PubMed  Google Scholar 

  • Kearney JB, Kappas NC, Ellerstrom C, DiPaola FW, Bautch VL (2004) The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 103:4527–4535

    CAS  PubMed  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    CAS  PubMed  Google Scholar 

  • Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90:10705–10709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135:3755–3764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluppel M, Wrana JL (2005) Turning it up a Notch: cross-talk between TGF beta and Notch signaling. Bioessays 27:115–118

    PubMed  Google Scholar 

  • Kozawa O, Matsuno H, Uematsu T (2001) Involvement of p70 S6 kinase in bone morphogenetic protein signaling: vascular endothelial growth factor synthesis by bone morphogenetic protein-4 in osteoblasts. J Cell Biochem 81:430–436

    CAS  PubMed  Google Scholar 

  • Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, Giordano FJ, Carmeliet P, Simons M (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18:713–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger K, Prahst C, Zhang J, Wang Y, Davis G, Toomre D, Ruhrberg C, Simons M (2013) The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landgren E, Schiller P, Cao Y, Claesson-Welsh L (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16:359–367

    CAS  PubMed  Google Scholar 

  • Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84

    CAS  PubMed  Google Scholar 

  • Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A (2009) Guidance of vascular development: lessons from the nervous system. Circ Res 104:428–441

    CAS  PubMed  Google Scholar 

  • Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    CAS  PubMed  Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    CAS  PubMed  Google Scholar 

  • le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    PubMed  Google Scholar 

  • Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2:497–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CY, Vogeli KM, Kim SH, Chong SW, Jiang YJ, Stainier DY, Jin SW (2009) Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. Curr Biol 19:1616–1622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leppänen VM, Tvorogov D, Kisko K, Prota AE, Jeltsch M, Anisimov A, Markovic-Mueller S, Stuttfeld E, Goldie KN, Ballmer-Hofer K, Alitalo K (2013) Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc Natl Acad Sci U S A 110:12960–12965

    PubMed Central  PubMed  Google Scholar 

  • Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134:839–844

    CAS  PubMed  Google Scholar 

  • Levy NS, Chung S, Furneaux H, Levy AP (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273:6417–6423

    CAS  PubMed  Google Scholar 

  • Li L, Krantz ID, Deng Y, Genin BAB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA et al (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16:251

    CAS  Google Scholar 

  • Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537

    CAS  PubMed  Google Scholar 

  • Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111:1826–1832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A, Drexler H, Limbourg FP (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371

    CAS  PubMed  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    CAS  PubMed  Google Scholar 

  • Lindsay EA (2001) Chromosomal microdeletions: dissecting del22q11 syndrome. Nat Rev Genet 2:858–868

    CAS  PubMed  Google Scholar 

  • Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ, Velazquez OC, Herlyn M (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J 20:1009–1011

    CAS  PubMed  Google Scholar 

  • Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110:1502–1510

    CAS  PubMed  Google Scholar 

  • Liu Z, Lebrin F, Maring JA, van den Driesche S, van der Brink S, van Dinther M, Thorikay M, Martin S, Kobayashi K, Hawinkels LJAC, van Meeteren LA, Pardali E, Korving J, Letarte M, Arthur HM, Theuer C, Goumans M-J, Mummery C, ten Dijke P (2014) ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis. PLoS One 9:e86273

    PubMed Central  PubMed  Google Scholar 

  • Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104:3219–3224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134:3317–3326

    CAS  PubMed  Google Scholar 

  • Mac Gabhann F, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15:715–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, Gruenig E, Janssen B, Koehler R, Seeger W, Eickelberg O, Olschewski H, Elliot CG, Glissmeyer E, Carlquist J, Kim M, Torbicki A, Fijalkowska A, Szewczyk G, Parma J, Abramowicz MJ, Galie N, Morisaki H, Si K, Nakanishi N, Morisaki T, Humbert M, Simonneau G, Sitbon O, Soubrier F, Coulet F, Morrell NW, Trembath RC (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27:121–132

    CAS  PubMed  Google Scholar 

  • Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D (2001) Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69:135–144

    CAS  PubMed  Google Scholar 

  • Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, Yla-Herttuala S, Alitalo K (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7:199–205

    CAS  PubMed  Google Scholar 

  • Masumura T, Yamamoto K, Shimizu N, Sobi S, Ando J (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol 29:2125–2131

    CAS  PubMed  Google Scholar 

  • Mazzone M, Dettori D, de Oliveira L, Loges R, Schmidt S, Jonckx T, Tian B, Lanahan YM, Pollard AA, Ruiz P, de Almodovar C, De Smet F et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851

    CAS  PubMed Central  PubMed  Google Scholar 

  • McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA et al (1994) Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    CAS  PubMed  Google Scholar 

  • McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502

    CAS  PubMed  Google Scholar 

  • McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082

    CAS  PubMed  Google Scholar 

  • McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald-McGinn DM, Sullivan KE (2011) Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore) 90:1–18

    Google Scholar 

  • Mendola A, Schlögel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastré E, Bygum A, van der Vleuten C, Fagerberg C, Baselga E, Quere I, Mulliken JB, Boon LM, Brouillard P, Vikkula M, The Lymphedema Research Group (2013) Mutations in the VEGFR3 signaling pathway explain 36 % of familial lymphedema. Mol Syndromol 4:257–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno-Miralles I, Schisler JC, Patterson C (2009) New insights into bone morphogenetic protein signaling: focus on angiogenesis. Curr Opin Hematol 16:195–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrell NW (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3:680–686

    CAS  PubMed  Google Scholar 

  • Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C (2003) BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23:5664–5679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee S, Tessema M, Wandinger-Ness A (2006) Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res 98:743–756

    CAS  PubMed  Google Scholar 

  • Murdaca J, Treins C, Monthouël-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S (2004) Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 279:26754–26761

    CAS  PubMed  Google Scholar 

  • Murray PDF (1932) The development in vitro of the blood of the early chick embryo. Proc R Soc Lond B Biol Sci 11:497–521

    Google Scholar 

  • Mustonen T, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129:895–898

    CAS  PubMed  Google Scholar 

  • Nimmagadda S, Geetha Loganathan P, Huang R, Scaal M, Schmidt C, Christ B (2005) BMP4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quek1) expression. Dev Biol 280:100–110

    CAS  PubMed  Google Scholar 

  • Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A (2004) Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol 24:8813–8822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    CAS  PubMed  Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97:2626–2631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signaling-in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    CAS  PubMed  Google Scholar 

  • Papangeli I, Scambler P (2013) The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol 2:393–403

    CAS  PubMed  Google Scholar 

  • Park C, Lavine K, Mishina Y, Deng CX, Ornitz DM, Choi K (2006) Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation. Development 133:3473–3484

    CAS  PubMed  Google Scholar 

  • Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    CAS  PubMed  Google Scholar 

  • Peirce SM (2008) Computational and mathematical modeling of angiogenesis. Microcirculation 15:739–751

    PubMed Central  PubMed  Google Scholar 

  • Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208

    CAS  PubMed  Google Scholar 

  • Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16:70–82

    CAS  PubMed  Google Scholar 

  • Pi X, Ren R, Kelley R, Zhang C, Moser M, Bohil AB, Divito M, Cheney RE, Patterson C (2007) Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors. J Cell Biol 179:1569–1582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Price RJ, Skalak TC (1996) Chronic alpha 1-adrenergic blockade stimulates terminal and arcade arteriolar development. Am J Physiol 271:H752–H759

    CAS  PubMed  Google Scholar 

  • Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118:2372–2379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren R, Charles PC, Zhang C, Wu Y, Wang H, Patterson C (2007) Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109:2847–2853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    CAS  PubMed  Google Scholar 

  • Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478

    CAS  PubMed  Google Scholar 

  • Roberts DM, Kearney JB, Johnson JH, Rosenberg MP, Kumar R, Bautch VL (2004) The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol 164:1531–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524

    CAS  PubMed  Google Scholar 

  • Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129:3009–3019

    CAS  PubMed  Google Scholar 

  • Ruchoux MM, Domenga V, Brulin P, Maciazek J, Limol S, Tournier-Lasserve E, Joutel A (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162(1):329–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contrib Embryol 9:213–262

    Google Scholar 

  • Saharinen P, Tammela T, Karkkainen MJ, Alitalo K (2004) Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 25:387–395

    CAS  PubMed  Google Scholar 

  • Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19:1027–1029

    CAS  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    CAS  PubMed  Google Scholar 

  • Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9:225–230

    CAS  PubMed  Google Scholar 

  • Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    CAS  PubMed  Google Scholar 

  • Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, Kintner CR, Stark KL (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784

    CAS  PubMed  Google Scholar 

  • Siekmann AF, Covassin L, Lawson ND (2008) Modulation of VEGF signalling output by the Notch pathway. Bioessays 30:303–313

    CAS  PubMed  Google Scholar 

  • Skalak TC, Price RJ (1996) The role of mechanical stresses in microvascular remodeling. Microcirculation 3:143–165

    CAS  PubMed  Google Scholar 

  • Skobe M, Brown LF, Tognazzi K, Ganju RK, Dezube BJ, Alitalo K, Detmar M (1999) Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi’s sarcoma. J Invest Dermatol 113:1047–1053

    CAS  PubMed  Google Scholar 

  • Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85:357–368

    CAS  PubMed  Google Scholar 

  • Sorensen LK, Brooke BS, Li DY, Urness LD (2003) Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol 261:235–250

