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Epilepsy is broadly characterized byaberrant neuronal excitability. Glutamate is the predom-
inant excitatory neurotransmitter in the adult mammalian brain; thus, much of past epilepsy
research has attempted to understand the role of glutamate in seizures and epilepsy. Seizures
induce elevations in extracellular glutamate, which then contribute to excitotoxic damage.
Chronic seizures can alter neuronal and glial expression of glutamate receptors and uptake
transporters, further contributing to epileptogenesis. Evidence points to a shared glutamate
pathology for epilepsy and other central nervous system (CNS) disorders, including depres-
sion, which is often a comorbidity of epilepsy. Therapies that target glutamatergic neuro-
transmission are available, but many have met with difficulty because of untoward adverse
effects. Better understanding of this system has generated novel therapeutic targets that
directly and indirectly modulate glutamatergic signaling. Thus, future efforts to manage
the epileptic patient with glutamatergic-centric treatments now hold greater potential.

EXCITOTOXICITY AND EPILEPSY

Normal neuronal signaling requires a com-
plex orchestra of pre- and postsynaptic

events mediated by intracellular signaling and
gene expression pathways. Such short- and long-
term changes can occur simultaneously and
separately, dependently and independently.
Normal signaling, however, goes awry in path-
ological conditions, such as epilepsy. The result-
ing aberrant cellular and network activity pro-
duces a shift in connectivity and synchronicity
that contributes to disease progression. In epi-
lepsy, chronic dysynchronous network activity
induces extraneous neuronal firing and patho-

logical alterations in signaling that may arise
from multiple pathways. One factor that is
heavily implicated in much of the aberrant sig-
naling and resulting pathology of epilepsy is
the neurotransmitter, glutamate. In the follow-
ing text, the myriad glutamatergic mechanisms
related to epilepsy will be explored. Further, pres-
ent and potential avenues for modulating glu-
tamate transmission for therapeutic gain will
be discussed. Although current understanding
of epilepsy has relied heavily on a role for glu-
tamate, future efforts to better understand this
essential neurotransmitter may result in im-
proved therapeutic treatment strategies and pre-
ventative measures for the patient with epilepsy.
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EXCITATORY NEUROTRANSMISSION IN
THE NORMAL AND EPILEPTIC BRAIN

Glutamate is the predominant excitatory neu-
rotransmitter of the adult mammalian brain
and is critical to normal execution of numer-
ous processes. Calcium-dependent presynaptic
release of glutamate into the synaptic cleft is
driven in response to neuronal depolarization.
Glutamate, like the inhibitory neurotransmitter

g-aminobutyric acid (GABA), mediates its ex-
citatory effects via several ionotropic and me-
tabotropic receptor subclasses (Fig. 1). Of the
postsynaptic ionotropic glutamate receptors,
a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA) receptors (AMPARs) are
critical to fast excitatory neurotransmission,
whereas N-methyl-D-aspartate (NMDA) recep-
tors (NMDARs) mediate much of the slow post-
synaptic excitatory potentials essential to global
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Figure 1. The glutamatergic tripartite synapse. Excitatory afferents project from cortical or hippocampal regions,
releasing glutamate into the synaptic cleft. Under normal conditions, synaptic glutamate can signal through
ionotropic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), N-methyl-D-aspar-
tate receptors (NMDARs), and kainate receptors (KARs), or through metabotropic mGluR I, II, or III class
receptors. Synaptic glutamate is subject to reuptake by astrocytes via the glutamate transporters, glutamate
transporter 1 (GLT)-1 and L-glutamate/L-aspartate transporter (GLAST). In epilepsy, GLT-1 and GLAST ex-
pression is down-regulated, an effect that can contribute to further excitotoxic damage under conditions of
chronic seizure-induced glutamate release. Currently approved antiseizure drugs (ASDs) target some aspects of
the glutamatergic synapse and more compounds are currently in development to selectively modulate gluta-
matergic signaling through mGluRs, as well as glial receptors and transporters. Astrocyte-specific strategies to
augment GLT-1/GLAST expression in epilepsy, and thereby a decrease in extraneous synaptic levels of excito-
toxic glutamate, is also an area of active investigation for therapeutic intervention. Additional areas of thera-
peutic development include mGluR targeting agents, cannibinoid (CB) receptor targeting compounds, and
neuropeptide receptors, all of which are hypothesized to directly and indirectly modulate glutamatergic signal-
ing. SE, Status epilepticus; mGluR, metabotropic glutamate receptor.
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information processing. Glutamate can also in-
teract with an additional ionotropic glutamate
receptor, the kainate receptor (KAR). The KAR
has a less clearly understood role in neuronal
signaling that may include both pre- and post-
synaptic modulation of excitatory neurotrans-
mission (Contractoret al. 2000; Lerma and Mar-
ques 2013). The effect of glutamate on these
receptor subtypes thereby stimulates a number
of pre- and postsynaptic events, all of which un-
derlie normal and abnormal neuronal activity.

