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A B S T R A C T

High hydrostatic pressure (HHP) was applied to the extraction of phenolic compounds from watercress
(Nasturtium officinale). The process was optimized by response surface methodology using a five-level central
composite design combining the independent variables of processing time (t, 1.5–33.5min), pressure (P,
0.1–600MPa) and solvent (S, 0–100% of ethanol, v/v). The individual and grouped phenolic compounds,
analyzed by HPLC-DAD-ESI/MS, and the extraction yield were used as response variables. The theoretical
models were fitted to the experimental data, statistically validated, and used in the prediction and optimization
steps. The optimal HHP conditions for the extraction of phenolic compounds were: t=3.1min, P=600MPa
and S=100%, and originated 64.68 ± 2.97mg/g of extract. This study highlighted the HHP as a promising
technology to cold extract phenolic compounds (phenolic acids and flavonoids) from watercress in a selective
way using a green solvent and reduced extraction times.

1. Introduction

The recovery of bioactive compounds from natural sources and their
further incorporation into foods [1], dietary supplements [2] and cos-
meceuticals [3], either in isolated form or in enriched extracts, is a
current hot topic that involves many research fields. Phenolic com-
pounds are among the most desired plant secondary metabolites be-
cause of their recognized bioactivities and capacity to protect against
free radical-mediated diseases [4]. Several studies have been carried
out in recent years to improve the extraction of these compounds from
plant materials [5–7], but more efficient and sustainable methods need
to be developed to achieve higher yields and superior quality products
at lower processing costs.

Watercress (Nasturtium officinale R. Br.) is a semi-aquatic fast-
growing plant of the Brassicaceae family with recognized health-pro-
moting effects. Its consumption in a daily diet has been linked with a
reduced risk of chronic diseases including different types of cancer
[8–11]. This species is an interesting source of pharmacologically active
phytochemicals [12–14] whose involvement in antigenotoxic and an-
ticancer processes has been demonstrated in both in vivo and in vitro

assays [11,15–17]. A previous study reported p-coumaric acid, quer-
cetin-3-O-sophoroside and isorhamnetin-O-hydroxyferuloylhexoside-O-
hexoside as the most abundant phenolic compound in wild watercress
[14]. Higher concentrations of flavonoids than phenolic acids were
reported in these extracts due to the high contents of isorhamnetin and
quercetin glycosides and, in lesser extent, of kaempferol [14]. In turn, a
dimer of caffeoylmalic acid, disinapoylgentibiose and ferulic acid were
identified as the predominant polyphenols in watercress juice, which
demonstrated capacity to inhibit digestive enzymes relevant to type 2
diabetes and obesity [12]. Despite the great potential of these com-
pounds in various industrial sectors, the development of more efficient
processes for their recovery from watercress and other natural sources
remains challenging.

High hydrostatic pressure (HHP) is an emerging technology in-
creasingly used in the food industry as a cold pasteurization method
[18–21]. It consists on subjecting packaged or in bulk foods to pressures
up to 1000MPa inside a vessel filled with water, fluid that acts as
pressure-transmitting medium [18,21]. During processing, the pressure
is transmitted in an isostatic and quasi-instantaneous manner
throughout the sample, which makes the processing time independent
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of the sample shape or size. In addition, the temperature increase with
increasing pressure is minimal (∼3 °C/100MPa) [22,23], thus being a
good alternative to heat-based treatments.

HHP has been explored for some time by the food industry. Its ap-
plication for extraction of high added-value compounds from plant
materials is relatively recent and very promising, but more research
focusing on different compounds and plant materials is still needed. The
applied pressure promotes the rupture of the plant tissues, cell walls
and organelles, a phenomenon that enhances the mass transfer of the
solvent into the sample and of compounds to the solvent [24]. In ad-
dition, the higher the hydrostatic pressure is, the more solvent can enter
cells and the more compounds can permeate out to the solvent [25,26].
Despite the considerable cost of the HHP equipment, processing can
become cheaper compared to conventional methods that demand
temperature and long processing times [27]. Therefore, the equipment
costs could be repaid back in long-term usage.

Previous studies reported that HHP is a good alternative to con-
ventional extraction methods since it avoids the degradation of ther-
mosensitive molecules, reduces the extraction time and solvent con-
sumption, and improves the extraction efficiency in terms of yield,
quality and selectivity [24–26,28–30]. Moreover, a low-energy input is
required by this eco-friendly technology to compress a sample to
500MPa as compared to heating to 100 °C [31]. As examples, HHP was
successfully applied to extract antioxidant compounds from pome-
granate [32] and citrus [33] peels and fig by-products [30], flavonoids
from propolis [29], anthocyanins from grape skins [34], catechins [25]
and caffeine [35] from green tea leaves, ginsenosides from ginseng
(Panax ginseng C.A. Meyer) [36], ferulic acid from Radix Angelica si-
nensis [37], and carotenoids from tomato wastes [22]. However, the
performance of this extraction method can be affected by a number of
independent variables such as processing time, pressure and solvent
[30,32], whose effect on one or more dependent (response) variables
can be evaluated using the response surface methodology (RSM). This is
a time- and reagent-saving statistical tool increasingly used in process
optimization since one-factor-at-a-time experiments cannot predict
optimal conditions and neglect interactions between variables.

The present study was carried out to optimize the HHP extraction of
phenolic compounds from watercress using RSM. The response vari-
ables used in the development of mathematical models describing the
extraction process (namely individual and grouped phenolic com-
pounds) were obtained by high-performance liquid chromatography
coupled to mass spectrometry (HPLC-DAD-ESI/MS).

2. Material and methods

2.1. Standards and reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific
(Lisbon, Portugal). Formic acid was purchased from Prolabo (VWR
International, France). The phenolic compound standards (ferulic, si-
napic, p-coumaric and caffeic acids, and kaempferol-3-O-rutinoside,
quercetin-3-O-rutinoside, and quercetin-3-O-glucoside) were purchased
from Extrasynthese (Genay, France). All other chemicals were of ana-
lytical grade and were purchased from common sources. Water was
treated in a Milli-Q water purification system (Millipore, model A10,
Billerica, MA, USA).

2.2. Plant material

Fresh samples of watercress (Nasturtium officinale R. Br.) were
commercially obtained from a local supermarket in Bragança, Portugal.
The taxonomic identification of the plant material was confirmed by the
botanist Dr. Ana Maria Carvalho from the Polytechnic Institute of
Bragança, Portugal. The samples were lyophilized (FreeZone 4.5,
Labconco, Kansas City, MO, USA), reduced to a fine powder (∼20
mesh), and kept at −20 °C until processing.

2.3. High hydrostatic pressure extraction

The extractions were carried out on a pilot-scale high-pressure
equipment (Model 55, Hyperbaric, Burgos, Spain) with a pressure
vessel of 55 L, connected to a refrigeration unit (RMA KH 40 LT, Ferroli,
San Bonifacio, Italy) to control the temperature of the input water used
as pressure-transmitting fluid. Heat-sealed plastic bags containing 0.6 g
of dry powder sample and 20mL of solvent were placed in the pressure
vessel and then subjected to different conditions of processing time
(1.5–33.5min), pressure (0.1–600MPa) and solvent (0–100% of
ethanol, v/v) as defined in the circumscribed central composite design
(CCCD) presented in Table 1. Ethanol:water mixtures were used since
ethanol has low toxicity and GRAS (generally recognized as safe) status.
The solid/liquid ratio was maintained at 30 g/L. All extractions were
performed at 20 °C (cold extraction). However, since the pressure in-
creases the temperature by ∼3 °C/100MPa [22,23], processing at
600MPa resulted in an adiabatic temperature increase from 20 °C to
∼38 °C, which should still be not enough to promote the thermal de-
gradation of bioactive compounds. After HHP processing, the mixture
was filtered through filter paper (Whatman No. 4) and the filtrate was
collected and kept at −80 °C until analysis.

2.4. Calculation of the extraction yield

The extraction yields (%) were calculated based on the dry weight
(crude extract) obtained after evaporation of the solvent. First, the fil-
trates were concentrated at 35 °C under reduced pressure (rotary eva-
porator Büchi R-210, Flawil, Switzerland) and the aqueous phase was
then lyophilised to obtain a dried extract.

2.5. Chromatographic analysis of phenolic compounds

The dried extracts (∼10mg) were dissolved in a methanol:water
mixture (20:80 v/v) and filtered through 0.22 µm disposable LC filter
disks. The chromatographic analysis was performed in a Dionex
Ultimate 3000 UPLC (Thermo Scientific, San Jose, CA, USA) system
equipped with a diode array detector (DAD) coupled to an electrospray
ionization mass detector (ESI-MS) (ThermoFinnigan, San Jose, CA,
USA) as described by Bessada et al. [38]. The phenolic compounds were
identified using 280 nm and 370 nm as preferred wavelengths and by
comparing their retention time and UV–vis and mass spectra with those
obtained from authentic standards, when available. For quantitative
analysis, a baseline to valley integration with baseline projection mode
was used to calculate the peak areas and the external standards men-
tioned above were used for quantification. The results were expressed
in mg per g of extract.

2.6. Experimental design, modelling and optimization

2.6.1. Experimental design
A five-level CCCD (Box-Behnken design) coupled with RSM was

implemented to optimize the HHP conditions for the extraction of
phenolic compounds from watercress. The coded and natural values of
the independent variables X1 (processing time (t), min), X2 (pressure
(P), MPa) and X3 (solvent (S), % of ethanol, v/v) are presented in
Table 1. This CCCD includes 6 replicated center points and a group of
axial points chosen to allow rotatability, which ensures that the var-
iance of the model prediction is constant at all points equidistant from
the design center. The experimental runs were randomized to minimize
the effects of unexpected variability in the observed responses.

