The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro

Mol Endocrinol. 2004 Nov;18(11):2660-71. doi: 10.1210/me.2004-0116. Epub 2004 Jul 22.

Abstract

The steroid hormone 1 alpha,25(OH)(2)-vitamin D(3) (1,25D) regulates gene transcription through a nuclear receptor [vitamin D receptor (VDR)] and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDR(mem)). This study characterized the VDR(mem) present in a caveolae-enriched membrane fraction (CMF), a site of accumulation of signal transduction agents. Saturable and specific [(3)H]-1,25D binding in vitro was found in CMF of chick, rat, and mouse intestine; mouse lung and kidney; and human NB4 leukemia and rat ROS 17/2.8 osteoblast-like cells; in all cases the 1,25D K(D) binding dissociation constant = 1-3 nM. Our data collectively support the classical VDR being the VDR(mem) in caveolae: 1) VDR antibody immunoreactivity was detected in CMF of all tissues tested; 2) competitive binding of [(3)H]-1,25D by eight analogs of 1,25D was significantly correlated between nuclei and CMF (r(2) = 0.95) but not between vitamin D binding protein (has a different ligand binding specificity) and CMF; 3) confocal immunofluorescence microscopy of ROS 17/2.8 cells showed VDR in close association with the caveolae marker protein, caveolin-1, in the plasma membrane region; 4) in vivo 1,25D pretreatment reduced in vitro [(3)H]-1,25D binding by 30% in chick and rat intestinal CMF demonstrating in vivo occupancy of the CMF receptor by 1,25D; and 5) comparison of [(3)H]-1,25D binding in VDR KO and WT mouse kidney tissue showed 85% reduction in VDR KO CMF and 95% reduction in VDR KO nuclear fraction. This study supports the presence of VDR as the 1,25D-binding protein associated with plasma membrane caveolae.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Binding, Competitive
  • Calcitriol / analysis
  • Calcitriol / metabolism*
  • Caveolae / chemistry*
  • Caveolae / metabolism
  • Caveolin 1
  • Caveolins / analysis
  • Cell Membrane / chemistry
  • Cell Membrane / metabolism
  • Cell Nucleus / chemistry
  • Cell Nucleus / metabolism
  • Chickens
  • Humans
  • Mice
  • Rats
  • Receptors, Calcitriol / analysis*
  • Receptors, Calcitriol / metabolism*
  • Tissue Distribution

Substances

  • CAV1 protein, human
  • Cav1 protein, mouse
  • Cav1 protein, rat
  • Caveolin 1
  • Caveolins
  • Receptors, Calcitriol
  • Calcitriol