    CAS  PubMed  Google Scholar 

  • Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, Loyd JE, Elliott CG, Trembath RC, Newman JH, Humbert M (2013) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 62(25 Suppl):D13–D21

    CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ et al (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109:327–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stalmans I, Lambrechts D, De Smet F, Jansen S, Wang J, Maity S, Kneer P, von der Ohe M, Swillen A, Maes C, Gewillig M, Molin DG et al (2003) VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med 9:173–182

    CAS  PubMed  Google Scholar 

  • Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515

    CAS  PubMed  Google Scholar 

  • Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichman A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104:3225–3230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588

    CAS  PubMed  Google Scholar 

  • Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F, Niwa H, Miyazaki Ji J, Hirota S, Kitamura Y, Kitsukawa T, Fujisawa H et al (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A 99:3657–3662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    CAS  PubMed  Google Scholar 

  • Taylor KL, Henderson AM, Hughes CC (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 64:372–383

    CAS  PubMed  Google Scholar 

  • Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209–217

    CAS  PubMed  Google Scholar 

  • Terjung R, Rhodin JAG (2011) Architecture of the vessel wall. In: Terjung R (ed) Comprehensive physiology. Wiley, Hoboken, pp 1–31

    Google Scholar 

  • Tessneer KL, Pasula S, Cai X, Dong Y, McManus J, Liu X, Yu L, Hahn S, Chang B, Chen Y, Griffin C, Xia L, Adams RH, Chen H (2014) Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by Epsin deficiency. Arterioscler Thromb Vasc Biol 34:331–337

    CAS  PubMed  Google Scholar 

  • Tischer E, Mitchel R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266:11947–11954

    CAS  PubMed  Google Scholar 

  • Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, Ucran JA, Liharska K, Underwood KW, Seehra J, Kumar R, Grinberg AV (2012) Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem 287:27313–27325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE, Humbert M, Nichols WC, Morrell NW et al (2001) Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med 345:325–334

    CAS  PubMed  Google Scholar 

  • Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26:328–331

    CAS  PubMed  Google Scholar 

  • Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F, Sideras P, ten Dijke P (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106:2263–2270

    CAS  PubMed  Google Scholar 

  • Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG et al (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164

    CAS  PubMed  Google Scholar 

  • Vogeli KM, Jin SW, Martin GR, Stainier DY (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339

    CAS  PubMed  Google Scholar 

  • Vogt RR, Unda R, Yeh LC, Vidro EK, Lee JC, Tsin AT (2006) Bone morphogenetic protein-4 enhances vascular endothelial growth factor secretion by human retinal pigment epithelial cells. J Cell Biochem 98:1196–1202

    CAS  PubMed  Google Scholar 

  • Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 2:3

    Google Scholar 

  • Weinstein BM, Lawson ND (2002) Arteries, veins, Notch, and VEGF. Cold Spring Harb Symp Quant Biol 67:155–162

    CAS  PubMed  Google Scholar 

  • Whitaker GB, Limberg BJ, Rosenbaum JS (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276:25520–25531

    CAS  PubMed  Google Scholar 

  • Witte MH, Bernas MJ, Martin CP, Witte CL (2001) Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 55:122–145

    CAS  PubMed  Google Scholar 

  • Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343

    CAS  PubMed  Google Scholar 

  • Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivee B, Del Toro R, Suchting S, Medvinsky A, Silva J, Yang J et al (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188:115–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730

    CAS  PubMed  Google Scholar 

  • Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498

    CAS  PubMed  Google Scholar 

  • Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063

    CAS  PubMed  Google Scholar 

  • Yang Y, García-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, Epstein JA, Oliver G (2012) Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120:2340–2348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh LC, Lee JC (1999) Osteogenic protein-1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvaria cells. Mol Cell Endocrinol 153:113–124

    CAS  PubMed  Google Scholar 

  • Yoo YSK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A (2010) Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18:226–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimoto M, Yoder MC (2009) Developmental biology: birth of the blood cell. Nature 457:801–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young HS, Summers AM, Bhushan M, Brenchley PE, Griffiths CE (2004) Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. J Invest Dermatol 122:209–215

    CAS  PubMed  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    CAS  PubMed  Google Scholar 

  • Zeng G, Taylor SM, McColm JR, Kappas NC, Kearney JB, Williams LH, Hartnett ME, Bautch VL (2007) Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109:1345–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Wang J, Shen J, Sun K, Zhu J, Yu T, Ji W, Chen Y, Fu Q, Li F (2010) Mutations in VEGFA are associated with congenital left ventricular outflow tract obstruction. Biochem Biophys Res Commun 396:483–488

    CAS  PubMed  Google Scholar 

  • Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC (2000) Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    CAS  PubMed  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Towbin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Towbin, J.A. (2014). Vascular Genetical Embryology. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics