Zinc signals and immune function

Biofactors. 2014 Jan-Feb;40(1):27-40. doi: 10.1002/biof.1114. Epub 2013 Jun 27.

Abstract

For more than 50 years, it has been known that zinc deficiency compromises immune function. During this time, knowledge about the biochemistry of zinc has continued to grow, but only recent years have provided in-depth molecular insights into the multiple aspects of zinc as a regulator of immunity. A network based on ZnT and ZIP proteins for transport and metallothionein for storage tightly regulates zinc availability, and virtually all aspects of innate and adaptive immunity are affected by zinc. In vivo, zinc deficiency alters the number and function of neutrophil granulocytes, monocytes, natural killer (NK)-, T-, and B-cells. T cell functions and balance between the different subsets are particularly susceptible to changes in zinc status. This article focuses in particular on the main mechanisms by which zinc ions exert essential functions in the immune system. On the one hand, this includes tightly protein bound zinc ions serving catalytic or structural functions in a multitude of different proteins, in particular enzymes and transcription factors. On the other hand, increasing evidence arises for a regulatory role of free zinc ions in signal transduction, especially in cells of the immune system. Identification of several molecular targets, including phosphatases, phosphodiesterases, caspases, and kinases suggest that zinc ions are a second messenger regulating signal transduction in various kinds of immune cells.

Keywords: protein tyrosine phosphatases; second messenger; signal transduction.

Publication types

  • Review

MeSH terms

  • Animals
  • Homeostasis
  • Humans
  • Immune System / cytology
  • Immune System / metabolism
  • Immunity
  • Metalloproteins / metabolism
  • Signal Transduction*
  • Zinc / physiology*

Substances

  • Metalloproteins
  • Zinc