Brain uptake and metabolism of ketone bodies in animal models

Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):265-75. doi: 10.1016/j.plefa.2003.07.006.

Abstract

As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.

Publication types

  • Review

MeSH terms

  • Amino Acids / metabolism
  • Animals
  • Blood-Brain Barrier / metabolism
  • Brain / enzymology
  • Brain / growth & development
  • Brain / metabolism*
  • Glucose / metabolism
  • Humans
  • Ketone Bodies / metabolism*
  • Lipid Metabolism
  • Models, Animal*

Substances

  • Amino Acids
  • Ketone Bodies
  • Glucose