The majority of fast excitatory synaptic
transmission proceeds either through the pre-
synaptic regulation of glutamate release or
through the postsynaptic strengthening or weak-
ening of neuronal connections at synapses via
changes in AMPAR localization. The cycling
of synaptic AMPARs promotes long-term po-
tentiation and long-term depression (Anggono
and Huganir 2012). Additionally, homeostatic
plasticity facilitates long-duration plastic re-
sponses to subcellular modifications in synaptic
transmission without large-scale alterations in
regional connectivity (Turrigiano 2007, 2012).
Neuronal circuit activity and past synaptic
activity at individual synapses regulate the num-
ber, synaptic localization (externalized or inter-
nalized), and subunit composition of AMPARs.
Thus, neurons can strengthen or weaken their
response to excitatory input. Changes in rela-
tive synaptic strength certainly contribute to
long-term changes in neurocircuitry within the
brain. Synaptic remodeling ultimately contrib-
utes to neuronal destabilization, because of the
increased or decreased ease with which a post-
synaptic neuron can be depolarized by presyn-
aptic input. For this reason, aberrant neuronal
activity as seen within an epileptic network like-
ly leads to long-term rewiring within neuronal
networks, an effect that contributes to network
hyperexcitability associated with epilepsy (Chen
et al. 1999; Leite et al. 2005).

To counterbalance these rapid, destabilizing
changes at individual spines, neurons also un-
dergo homeostatic plasticity, which can stabi-
lize activity at the individual neuron level and
also at the circuit level (Anggono and Huganir
2012), effects that help to maintain a specific
“set point” (Turrigiano 2012). When neuronal

or circuit activity deviates from this set point,
they respond in a manner that attempts to re-
store activity and reduce excitability. In epilepsy,
repeated dysynchronous network activity may
modify the circuit “set point,” as is observed
within the entorhinal cortex-hippocampal mi-
crocircuit (Coulter et al. 2011). Mechanistically,
extraneous synaptic activity results in enhanced
intracellular calcium, gene transcription, and
activation of signaling kinases (Seeburg et al.
2008; Goold and Nicoll 2010). Collectively,
such changes likely contribute to the hallmarks
of temporal lobe epilepsy (TLE), including neu-
ronal loss, gliosis, and mossy fiber sprouting
(Leite et al. 2005). These changes may also shift
the extent of activity-induced AMPAR accumu-
lation at synapses (Seeburg et al. 2008), which
could give rise to enhanced synaptic efficiency or
contribute to further aberrant glutamate release.
In fact, calcium impermeable GluA2-containing
AMPAR expression is increased in rat cerebral
cortex following pilocarpine-induced status ep-
ilepticus (SE) (Russo et al. 2013), demonstrating
a potential long-term shift in neuroplasticity
that may contribute to neuroprotection against
SE-induced neurotoxicity. With the observed
network hyperactivity of epilepsy, the resultant
set-point shift may underlie long-term modifi-
cations in neuronal connectivity and circuitry to
contribute to ictogenesis and epileptogenesis.

METABOTROPIC GLUTAMATE RECEPTOR
SUBTYPES, REGULATION, AND ROLE
IN ICTOGENESIS AND EPILEPSY

In addition to postsynaptic ionotropic AMPARs
and NMDARs, pre- and postsynaptic metabo-
tropic glutamate receptors (mGluRs) have also
been implicated in epilepsy. The mGluRs are
divided into three major functional subgroups
(Fig. 1). Group I includes presynaptic mGluR1
and postsynaptic mGluR5. Presynaptic mGluR1
can enhance vesicular release of glutamate,
whereas postsynaptic mGluR5 can modulate
the postsynaptic actions of ionotropic receptors
(NMDA/AMPA). In neurons, mGluR5 is phys-
ically linked to NMDARs via the proteins Ho-
mer, shank, and PSD-95, and is involved in di-
rect phosphorylation of NMDARs. Astrocytes
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also show robust expression of mGluR5 (see Du-
rand et al. 2013). Group II includes mGluR2/3,
which reside predominately on the presynaptic
terminal and can inhibit presynaptic glutamate
release. Following pilocarpine-induced SE, there
is a profound down-regulation of presynaptic
mGluR2/3 expression in areas CA1 and CA3.
This may promote enhanced excitability (Tang
et al. 2004; Pacheco Otalora et al. 2006). Ad-
ditionally, mGluR3 is expressed on astrocytes
and regulates the expression of the glutamate
transporters L-glutamate/L-aspartate transport-
er (GLAST) and glutamate transporter (GLT)-1
(Aronica et al. 2003), which are responsible for
.90% of glutamate reuptake (Rothstein et al.
1994), an effect that can profoundly modulate
glutamate levels in the synaptic cleft (Durand
et al. 2013). Interestingly, astrocytic mGluR3 ex-
pression is up-regulated in TLE (Aronica et al.
2000). Extraneous glutamate release associated
with chronic seizure activity likely contributes to
the reported mGluR3 expression on astrocytes.
Group III metabotropic glutamate receptors
function as inhibitory presynaptic receptors
and include mGluR4, 6, 7, and 8. Group III
mGluRs are up-regulated in seizure and epilepsy
models and may reflect a physiologic mecha-
nism to compensate for increased hyperexcit-
ability (Pitsch et al. 2007). Altogether, mGluRs
represent a potential mechanism to modulate
glutamatergic signaling in epilepsy.

