Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy

Leuk Res. 2012 Feb;36(2):212-8. doi: 10.1016/j.leukres.2011.09.011. Epub 2011 Oct 5.

Abstract

Bortezomib is a proteasome inhibitor important to the therapy of multiple myeloma (MM), though a number of patients show resistance to this drug. To study the cellular basis of this resistance we have generated a MM cell line displaying enhanced (5-6-fold) resistance to bortezomib by serial cultivation of RPMI 8226 cells with increasing concentrations of this drug. Bortezomib-resistant cells (8226/7B) became bigger in size than parental cells and nearly doubled the amount of DNA per cell, evolving from hypotriploidy to near-tetraploidy. 8226/7B displayed lowered Noxa accumulation and reduced caspase-3 activation in response to bortezomib. Resistant 8226/7B cells overexpressed the PSMβ5 proteasome subunit, the molecular target of bortezomib, both at the mRNA and protein level. No mutations were detected in the PSMβ5 gene. Bortezomib-resistant cells were roughly as sensitive as parental cells to other chemotherapeutic drugs, including doxorubicin, melphalan, vincristine, BMS-214662 and BMS-345541. 8226/7B cells showed partial and high cross-resistance to the proteasome inhibitors epoxomicin and MG-132, respectively. Co-treatment with the histone deacetylase inhibitor trichostatin A (TSA) potentiated bortezomib-induced apoptosis in parental RPMI 8226 cells but did not revert bortezomib resistance in 8226/7B cells. Therefore, treatment of bortezomib-refractory myeloma with drugs targeting molecular structures other than proteasome seems to be the more suitable therapeutic strategy to overcome bortezomib resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects
  • Blotting, Western
  • Boronic Acids / pharmacology*
  • Bortezomib
  • Caspase 3 / metabolism*
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / genetics*
  • Flow Cytometry
  • Histone Deacetylase Inhibitors / pharmacology
  • Humans
  • Hydroxamic Acids / pharmacology
  • Multiple Myeloma / drug therapy
  • Multiple Myeloma / genetics*
  • Multiple Myeloma / metabolism*
  • Polyploidy*
  • Protease Inhibitors / pharmacology
  • Proteasome Endopeptidase Complex / genetics
  • Proteasome Endopeptidase Complex / metabolism*
  • Proteasome Inhibitors
  • Pyrazines / pharmacology*
  • RNA, Messenger / genetics
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • Antineoplastic Agents
  • Boronic Acids
  • Histone Deacetylase Inhibitors
  • Hydroxamic Acids
  • Protease Inhibitors
  • Proteasome Inhibitors
  • Pyrazines
  • RNA, Messenger
  • trichostatin A
  • Bortezomib
  • Caspase 3
  • PSMB5 protein, human
  • Proteasome Endopeptidase Complex