2.6.2. Mathematical modelling
The response surface models were fitted by means of least-squares

calculation using the following Box-Behnken design equation:
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In this equation, Y represents the dependent variable (response
variable) to be modelled, Xi and Xj are the independent variables, b0 is
the constant coefficient, bi is the coefficient of linear effect, bij is the
coefficient of interaction effect, bii is the coefficient of quadratic effect,
and n is the number of variables. The extraction yield and the individual
and grouped phenolic compounds (22 compounds and 6 groups) were
used as dependent variables.

2.6.3. Procedure to optimize the variables to a maximum response
A simplex method was used to optimize the predictive model by

solving nonlinear problems in order to maximize the extraction yield
and the recovery of phenolic compounds [5]. Certain limitations were
imposed (i.e., times lower than 0) to avoid variables with unnatural and
unrealistic physical conditions.

2.7. Cluster analyses

A cluster analysis was performed to group the phenolic compounds
according to the extraction conditions that maximize their response
values using the “XLSTAT 2016”, a Microsoft Excel add-in. A com-
parative agglomerative hierarchical clustering analysis (HCA) with
Pearson correlation coefficient was used for clustering (similarity ana-
lysis). The algorithm used was a complete linkage with automatic
truncation based on entropy.

2.8. Fitting procedures and statistical analysis

Fitting procedures, coefficient estimates and statistical calculations
were performed as previously described by Pinela et al. [5]. In brief, a)
the coefficient measurement was performed using the nonlinear least-
square (quasi-Newton) method provided by the macro “Solver” in Mi-
crosoft Excel, which allows minimizing the sum of the quadratic dif-
ferences between the observed and model-predicted values; b) the
coefficient significance was evaluated using the ‘SolverAid’ to de-
termine the parametric confidence intervals. The not statistically sig-
nificant terms (p-value > 0.05) were dropped to simplify the model;
and c) the model reliability was verified using the following criteria: i)

the Fisher F-test (α=0.05) was used to determine whether the con-
structed models were adequate to describe the observed data; ii) the
‘SolverStat’ macro was used for the assessment of parameter and model
prediction uncertainties; iii) the R2 was interpreted as the proportion of
variability of the dependent variable explained by the model.

3. Results and discussion

3.1. Response criteria for the RSM analysis

The experimental values achieved for the 20 experimental runs of
the CCCD design are presented in Table 1. The HPLC phenolic profile
(recorded at 370 nm) of the watercress extract obtained under the ex-
perimental run No. 20 is shown in Fig. 1 (see HHP extraction conditions
in Table 1). This profile is concordant with that previously character-
ized by Pinela et al. [14] for wild watercress. Up to twenty-two com-
pounds were identified (Table 1) based on their chromatographic,
UV–vis and mass spectra characteristics, six of which were phenolic
acid derivatives (hydroxycinnamic acids) and sixteen were flavonoid
glycoside derivatives. Many of these compounds were also reported by
other authors in this species [12,39,40]. Isorhamnetin-O-hydro-
xyferuloylhexoside-O-malonylhexoside, p-coumaric acid, isorhamnetin-
O-sophoroside-O-malonylhexoside, quercetin-O-sophoroside-O-mal-
onylhexoside and caffeic acid were identified as the most abundant
compounds. Flavonoids predominated over phenolic acids and, in
general, more quercetin and isorhamnetin glycoside derivatives were
quantified than phenolic acids.

For optimization purposes, the phenolic compounds quantified by
chromatographic methods (Table 1) were grouped in total phenolic
acids (compounds 2, 4, 5, 6, 8 and 9), total flavonoids, comprising the
subgroups of quercetin glycoside derivatives (Qgd: compounds 1, 3, 7,
10, 11, 12, 13, 14 and 15), isorhamnetin glycoside derivatives (Igd:
compounds 16, 17 and 18) and kaempferol glycoside derivatives (Kgd:
compounds 19, 20, 21 and 22), and total phenolic compounds (in-
cluding all quantified phenolics). The individual and grouped com-
pounds were used as response criteria to optimize the HHP conditions
for their extraction from watercress using RSM. The values of the ex-
traction yield were also considered, which ranged from 12 to 27.5%
with the experimental runs n° 14 and 3, respectively (Table 1). There-
fore, a total of 29 response variables were computed and used as op-
timization criteria.
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Fig. 1. HPLC profile of phenolic compounds of the watercress extract obtained under the experimental run No. 20, recorded at 370 nm. See Table 1 for peak identification.
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3.2. Theoretical response surface models

As in many research fields, when trying to develop theoretical
models to predict and comprehend the effects of independent variables
on certain response variables, it is necessary to evaluate its precision by
fitting these models to the experimental values. In this study, the re-
sponse values (Table 1) were fitted to a second-order polynomial model
using a nonlinear algorithm (least-squares estimations) to develop
mathematical models for each response criteria (Table 2). Table 3
shows the estimated coefficient values obtained from the polynomial
model of Eq. (1) and the coefficient of correlation (R2) for each para-
metric response of the extraction process. These parametric values
translate the response patterns and show the complexity of the possible
interactions between variables. However, not all the parameters of Eq.
(1) were used for building the model since some coefficients were non-
significant (ns). The significant ones were assessed at a 95% confidence
level (α=0.05). The statistic lack of fit, used to test the adequacy of
the obtained models, demonstrated that no considerable improvement
was achieved by the inclusion of the statistically ns parametric values.
The resulting models for each of the 29 assessed responses are pre-
sented in Table 2. In all cases, R2 coefficients higher than 0.79 were
obtained (Table 3), which indicates that the percentage of variability of
each response can be explained by the model. These workable models
were applied in the subsequent prediction and optimization steps,
showing a good agreement between the experimental and predicted
values, which indicates that the variation is explained by the in-
dependent variables.