The genetic mutation underlying fragile X
syndrome (FXS), an autism spectrum disorder
wherein �14% of patients present with seizures
(Berry-Kravis et al. 2010), is caused by dysfunc-
tion in the fragile X mental retardation protein
(FMRP). FMRP disrupts mGluR5 trafficking
to neuronal synapses, an effect that may con-
tribute to seizures associated with FXS (Bardoni
et al. 2001). This protein interacts with cellu-
lar processes essential to those neuroplasticity
processes mediated by group I mGluRs, in-
cluding mGluR5 (Bardoni et al. 2001). Fragile
X mental retardation 1 (FMR1) knockout mice
are susceptible to audiogenic seizures (Pacey et
al. 2009), suggesting that mGluR5 plays a role in
mediating neuronal hyperexcitability. A role for
FMRP-mediated regulation of mGluR5 is also
highlighted by the observation of greater de

novo gene mutations in epilepsy associated spe-
cifically within autism-spectrum disorder- and
FMRP-associated genes (Epi4K Consortium
et al. 2013). This observation suggests that these
pathologies likely converge at the level of gluta-
matergic neurotransmission and contribute to
an imbalance in excitation. Clinical trials cur-
rently underway to examine the use of mGluR5
antagonists in the targeted treatment of FXS
(Hagerman et al. 2009) will ultimately deter-
mine whether mGluR5 antagonists will be ef-
fective in the management of FXS-associated
seizures, and perhaps other epilepsies.

Expression of group I mGluRs (e.g.,
mGluR1/5), at excitatory synapses is also regu-
lated by the immediate early gene, Homer 1a
(Brakeman et al. 1997). Induction of Homer
1a itself is modulated by NMDAR signaling
mechanisms (Tu et al. 1999; Sato et al. 2001).
Activation of Homer 1a can result in reduced
tyrosine phosphorylation of GluA2-containing
AMPARs (Hu et al. 2010; Turrigiano 2012), an
effect that can reduce the expression of synaptic
AMPARs and contribute to long-term changes
in neuroplasticity observed in epilepsy. There is
ample evidence for a key role of Homer 1a in
seizures and epileptogenesis. In normal rats,
Homer 1a expression is up-regulated following
acute maximal electroshock (MES) (Fig. 2)
(Brakeman et al. 1997; M Barker-Haliski and
HS White, unpubl.) and chronic electroconvul-
sive seizures (Altar et al. 2004). In the kindling
model of epilepsy (Potschka et al. 2002), Homer
1a–overexpressing mice show delays in kindling
acquisition (Potschka et al. 2002), and Homer 1a
is up-regulated in response to SE (Cavarsan et al.
2012). Homer 1a protein normally contributes
to homeostatic scaling (Hu et al. 2010), which is
likely aberrant in chronic seizures (Frank 2014).
In addition to the observed dysregulation of
Homer 1a in seizure models, expression of other
synaptic plasticity-associated immediate early
genes (IEGs), including c-Fos and Arc, have
also been shown to be dysregulated in animal
models of chronic seizures (Klein et al. 2004;
Christensen et al. 2010). Moreover, such IEG
dysregulation is highly conserved in some of
the comorbidities of epilepsy, like neuropathic
pain (Obara et al. 2013), as well as other instanc-
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es of acute glutamatergic excitotoxicity, includ-
ing methamphetamine-induced neurotoxicity
(Barker-Haliski et al. 2012). Glutamatergic ex-
citotoxicity may also induce long-term changes
in basal and activity-dependent IEG expression
following such an insult (Barker-Haliski et al.
2012). Collectively, these effects on IEG expres-
sion likely contribute to further modification of
synaptic transmission in epilepsy (Ortuno-Sa-
hagun et al. 2013). Aberrant glutamatergic sig-
naling and chronic excitotoxic damage also
leads to changes in IEG expression, all of which
likely contribute to seizure maintenance and
progression. Additional investigations are clear-
ly required; however, observed changes in IEGs
are of interest and suggestive of a novel mecha-
nism underlying ictogenesis and perhaps epi-
leptogenesis that could serve as a potential ther-
apeutic target for the prevention and treatment
of epilepsy.

PREVENTION OF EPILEPTOGENESIS
THROUGH MODULATION OF
GLUTAMATERGIC MECHANISMS

Evidence for a role of glutamate in seizures and
epileptogenesis is found in animal models and

humans during SE. For example, SE-induced by
high sublethal to lethal doses of nerve agents is
associated with excessive acetylcholine accumu-
lation and a secondary recruitment of excitatory
glutamatergic signaling (Lallement et al. 1991).
SE-induced glutamate release results in over-
stimulation of glutamate receptors, including
NMDARs, sustained long-term seizure activity,
and development of seizure-induced brain dam-
age (McDonough and Shih 1997; Dorandeu
et al. 2013a). With prolonged SE, GABA recep-
tors are internalized and NMDARs migrate to
neuronal synapses (Wasterlain and Chen 2008;
Naylor et al. 2013; Wasterlain et al. 2013), all
effects that lead to reduced inhibition and hy-
perexcitability. These SE-induced changes in
receptor localization highlight why drugs that
target GABAergic neurotransmission likely fail
to suppress seizures associated with sustained
SE, whereas treatment with NMDAR antago-
nists in combination with GABA agonists and
other agents can often successfully attenuate
experimental SE.

NMDAR antagonists like MK-801 or keta-
mine are able to suppress seizures and be neu-
roprotective after prolonged SE (Dorandeu

A B

Figure 2. Representative photomicrographs from in situ hybridization histochemistry. Homer 1a messenger
RNA (mRNA) expression in dorsal hippocampus of male Sprague–Dawley rats (A) 60 min, and (B) 120 min
following maximal electroshock (MES) stimulation (White et al. 1995b; Loscher 1997). Homer 1a mRNA shows
robust activity-dependent expression 60 min and 120 min following MES (Brakeman et al. 1997) in dorsal
hippocampus. In situ hybridization histochemical labeling for Homer 1a mRNA was conducted as previously
described for Arc mRNA (Barker-Haliski et al. 2012), with complementary DNA (cDNA) plasmids for Homer 1a
provided by Dr. Kristen Keefe, University of Utah. Images were acquired at 2.5� magnification using a Zeiss
Axio Imager.A1 microscope and Axiovision V.4.5 imaging software. Green is Homer 1a mRNA and blue is DAPI
nuclear counterstain (Life Technologies, Norwalk, CT).
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et al. 2013a,b). Thus, modulation of glutama-
tergic signaling at the level of NMDARs plays a
critical role in mitigating SE-induced damage.
The extensive damage associated with pro-
longed SE is widely appreciated to represent a
risk for the development of epilepsy. Long-
term remodeling of synaptic connectivity and
dendritic morphology mediated by NMDARs
may contribute to the onset of spontaneous
recurrent seizures. NMDAR subunits undergo
posttranscriptional modifications and epige-
netic changes in response to SE (Ryley Parrish
et al. 2013), effects that contribute to long-last-
ing changes in circuit connectivity. For these
reasons, specifically targeting the glutamatergic
system with NMDAR antagonists may effec-
tively prevent epileptogenesis after SE (Oster-
weil et al. 2013). Moreover, inhibition of brain-
specific microRNA-134, which participates in
those processes necessary for NMDAR-depen-
dent spine remodeling (Schratt et al. 2006), can
prevent spontaneous recurrent seizures months
after SE in .90% of animals treated; an effect
suggesting a strategy to prevent TLE (Jimenez-
Mateos et al. 2012). Although not indicative of
antiepileptogenesis per se, Sroubek and col-
leagues (2001) were able to use ketamine to
prevent memory deficits associated with pilo-
carpine-induced SE. Further, Loss and col-
leagues (2012) observed reductions in post-
SE-induced anxiety with ketamine treatment.
Because growing evidence suggests that certain
comorbidities may actually precede epilepto-
genesis (Kanner et al. 2012; Brooks-Kayal
et al. 2013), the ability of NMDAR antagonists
to prevent the onset of epilepsy-associated co-
morbidities (i.e., disease modifying), suggests
a role for glutamate excitotoxicity in mediating
epileptogenesis and some of the attendant co-
morbidities.

A ROLE FOR GLIAL REGULATION
OF GLUTAMATE IN EPILEPSY

Investigations to understand the neuronal dys-
function that occurs in epilepsy has led to the
development of many antiseizure drugs (ASDs)
that modulate neuronal signaling. Although glia
were traditionally viewed as mere support cells