The obtained model coefficients (Table 3) are empirical and cannot
be associated with physical or chemical significance. However, they are
useful for predicting the results of untested extraction conditions [41].
The sign of the effect marks the performance of the response. In this
way, when a factor has a positive effect, the response is higher at the
high level, and when a factor has a negative effect, the response is lower
at the high level. The higher the absolute value of a coefficient, the
more important the weight of the corresponding variable. Based on the
mathematical expressions (Table 2), no associations were found be-
tween the response variables of phenolic acids, flavonoids, quercetin
glycoside derivatives (Qgd), isorhamnetin glycoside derivatives (Igd)
and kaempferol glycoside derivatives (Kgd). However, certain features
regarding the general effects of the variables are displayed. The re-
levance of the significant parametric values can be order as a function
of the variables involved in a decreasing form as S > P≫ t. Alexandre
et al. [32] also found S as the most relevant variable on the HHP ex-
traction of bioactive compounds from pomegranate (Punica granatum
L.) peels. Regarding the linear, quadratic, and interactive parametric
effects of the developed equations, it was found that they play an im-
portant and significant role in all evaluated responses. For the linear
effect, the variables P and S had strong values; meanwhile, the effect of
t was negligible in almost all cases. All independent variables had
moderate quadratic or nonlinear effects. Regarding the interactive ef-
fects, the interactions of the variable t with the other variables (tP and
tS) were of minor relevance; meanwhile, the PS interaction had a strong
significance in describing the behavior of almost all responses (with the
exception of compound 10). The interactive parametric values of PS
were accentuated in the responses of flavonoids, Qgd, Igd, phenolic
acids, and total phenolic compounds. To make the combined effects
more explicit and to visually describe the extraction trends, the results
were presented in the response surface plots discussed below.

3.3. Effect of the independent variables on the target responses and optimal
extraction conditions

Although parametric results can depict the patterns of the re-
sponses, 3D and 2D graphical representations may aid on their com-
prehension. Fig. 2 shows the response surface plots of extraction yield
and grouped phenolic compounds (total phenolic acids, total flavonoidsTa
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and total phenolic compounds) as well as their statistical analysis. Fig. 3
illustrates in a similar way the results for Qgd, Igs and Kgd. Both Figs. 2
and 3 are divided in three subsections: i) the subsection A illustrates the
3D response surface plots, whose grid surfaces were predicted with the
respective second-order polynomial model described by Eq. (1) using
the theoretical values presented in Table 3. For representation of these
binary combinations, the excluded variable was positioned at the op-
timum of their experimental domain (Table 3); ii) the subsection B il-
lustrates the goodness of fit through two graphical statistical criteria,
namely the ability to simulate response changes between observed and
predicted values and the residual distribution as a function of each
variable; and iii) the subsection C shows the individual 2D responses
and the optimum values (⊙). In each plot, each independent variable
was positioned at the optimal value of the other two variables.

Observing the response surface plots of the extraction yield (Fig. 2),
it is possible to verify that the amount of extracted material increases to
an optimum value and then, in most cases, it decreases as a function of
the involved independent variable. Consequently, the optimum value
can be found as being a single point in almost all combinations, which
allows computing the extraction conditions that lead to an absolute
maximum. Fig. 2C simplifies the interpretation of the effects of the
independent variables on the extraction process and highlights the
optimum value of each variable. The extraction yield was maximal
(27.82 ± 2.26%) when the optimal HHP conditions (t=33.5min,
P=530.6MPa and S=26.1% of ethanol, v/v) presented in Table 3
were applied for extraction. Zhang et al. [42] have shown that the crude
extract obtained from Rhodiola sachalinensis is greater when HHP is
used than when the extraction is done by the conventional methods of
reflux or Soxhlet. High extraction yields were also achieved by Prasad
et al. [26] when processing longan fruit (Dimpcarpus longan Lour.)
pericarps under pressures up to 500MPa and using lower extraction
times than those required in a conventional extraction.

The response surface plots of grouped phenolic acids and flavonoids
and total phenolic compounds are showed in Fig. 2 and the optimal

HHP conditions that maximize their recovery from watercress are
presented in Table 3. These responses were similarly affected by the
screened variables; they were favoured by high values of P and S and
short values of t as summarized below:

– For phenolic acids, the optimal HHP conditions were:
t=1.5 ± 0.3min, P=600.0 ± 5.0MPa and S=100.0 ± 8.6%
of ethanol (v/v), and originated 13.58 ± 1.99mg/g of extract.

– For flavonoids, the optimal HHP conditions were:
t=7.8 ± 0.5min, P=600.0 ± 5.0MPa and S=100.0 ± 8.6%
of ethanol (v/v), and originated 52.45 ± 2.63mg/g of extract.

– For total phenolic compounds, the optimal HHP conditions were:
t=3.1 ± 3.2min, P=600.0 ± 6.3MPa and S=100.0 ± 2.2 of
ethanol (v/v), and originated 64.68 ± 2.97mg/g of extract.

The optimum extraction values for the flavonoid derivatives Qgd, Igs
and Kgd were achieved using very similar HHP conditions (Fig. 3 and
Table 3), probably due to structural similarities between these com-
pounds. Once more, the extraction was favoured by high values of P and
S and short values of t, as summarized below:

– For Qgd, the optimal HHP conditions were: t=17.5 ± 1.0min,
P=600.0 ± 13.4MPa and 100.0 ± 5.6% of ethanol (v/v), and
originated 19.53 ± 2.18mg/g of extract.

– For Igd, the optimal HHP conditions were: t=1.5 ± 0.1min,
P=600.0 ± 11.8MPa and 97.1 ± 24.3% of ethanol, and origi-
nated 16.89 ± 2.26mg/g of extract.

– For Qgd, the optimal HHP conditions were: t=13.7 ± 0.4min,
P=600.0 ± 16.4MPa and S=100.0 ± 2.7% of ethanol (v/v),
and originated 7.49 ± 0.88mg/g of extract.

According to the literature, the use of high pressures increases the
extraction of bioactive compounds from plants matrices [30]. Briones-
Labarca et al. [28] demonstrated that HHP is more effective than

Table 3
Mathematical models of the extraction process derived from the second-order polynomial model with interactions of Eq. (1).

Quercetin-3-O-sophoroside = − + + − + +Y P t P S tP PS1.14 0.02 0.02 0.02 0.04 0.09 0.09P1 2 2 2 Eq. (2)
Quercetin-3-O-manolylglucoside-7-O-glucoside = − + − − +Y t P S tS PS1.51 0.03 0.06 0.09 0.05 0.36P3 2 2 Eq. (3)
Quercetin-3-O-rutinoside-7-O-glucoside = + + − + +Y P S tP tS PS0.90 0.02 0.02 0.02 0.02 0.02P7 2 Eq. (4)
Quercetin-3-O-rutinoside (rutin) = − − −Y t P S1.20 0.04 0.03 0.07P10 2 2 2 Eq. (5)
Quercetin-O-sophoroside-O-rutinoside = + + − − − − +Y P S t P S tP tS1.15 0.02 0.03 0.03 0.23 0.02 0.08 0.02P11 2 2 2 Eq. (6)
Quercetin-O-coumaroylsophoroside = + − − − − +Y P S t P S PS1.45 0.04 0.12 0.12 0.07 0.04 0.12P12 2 2 2 Eq. (7)
Quercetin-O-sophoroside-O-malonylhexoside = − + +Y t P S3.00 0.12 0.57 0.95P13 Eq. (8)
Quercetin-O-dihexosyl-O-malonylhexoside = − + + − +Y t P S P PS0.94 0.01 0.01 0.04 0.01 0.04P14 2 Eq. (9)
Quercetin-O-sinapoylhexoside-O-rutinoside = + + − − − +Y P S t S tP PS1.29 0.02 0.04 0.01 0.10 0.03 0.05P15 2 2 Eq. (10)
Total quercetin glycoside derivatives (Qgd) = + + − − +Y P S t S PS12.52 0.65 1.39 0.35 0.37 1.63Qgd 2 2 Eq. (11)

Isorhamnetin-O-hydroxyferuloylhexoside-O-hexoside = + + − − − +Y P S t P S PS2.51 0.21 0.18 0.14 0.06 0.47 0.26P16 2 2 2 Eq. (12)
Isorhamnetin-O-hydroxyferuloylhexoside-O-malonylhexoside = − + + +Y t P S PS4.46 0.16 0.85 1.53 1.26P17 Eq. (13)
Isorhamnetin-O-sophoroside-O-malonylhexoside = + + − +Y P S tS PS3.44 0.63 1.28 0.30 1.08P18 Eq. (14)
Total isorhamnetin glycoside derivatives (Igd) = − + + − − +Y t P S S tS PS10.74 0.15 1.72 1.62 1.84 0.82 2.24Igd 2 Eq. (15)