of the nervous system, growing evidence, and
interest in the field, has now firmly established
an essential role for glial cells in regulating nor-
mal and abnormal neuronal function. Astro-
cytes actively participate in synaptic signaling
by ensheathing neuronal synapses with process-
es rich in neurotransmitter transporters and re-
ceptors that function to buffer synaptic gluta-
mate levels (Halassa et al. 2007). Astrocytes are
considered critical to the regulation of extracel-
lular glutamate levels, for example, astrocytes
possess the transporters GLASTand GLT-1 nec-
essary for the removal of glutamate from the
synapse (Rothstein et al. 1994). In times of ex-
cessive seizure activity or another excitotoxic
event, extracellular glutamate levels rise, and
contribute to the reactive astrocytosis associated
with epileptogenesis and other neurotoxic
events (Laird et al. 2008; Wetherington et al.
2008; Friend and Keefe 2013). Through the
screening of FDA-approved drugs, Rothstein
and colleagues showed that the antibacterial,
ceftriaxone, could substantially up-regulate
GLT1 messenger RNA (mRNA) transcription
and exert a neuroprotective effect in an in vivo
model of ischemic injury (Rothstein et al. 2005).
Moreover, GLT-1-overexpressing mice show a
significant reduction in disease severity follow-
ing pilocarpine-induced SE (Kong et al. 2012),
suggesting that targeting glutamate transporters
through transcriptional or translational regula-
tion processes could represent an as-yet un-
tapped therapeutic strategy for excitotoxic inju-
ry, including epilepsy (Lin et al. 2012). Efforts
are now underway to use ceftriaxone to increase
expression of glutamate transporters in a variety
of preclinical models and clinical disorders as-
sociated with glutamate-mediated excitotoxic
injury, including ALS (Simantov et al. 1999;
Berry et al. 2013), Huntington’s disease (Miller
et al. 2008), substance-abuse disorders (Sari
et al. 2009; Abulseoud et al. 2012), traumatic
brain injury (Goodrich et al. 2013), and epilepsy
(Jelenkovic et al. 2008; Rawls et al. 2010; Zeng
et al. 2010). As interest in, and understanding of,
glial function in pathological conditions grows,
efforts to capitalize on this knowledge will pro-
vide significant potential for “glia-centric” ther-
apeutics.
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One of the most characterized instances of
astroglial reactivity in epilepsy is that which is
observed following SE and during subsequent
epileptogenesis in TLE (Gibbons et al. 2013).
Astroglial reactivity is defined by hypertrophy,
changes in expression of intermediate filaments,
such as glial fibrillary acidic protein (GFAP),
and morphological changes in astrocytic pro-
cesses, including elongation and thickening.
Following SE, several neuronal and astroglial
morphological changes occur within the brain
that likely contribute to physiological rearrange-
ment underlying TLE (Engel 1996). In particu-
lar, normal glutamate clearance is disrupted be-
cause of reduced expression of GLASTand GLT-
1 (Rothstein et al. 1994; Tanaka et al. 1997).
Synaptic glutamate clearance normally requires
active reuptake by these transporters, rather
than enzymatic degradation; thus, reduction
in the expression of these transporters
may contribute to ictogenesis and seizure main-
tenance. Using immunohistochemistry, gross
reductions in expression of glial GLAST and
GLT-1 is observed in resected hippocampal tis-
sues from patients with pharmacoresistant TLE,
whereas the neuronal glutamate transporter,
EAAC1, expression is increased (Proper et al.
2002). GLT-1 expression is also reduced in rats
following lithium-pilocarpine SE (Crino et al.
2002) and amygdala kindling (Miller et al. 1997),
whereas EAAC1 expression is increased. Unfor-
tunately, the observed long-term changes in
transporter expression have not been able to
clearly reveal those acute changes that initiate
epileptogenesis and lead to the development of
TLE. Studies 1–2 weeks following SE in astro-
cytes derived from rats with Kainate (KA)-in-
duced SE, a time in which spontaneous seizure
activity is low (Williams et al. 2009), showed no
detectable change in the amplitude of glutamate
transport currents nor a detectable change in
GLT-1 expression (Takahashi et al. 2010). How-
ever, it was observed that reactive post-SE astro-
cytes show an enhanced capacity to clear extra-
cellular glutamate, as measured by a decrease in
the decay kinetics of glutamate transport cur-
rents (Takahashi et al. 2010). These changes in
glutamate transport currents may be caused by
alterations in the number and type of synaptic

transporters (Takahashi et al. 2010). Although
these data obtained following KA-induced SE
conflict with transporter expression data col-
lected from human patients with pharmacore-
sistant TLE (Proper et al. 2002), as well as rodent
pilocarpine (Crino et al. 2002) and kindling data
(Miller et al. 1997), it is known that KA-induced
SE is associated with a decrease in EAAC1 ex-
pression and a moderate increase in astroglial
transporter expression. Thus, changes in trans-
porter kinetics observed following KA-induced
SE may suggest that SE models result in subcel-
lular response variability. On the other hand,
these findings may suggest that acute subcellular
changes in glutamate transporter kinetics fol-
lowing SE may promote long-term changes in
receptor expression in established TLE. Efforts
to clearly define both acute and chronic changes
in glutamate receptor function and expression
may reveal new avenues for therapeutic inter-
vention.

SE is also known to affect metabotropic
glutamate receptor expression on astrocytes.
Following SE, an up-regulation of mGluR1/5-
glutamate receptors on reactive astrocytes has
been reported in a rat model of TLE (Aronica
et al. 2000), as well as human TLE patients
(Notenboom et al. 2006). How astrocyte-specif-
ic changes in glutamate receptor expression fol-
lowing SE can contribute to TLE is still relatively
unexplored, but may provide novel mechanisms
to bring forth a new class of astrocyte-selective
antiseizure therapies (Gibbons et al. 2013). Such
glial receptor–specific compounds, like tetrahy-
drobenzothiepine oxide (THPO) as an inhibitor
of astrocyte-specific GABA transporters (White
et al. 2002; Schousboe et al. 2014), suggest yet
another approach that may lead to a new class of
compounds for the prevention of epileptogen-
esis post-SE.

EPILEPSY-RELATED PHENOTYPES
ASSOCIATED WITH ABERRANT
GLUTAMATE SIGNALING

An interesting role for glutamate signaling and
glutamate receptors in epilepsy arises from
patients with encephalitis because of the devel-
opment of NMDAR antibodies (Niehusmann
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et al. 2009; Lancaster et al. 2011) and/or anti-
bodies directed against glutamic acid decarbox-
ylase (GAD) (Boronat et al. 2011; Liimatainen
et al. 2014). Sometimes, the autoimmune disor-
der, including the seizures, can be effectively
controlled with clinical immunotherapy treat-
ment despite the fact that the antibodies are per-
sistently detectable in sera (Alexopoulos et al.
2011; Lancaster et al. 2011). Such reports of sei-
zures arising from autoimmune attack of gluta-
mate receptors further implicate the glutamater-
gic system in epilepsy.

In addition to behavioral seizures associated
with epilepsy, many patients also suffer from a
number of comorbid conditions, which often
become more detrimental to a patient’s quality
of life than the seizures themselves (Brooks-
Kayal et al. 2013). Increasing evidence points
to a shared glutamate pathology in several of
these comorbid conditions, including those re-
lated to depression (Zarate et al. 2006; Niciu et
al. 2013) and schizophrenia (Cascella et al. 2009;
Merritt et al. 2013). The hypothesized glutamate
imbalance in both epilepsy and these specific
comorbidities may help explain the efficacy of
NMDAR antagonists, like ketamine, in depres-
sion (Zarate et al. 2006) and prevention of path-
ological damage associated with SE (Dorandeu
et al. 2013a,b). Such evidence is intriguing given
the clinical advances with NMDAR allosteric
modulators and subunit-selective antagonists
in treating patients with major depression with-
out the risk of adverse psychomimetic effects
(Burgdorf et al. 2013; Moskal et al. 2014; Poch-
wat et al. 2014). Clinical use of these NMDAR-
selective compounds in the patient with epilepsy
may provide promising relief from one, if not
several, of the comorbidities of epilepsy.

Patients with epilepsy also have a high prev-
alence of psychosis, ranging from 5% to 7% of
cases (Gudmundson et al. 1966; Clancey et al.
2014). Clarke and colleagues used a population-
based family study to show that patients with
epilepsy have a 5.5-fold greater risk of general-
ized psychosis and a 8.5-fold greater risk of
developing schizophrenia (Clarke et al. 2012),
suggesting that glutamatergic imbalance could
underlie both conditions. The potential for psy-
chotic effects should, thus, be considered when

initiating treatment with ASDs, especially for
those patients with familial or personal his-
tory of psychiatric illness. As one study showed,
3.7% of patients who were treated with topira-
mate presented with psychotic adverse events
(Mula et al. 2003). Such adverse psychotropic
effects are also observed with other ASDs, in-
cluding levetiracetam, tiagabine, vigabatrin,
and zonisamide (Piedad et al. 2012). Thus, the
potential for adverse psychotic events should be
considered when embarking on any ASD-treat-
ment regimen in individuals with a risk of psy-
chosis.

CURRENT ASDs THAT MODULATE
GLUTAMATE-MEDIATED
NEUROTRANSMISSION

Because of the importance of maintaining bal-
ance between excitation and inhibition, much
effort to develop pharmacological therapies
for epilepsy have focused on identifying com-
pounds that can modulate these two pathways.
To date, several ASDs are available that target the
glutamatergic system (Fig. 1). Topiramate sup-
presses excitatory neurotransmission by attenu-
ating non-NMDA-type glutamate receptor ex-
citatory neurotransmission through inhibition
of kainate-evoked currents (Gibbs et al. 2000).
Topiramate has also been shown to reduce high
basal concentrations of extracellular glutamate
in hippocampi of spontaneously epileptic rats
(Kanda et al. 1996). In addition to topiramate,
the broad-spectrum ASD felbamate can inhibit
glutamate currents mediated by NMDARs (Rho
et al. 1994). Pregabalin selectively binds to the
accessory subunit a2d-1 of voltage-gated cal-
cium channels (Dooley et al. 2007) to block P/
Q-type calcium currents, thereby reducing the
calcium-dependent release of glutamate (Doo-
ley et al. 2000). In addition to effects on voltage-
gated sodium channels, lamotrigine can mod-
ulate P/Q-type, N-type, and R-type calcium
channels (Wang et al. 1996; Dibue et al. 2013),
all of which are expressed on presynaptic nerve
terminals, thereby indirectly modulating gluta-
mate release. Other sodium channel blockers,
including phenytoin and carbamazepine, also
reduce evoked glutamate release through their
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ability to block sodium-evoked calcium influx
and excitation-induced glutamate release (Fig.
1). Thus, currently approved ASDs show vary-
ing degrees of effects on glutamatergic neuro-
transmission, effects that can be either direct or
indirect.