Kaempferol-O-feruloylhexoside-O-rutinoside = + + − − + +Y P S t S tP PS1.13 0.03 0.04 0.02 0.07 0.02 0.05P19 2 2 Eq. (16)
Kaempferol-O-feruloylhexoside-O-hexoside = + + − − − + +Y P S t P S tP PS1.11 0.03 0.03 0.02 0.01 0.07 0.02 0.04P20 2 2 2 Eq. (17)
Kaempferol-O-hydroxyferuloylglucuronide-O-malonylhexoside = + + − +Y P S tS PS1.50 0.12 0.28 0.05 0.23P21 Eq. (18)
Kaempferol-O-feruloylhexoside-O-malonylhexoside = + + − − +Y P S S tS PS1.44 0.10 0.14 0.13 0.04 0.19P22 2 Eq. (19)
Total kaempferol glycoside derivatives (Kgd) = + + − − − + − +Y P S t P S tP tS PS5.20 0.27 0.58 0.08 0.05 0.16 0.07 0.11 0.51Kgd 2 2 2 Eq. (20)

Total flavonoids = + + − − − − +Y P S t P S tS PS28.68 2.55 5.23 0.91 0.61 0.85 1.11 4.90Fl 2 2 2 Eq. (21)
p-Coumaric acid hexoside = − + + − −Y P S t S PS0.04 0.01 0.02 0.02 0.01 0.02P2 2 2 Eq. (22)
Ferulic acid hexoside = + + − − − + − −Y t S t P S tP tS PS0.18 0.01 0.03 0.03 0.04 0.05 0.02 0.01 0.01P4 2 2 2 Eq. (23)
Caffeic acid = + − + − +Y S S tP tS PS2.54 0.13 015 0.08 0.12 0.47P5 2 Eq. (24)
p-Coumaric acid = − + − + − +Y P S S tP tS PS4.19 0.11 0.55 0.19 0.23 0.16 0.45P6 2 Eq. (25)
Ferulic acid = + − − − − +Y S t S tP tS PS1.20 0.28 0.03 0.04 0.03 0.07 0.19P8 2 2 Eq. (26)
Sinapoylmalic acid = + + − − +Y P S S tS PS0.45 0.04 0.17 0.03 0.01 0.10P9 2 Eq. (27)
Total phenolic acids = + − + − +Y S S tP tS PS8.56 1.27 0.26 0.39 0.42 1.25Pa 2 Eq. (28)
Total phenolic compounds = + + − − − − +Y P S t P S tS PS37.23 2.49 6.49 0.85 0.66 1.11 1.53 6.15Ph 2 2 2 Eq. (29)
Extraction yield (crude extract) = + + − − − +Y t P S P S PS23.90 0.79 1.52 4.01 0.97 3.45 1.21EY 2 2 Eq. (30)
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ultrasound-assisted extraction or conventional extraction (2 h) to re-
cover antioxidants and total phenolic compounds from Chilean papaya
(Vasconcellea pubescens) seeds. In addition, HHP was a time-saving ex-
traction method. The lower energy consumption is another advantage
of HHP comparatively to conventional methods [35]. In our study, it is
also interesting to note that the HHP conditions that maximize the yield

of crude extract and the recovery of phenolic compounds differ mostly
in the required processing time and ethanol concentration. In this way,
the extracts obtained under the optimal conditions established for
phenolic compounds (Table 3) will contain a lower quantity of com-
pounds other than phenolics, thus making the recovery process more
selective for the target compounds.

Fig. 2. Response surface plots of extraction yield and grouped phenolic compounds (total phenolic acids, total flavonoids and total phenolic compounds). Part A: 3D analysis as a function
of each independent variable. The grid surfaces were built using the theoretical values (Table 3) predicted with Eq. (1). For representation purposes, the excluded variable was positioned
at the optimum of their experimental domain (Table 3). Part B: illustration of the goodness of fit through two graphical statistical criteria, namely the ability to simulate response changes
between observed and predicted values and the residual distribution as a function of each variable. Part C: individual 2D responses and optimum values (⊙). Each independent variable
was positioned at the optimal value of the other two variables.
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The effects of the independent variables on the extraction of in-
dividual phenolic compounds from watercress are 2D represented in
Fig. 4. The processing conditions that generated optimal response va-
lues (⊙) are numerically described in Table 3. The identified flavonoids
were organized as a function of the maximum amount achieved (mg/g
of extract) in a decreasing order as follows: P17 (12.3 ± 2.86) > P18
(10.54 ± 2.65) > P13 (8.31 ± 2.35)≫ P21 (2.95 ± 1.40) > P16
(2.88 ± 0.73) > P3 (2.61 ± 0.87) > P22 (2.11 ± 0.79) > P12
(1.64 ± 0.55) > P1 (1.5 ± 0.52) > P15 (1.41 ± 0.51) > P19
(1.26 ± 0.48) > P10 (1.2 ± 0.17) > P11 (1.17 ± 0.39) > P20
(1.16 ± 0.39) > P14 (1.13 ± 0.58) > P7 (0.98 ± 0.32). Mean-
while, the phenolic acids were organized as follows: P6
(5.02 ± 0.96) > P5 (3.79 ± 0.60)≫ P8 (2.51 ± 0.68) > P9
(1.21 ± 0.60) > P4 (0.19 ± 0.14) > P2 (0.06 ± 0.08). Pinela et al.