Although several of the available ASDs in-
directly target glutamatergic signaling, gluta-
mate receptor–selective agents have been slower
to emerge. As NMDA hypofunction is hypoth-
esized to contribute to schizophrenia, it is no
surprise that clinical development of NMDAR-
selective antagonists have met with difficulty
owing to adverse behavioral effects (Wada et
al. 1992). However, results obtained with selec-
tive NMDAR antagonists in depression sug-
gest that it may be possible to selectively target
NMDAR for therapeutic gain (see above). Of
all ASDs currently approved for clinical use,
only felbamate possesses any substantial effects
on NMDARs (Rho et al. 1994; White et al.
1995a; Kleckner et al. 1999; Harty and Rogaw-
ski 2000). Conversely, modulation of AMPARs
may be a more promising clinical target be-
cause modulation of AMPAR, but not NMDAR
(Hunt and Castillo 2012), signaling exerts few-
er effects on neuroplasticity (Goda and Stevens
1996) and has greater potential to modulate
hyperexcitability without potential for psycho-
sis (Rogawski 2013). For these reasons, efforts
to develop AMPAR-selective agents resulted in
clinical approval of perampanel as the first-in-
class glutamate system-selective drug for epi-
lepsy (Hanada et al. 2011; Loscher and Schmidt
2012; Rheims and Ryvlin 2013; Rogawski
2013). Perampanel is a noncompetitive AM-
PAR antagonist (Rheims and Ryvlin 2013)
that decreases neuronal excitability and syn-
chronization characteristic of epileptiform ac-
tivity (Rogawski 2013).

EMERGING MECHANISMS FOR POTENTIAL
THERAPIES THAT MODULATE THE
GLUTAMATE SYSTEM

Many other agents that directly target non-
NMDA-type glutamate receptors are now in
preclinical and clinical development in an effort
to exploit this mechanism to reduce hyperex-

citability in the epileptic brain (Alexander and
Godwin 2006; Faught 2014). Although not crit-
ically addressed in this review, KARs represent
another key class of glutamate receptors that
may play a role in epilepsy, and recent evidence
indicates that these receptors are up-regulated
in astrocytes in response to SE (Vargas et al.
2013). However, whether these receptors are
functional and actively contribute to seizures
remains to be determined, but could suggest
that selectively targeting astrocytic processes
that contribute to glutamate release could be a
novel therapeutic target for the treatment of
epilepsy (Gibbons et al. 2013). Additionally,
selurampanel (BGG492; Fig. 2) is an AMPA/
KA-receptor antagonist (Faught 2014) under-
going clinical trials in patients with partial
(ClinicalTrials.gov Identifier NCT01338805)
and photosensitive epilepsy (ClinicalTrials.gov
Identifier NCT00784212). The approval of per-
ampanel and knowledge of the glutamatergic
system gained over the last several decades pro-
vides strong support that non-NMDA-type glu-
tamate receptors can be effectively manipulated
to manage epilepsy.

More promising for the patient with epi-
lepsy, however, is the potential for indirect mod-
ulation of the glutamate system through alter-
native strategies that have yet to be clinically
deployed in the therapeutic arsenal. The follow-
ing targets and mechanisms to modulate the
glutamate system potentially offer first-in-class
therapies for the patient with epilepsy and pro-
vide promise for the �30% of patients resistant
to current therapies (Brodie and Kwan 2002).

In addition to efforts to increase transcrip-
tional up-regulation of glutamate transporters,
like GLT-1 (see above), other strategies to mod-
ulate glutamate transporters include efforts to
exploit the neuropeptide system. Neuropeptides
have long been known to possess endogenous
anticonvulsant properties and may also repre-
sent a unique therapeutic strategy for the patient
with epilepsy (White et al. 2009; Zhang et al.
2009). As an example, galanin receptors are no-
tably up-regulated on glial cells following neu-
ronal injury (Cortes et al. 1990; Xu et al. 1992),
and galanin itself possesses significant anticon-
vulsant properties (Mazarati et al. 1992, 1998;
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Lin et al. 2003) likely because of indirect mod-
ulation of presynaptic glutamate release (Ben-
Ari 1990; Kinney et al. 1998). Galanin analogs
have shown preclinical efficacy in various seiz-
ure models (White et al. 2009; Jequier Gygax
et al. 2014); however, the true test of this strategy
will necessarily have to await clinical data from
appropriately designed clinical trials.

The endocannabinoid system has also
emerged as a novel therapeutic strategy to indi-
rectly modulate glutamatergic signaling. The
cannabinoid receptors (CB)1 and CB2, are ex-
pressed on both glia and neurons (Stella 2010)
and CB1 receptors are regulated through gluta-
matergic mechanisms. Although CB1 receptors
are highly expressed on GABAergic interneu-
rons, classical effects of cannabinoids are pre-
sumed to be mediated through CB1 receptors
expressed on glutamatergic principal neurons
(Monory et al. 2007; Stella 2010). CB2 receptors
are not highly expressed in the healthy brain (see
Stella 2010), but CB2 receptors are up-regulated
on infiltrating microglia in response to CNS in-
jury and inflammation (Fig. 2) (Maresz et al.
2005). These observations provide a contextual
therapeutic target in epilepsy (i.e., microglia
that are activated in response to seizures) (Fig.
2) (Vezzani et al. 2011). Thus, cannabinoids
likely act by indirectly modulating glutamater-
gic transmission via neuronal CB1 receptors
and indirectly confer anti-inflammatory effects
through microglial CB2 receptors. Even though
well-validated preclinical data on the effects of
cannabidiol in epilepsy and seizure models is
sparse, that which is available suggests efficacy
of cannabidiol in various in vitro and in vivo
seizure models (Consroe et al. 1982; Jones et
al. 2010, 2012). These reasons, when coupled
with anecdotal evidence in human patients with
drug-refractory epilepsy, may suggest a potential
clinical benefit for high-cannabidiol contain-
ing marijuana extracts in controlling difficult-
to-treat epilepsies in children (Porter and Jacob-
son 2013). Clinical trials in children with Dra-
vet’s syndrome are underway (ClinicalTrials.gov
Identifier NCT02091375 and NCT02091206)
and these data, as well as results from earlier
tolerability studies in a small population of adult
epilepsy patients (Cunha et al. 1980), are impor-

tant for understanding the role of CB receptors
in epilepsy.

In addition to anecdotal efficacy of cannabi-
diol itself, combination studies may suggest
potential synergism of CB receptor–targeting
agents used in combination with approved
ASDs. Luszczki and colleagues (2011, 2013)
used the mouse MES test to examine the protec-
tive effects of the general CB receptor agonist,
WIN 55,212-2, in combination with various
ASDs. They observed a potentiated anticonvul-
sant efficacy with several ASDs in this test in the
presence of WIN (5 mg/kg), specifically WIN
55,212-2 in combination with carbamazepine
and valproate (Luszczki et al. 2011), lamotri-
gine, pregabalin, and topiramate (Luszczki et
al. 2013). Importantly, the synergism was not
caused by changes in brain (Luszczki et al.
2011) or plasma (Luszczki et al. 2013) concen-
tration of the ASDs themselves, but likely arose
from convergent suppressive effects on glutama-
tergic neurotransmission (Fig. 1). These drug
combination studies, therefore, suggest poten-
tial synergistic action of CB agonists with some
ASDs, which may also provide clinical benefit
for seizure control. However, although combi-
nations with second-generation ASDs resulted
in no significant adverse motor effects (Luszczki
et al. 2013), combination with first-generation
ASDs resulted in significant impairments in
motor coordination, muscle strength, and long-
term memory (Luszczki et al. 2011) suggesting
that the combination of WIN 55,212-2 with
some ASDs results in a negative narrowing of
the therapeutic window. As such, additional
preclinical and clinical investigations are still re-
quired before the therapeutic potential of CB/
ASD combination therapies can be clearly de-
fined. Whether CB agonist combination thera-
pies with second- and third-generation ASDs,
as well as glutamate-selective compounds, will
prove useful in the management of epilepsy is
certainly of clinical importance and deserving
of further study.

CONCLUDING REMARKS

Taken together, substantial evidence shows that
glutamate plays a pivotal role in normal neuro-
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nal signaling. Moreover, excess glutamate re-
lease associated with recurrent seizures and ob-
served in chronic epilepsy leads to long-term
alterations in normal neuronal signaling and
network connectivity. There is much preclinical
and clinical evidence supporting the therapeu-
tic potential of treatments that modulate gluta-
matergic signaling in the management of epi-
lepsy. As a result, new targets, including those
on astrocytes and microglia, are emerging that
may offer a means to modulate glutamate in
ways that will avoid some of the hurdles associ-
ated with previous attempts to target glutamate
receptors themselves. Although prior efforts to
target the glutamate system in epilepsy have
been slow to provide clinically relevant options,
the potential for future development of thera-
pies that selectively target the glutamate system
is promising.
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