[14] reported lower quantities of phenolic acids (5.6 ± 0.5 mg/g of
extract), flavonoids (22 ± 1mg/g of extract) and total phenolic com-
pounds (28 ± 2mg/g of extract) in an extract of wild watercress ob-
tained by a conventional solid-liquid extraction of 2 h and using a
methanol:water mixture (80:20, v/v) as a extraction solvent. These
differences highlight the suitability of HHP as an innovative extraction
technique to recover a greater amount of phenolic compounds from
watercress using shorter processing times and greener solvents.

3.4. Clustering of phenolic compounds according to the HHP conditions that
maximize their extraction

Table 4 shows the maximum response values of each phenolic
compound and their values if extracted under the optimal HHP

Fig. 3. Response surface plots of the flavonoid subgroups of quercetin, isorhamnetin and kaempferol glycoside derivatives. Part A: 3D analysis as a function of each independent variable.
The grid surfaces were built using the theoretical values (Table 3) predicted with Eq. (1). For representation purposes, the excluded variable was positioned at the optimum of their
experimental domain (Table 3). Part B: illustration of the goodness of fit through two graphical statistical criteria, namely the ability to simulate response changes between observed and
predicted values and the residual distribution as a function of each variable. Part C: individual 2D responses and optimum values (⊙). Each independent variable was positioned at the
optimal value of the other two variables.
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conditions of the other compounds (Table 3). These values presented in
part B were calculated dividing the optimum value of each compound
by the maximum of the others compounds. Therefore, when two com-
pounds display the value 1 (corresponding to values of 100%), the

optimum response value of both compounds is achieved under the same
HHP conditions. This is the case of compounds 3, 5, 7, 8, 9, 13, 14, 17,
18, 21 and 22, which were clustered in C3a under the same HHP
conditions (Fig. 5). In turn, when a 0 is display, it means that the

Fig. 4. 2D graphical response of the effects of the independent variables on the extraction of phenolic compounds from watercress (see Table 1 for peak identification). Dots (⊙) represent
the optimal values. In each plot, each independent variable was positioned at the optimal value of the other two variables (Table 3).
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conditions that maximize the extraction of a certain compound (com-
pounds 1, 3, 0, 7, 8, 9, 12, 13, 14, 17, 18, 21 and 22) do not favour at all
the extraction of the other one (compounds 2 and 4).

Using the complete dataset of Table 4 and performing a multi-objec-
tive optimization problem using an appropriate clustering algorithm, dif-
ferent clusters of phenolic compounds whose maximum response values
are obtained under similar HHP extraction conditions were created. The
results of HCA are presented in Fig. 5. In the HCA dendrogram, the shorter
distance between compounds indicates a higher similarity in terms of
conditions that favour their extraction and the compounds clustered into
the same group are better extracted under similar HHP conditions. Three
significant clusters (C1, C2 and C3) were generated. C1 and C3 were also
be divided in two (a and b) pertinent subgroups. Additionally, other less
relevant subgroups were created in C2, C1b and C3b, but they can be
considered as a residual noise produced by the algorithm.

– Cluster C1 included the compounds 15, 16, 11 and 10. Meanwhile,
compound 15 was subdivided in C1a and compounds 16, 11 and 10

were grouped in C1b. The extraction of these compounds was
maximized by medium t, high P and medium S (Table 3 and Fig. 3).
The subgroups C1a and C1b were mainly differentiated by the t
values.

– Cluster C2 included the compounds 4, 20 and 19. No significant
subgroups were created. The extraction of these compounds was
favoured by medium t, high P and medium-large S values.

– Cluster C3 included the compounds 22, 21, 18, 17, 14, 13, 9, 8, 7, 3,
5, 12, 6, 1 and 2, which were subdivided in C3a e C3b. The ex-
traction of the compounds in C3a was maximized when using low t,
high P and high S. On the other hand, the compounds in C3b ex-
hibited a broad set of conditions with no clear interconnections
between each other.

Although it was expected that compounds with similar chemical
characteristics would exhibit comparable optimal extraction conditions,
no clear similarity was detected between the created groups of com-
pounds and the conditions that maximize their extraction. However,
this HCA analysis was an interesting and innovative approach in the
field of extraction of high added-value compound from natural sources
(something not seen in this type of studies), since it allowed grouping
the phenolic compounds into different clusters according to the HHP
conditions that favour their recovery from watercress, which can be
very useful from a practical point of view.

4. Conclusions

As far as we know, this is the first study regarding the optimization
of the extraction of phenolic compounds from watercress by HHP using
RSM, a suitable statistical tool that allowed reduce the number of ex-
perimental trials and evaluate interactions among variables. The suit-
ability of this cold extraction method (combining the independent
variables t, P and S in a five-level CCCD design) was demonstrated. The
developed polynomial response models were statistically validated and
expressed as 2D and 3D surface plots to better visualize the effects on
extraction yield and individual and grouped phenolic compounds (a
total of 29 response variables). A good agreement between

Table 4
Maximum response values for each phenolic compound and their values at the optimal processing conditions of the other compounds presented in Table 2.

A) Maximum response values (mg/g of extract) for the individual phenolic compounds

Peak: P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

Optimum: 1.50 0.06 2.61 0.19 3.79 5.02 0.98 2.51 1.21 1.20 1.17 1.64 8.31 1.13 1.41 2.88 12.30 10.54 1.26 1.16 2.95 2.11

B) Values for each phenolic compound (%) at the optimal conditions of the other compounds
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

P1 1 0.69 0.85 0.75 0.85 0.89 0.85 0.85 0.85 0.76 0.79 0.85 0.85 0.85 0.90 0.81 0.85 0.85 0.86 0.84 0.85 0.85
P2 0 1 0 0.86 0 0.59 0 0 0 0.76 0.54 0 0 0 0.16 0.38 0 0 0.30 0.35 0 0
P3 0.90 0.49 1 0.57 1 0.62 1 1 1 0.58 0.66 0.81 1 1 0.73 0.77 1 1 0.81 0.78 1 1
P4 0 0.59 0 1 0 0.05 0 0 0 0.97 0.67 0 0 0 0.01 0.35 0 0 0.19 0.33 0 0
P5 0.82 0.62 1 0.67 1 0.71 1 1 1 0.67 0.74 0.77 1 1 0.82 0.81 1 1 0.87 0.83 1 1
P6 0.87 0.91 1 0.87 1 1 1 1 1 0.84 0.90 0.76 1 1 1 0.95 1 1 1 1 1 1
P7 0.97 0.94 1 0.93 1 0.91 1 1 1 0.92 0.92 0.95 1 1 0.92 0.94 1 1 0.95 0.94 1 1
P8 0.55 0.69 1 0.52 1 0.56 1 1 1 0.48 0.57 0.50 1 1 0.67 0.64 1 1 0.74 0.67 1 1
P9 0.35 0.66 1 0.41 1 0.32 1 1 1 0.37 0.51 0.33 1 1 0.59 0.62 1 1 0.72 0.64 1 1
P10 0.68 0.85 0.68 0.99 0.68 0.85 0.68 0.68 0.68 1 0.95 0.80 0.68 0.68 0.83 0.91 0.68 0.68 0.87 0.90 0.68 0.68
P11 0.73 0.85 0.78 0.98 0.78 0.88 0.78 0.78 0.78 0.98 1 0.76 0.78 0.78 0.96 0.99 0.78 0.78 0.98 0.99 0.78 0.78
P12 0.79 0.70 0.63 0.86 0.63 0.50 0.63 0.63 0.63 0.89 0.85 1 0.63 0.63 0.63 0.84 0.63 0.63 0.80 0.82 0.63 0.63
P13 0.39 0.54 1 0.39 1 0.26 1 1 1 0.36 0.54 0.31 1 1 0.63 0.67 1 1 0.76 0.69 1 1
P14 0.85 0.89 1 0.84 1 0.81 1 1 1 0.83 0.86 0.83 1 1 0.88 0.89 1 1 0.92 0.90 1 1
P15 0.77 0.77 0.79 0.92 0.79 0.92 0.79 0.79 0.79 0.92 0.96 0.72 0.79 0.79 1 0.97 0.79 0.79 0.98 0.98 0.79 0.79
P16 0.24 0.55 0.69 0.87 0.69 0.53 0.69 0.69 0.69 0.87 0.96 0.37 0.69 0.69 0.87 1 0.69 0.69 0.96 0.99 0.69 0.69
P17 0.35 0.56 1 0.40 1 0.26 1 1 1 0.36 0.54 0.28 1 1 0.63 0.67 1 1 0.76 0.69 1 1
P18 0.23 0.52 1 0.36 1 0.23 1 1 1 0.33 0.49 0.26 1 1 0.57 0.62 1 1 0.69 0.63 1 1
P19 0.78 0.82 0.90 0.90 0.90 0.85 0.90 0.90 0.90 0.90 0.96 0.77 0.90 0.90 0.98 0.99 0.90 0.90 1 1 0.90 0.90
P20 0.76 0.85 0.86 0.96 0.86 0.86 0.86 0.86 0.86 0.96 0.99 0.78 0.86 0.86 0.97 0.99 0.86 0.86 1 1 0.86 0.86
P21 0.45 0.66 1 0.53 1 0.44 1 1 1 0.51 0.63 0.46 1 1 0.69 0.72 1 1 0.78 0.73 1 1
P22 0.51 0.63 1 0.69 1 0.60 1 1 1 0.68 0.79 0.52 1 1 0.84 0.87 1 1 0.89 0.88 1 1

Fig. 5. Results of the hierarchical cluster analysis of phenolic compounds according to the
HHP conditions that maximize their extraction from watercress.
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experimental and theoretical results was observed. In general, the re-
covery of phenolic compounds was maximized when high pressures,
high ethanol concentrations and short extraction times were applied,
which validate this cold extraction method as a very promising tech-
nique compared to the time-consuming conventional methods. This
study also highlighted watercress as being an interesting source of
phytochemicals, namely phenolic acids and flavonoids.
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