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Abstract 

Background:  Prostate cancer is a major health concern in aging men. Paralleling an 
aging society, prostate cancer prevalence increases emphasizing the need for efficient 
diagnostic algorithms.

Methods:  Retrospectively, 106 prostate tissue samples from 48 patients (mean age, 
66± 6.6 years) were included in the study. Patients suffered from prostate cancer (n = 
38) or benign prostatic hyperplasia (n = 10) and were treated with radical prostatec-
tomy or Holmium laser enucleation of the prostate, respectively. We constructed tissue 
microarrays (TMAs) comprising representative malignant (n = 38) and benign (n = 68) 
tissue cores. TMAs were processed to histological slides, stained, digitized and assessed 
for the applicability of machine learning strategies and open–source tools in diagno-
sis of prostate cancer. We applied the software QuPath to extract features for shape, 
stain intensity, and texture of TMA cores for three stainings, H&E, ERG, and PIN-4. Three 
machine learning algorithms, neural network (NN), support vector machines (SVM), 
and random forest (RF), were trained and cross-validated with 100 Monte Carlo random 
splits into 70% training set and 30% test set. We determined AUC values for single color 
channels, with and without optimization of hyperparameters by exhaustive grid search. 
We applied recursive feature elimination to feature sets of multiple color transforms.

Results:  Mean AUC was above 0.80. PIN-4 stainings yielded higher AUC than H&E and 
ERG. For PIN-4 with the color transform saturation, NN, RF, and SVM revealed AUC of 
0.93± 0.04 , 0.91± 0.06 , and 0.92± 0.05 , respectively. Optimization of hyperparam-
eters improved the AUC only slightly by 0.01. For H&E, feature selection resulted in no 
increase of AUC but to an increase of 0.02–0.06 for ERG and PIN-4.

Conclusions:  Automated pipelines may be able to discriminate with high accuracy 
between malignant and benign tissue. We found PIN-4 staining best suited for clas-
sification. Further bioinformatic analysis of larger data sets would be crucial to evaluate 
the reliability of automated classification methods for clinical practice and to evaluate 
potential discrimination of aggressiveness of cancer to pave the way to automatic 
precision medicine.
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Introduction
Prostate cancer (PCa) is the second most common cancer and the fifth leading cause 
of cancer death in men [1]. Incidence rates vary across regions and PCa is the most 
frequently diagnosed cancer in men in 112 of 185 countries of the world  [1]. One 
established risk factor is an advancing age [1]. Due to the demographic development 
of an aging society, we may expect an increasing PCa burden in the future [1]. Diag-
nosis of clinically significant prostate cancer is a challenging process. Most prostate 
cancers are slow-growing, a subset of prostate cancers has an aggressive clinical 
course and leads to death. Prostate cancer is usually suspected on the basis of screen-
ing procedures: digital rectal examination and/or prostate-specific antigen levels [2]. 
For definitive diagnosis, histopathological verification of PCa in prostate biopsy cores 
is required. Grading of PCa with the Gleason system is the strongest prognostic factor 
for clinical behavior and treatment response [2, 3]. Computerization and the efficient 
addressing of crucial cancer care touchpoints along the patient’s clinical pathway are 
major goals of current studies in the field of artificial intelligence (AI) in medicine 
[4]. Clinical decision support systems aim to assist physicians and other specialists 
in the analysis of patient’s data and diagnosis of diseases  [5]. Quantitative imaging, 
machine learning (ML) algorithms, and AI have been proposed as potential solutions 
for assisting clinicians [6]. ML and AI have the potential to improve the accuracy and 
robustness of the diagnosis of PCa [7, 8]. Recent studies on PCa addressed the predic-
tion of Gleason grade scores  [9], the detection of PCa in biopsy specimen  [10], the 
extraction of cancer stage from written reports in structured form [11], and the pre-
diction of risk of PCa based on demographic characteristics [12]. Features extracted 
from digital images in pathology may have the potential to predict recurrence in PCa 
patients after surgery [13]. ML and AI have been used for cancer detection and grad-
ing based on whole image analysis in prostate biopsies  [10, 14–18]. For the classi-
fication of benign and malignant tissues, multi-view boosting methods have been 
proposed [19]. The results have been compared to single-view classification and have 
reached a high area under the curve (AUC) score of 0.98 [19]. For a review of applica-
tions of deep learning to cancer detection, we refer to Pantanowitz et al. [20] and lit-
erature cited therein. Application of ML approaches may help in assisting physicians 
in the examination and prioritization of patient’s data, for a discussion, we refer to 
Bulten et al. [21].

The ground truth is usually based on visual inspection, evaluation and classification 
by expert pathologists. Besides hematoxilin and eosin (H&E) images, additional immu-
nohistochemical workup can aid the urologic subspecialist in identifying and clas-
sifying cancer, e.g., see [8, 22]. Researchers in the field of digital pathology have put a 
considerable effort in the development and evaluation of methods especially for H&E 
images. Despite the well known advantages of immunohistochemical staining in daily 
standard of care clinical pathology, its possible additive predictive power is only scarcely 
studied and evaluated. Exploring the suitability of immunohistochemical stainings for 
automated classification tasks and machine learning models may provide an enhanced 
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possibility for high precision digital pathology in the automatic classification of prostate 
cancer.

In this work, we considered the staining methods, H&E, ERG, and PIN-4. H&E is a 
standard staining among others for cancer diagnosis [23]. ERG expression is a potential 
biomarker to predict the aggressiveness of prostate carcinoma with potential prognos-
tic impact [24, 25]. PIN-4 is a cocktail of multiple markers and may help to distinguish 
between high-grade prostatic intraepithelial neoplasia and adenocarcinoma  [26, 27]. 
Sabata et al. have investigated the identification and classification of glands in a whole 
slide image of PIN-4 stained prostate needle biopsy [27]. To our knowledge, no study has 
considered the AI–based prediction capability of PCa comparing the three commonly 
performed stainings: H&E, ERG, and PIN-4.

We retrospectively studied 106 tissue cores (malignant, n=38; benign, n=68) that we 
stained with three different methods, i.e., H&E, ERG, and PIN-4. The patient cohort 
included 48 patients (mean age, 66 ± 6.6 years), 38 patients with PCa, and ten patients 
with benign prostatic hyperplasia (BPH). Our purpose was to evaluate the suitability of 
basic image features based on the intensity distribution and the texture of the stained 
tissue cores to automatically differentiate between PCa tissue and benign tissue. We 
applied the open source software QuPath (version 0.2.0)  [28] for segmentation and fea-
ture extraction. We evaluated the predictive power of the features with three standard 
ML methods, i.e. neural network (NN), support vector machines (SVM) and random 
forest (RF) with and without optimization of hyperparameters and strategies for feature 
selection, e.g. recursive feature elimination (RFE) [29].

Results
We compared malignant cores with benign cores. If not indicated otherwise, p values 
in the following were computed with the Wilcoxon–Mann–Whitney–U test  [30] and 
corrected for multiple testing by the Benjamini–Hochberg procedure  [31]. Exemplary, 
Fig. 1 shows cores with stain H&E, ERG, and PIN-4. Table 1 shows the number of fea-
tures with false discovery rates (FDR): p ≤ 0.05, p ≤ 0.01 , and p ≤ 0.001 . For each core, 
QuPath computed five features of the intensity distribution and thirteen Haralick fea-
tures based on the co-occurrence matrices for the texture  [28], see Additional file  1: 
Table S5. Features of the intensity distribution and Haralick features were computed for 
each color channel. Color transforms were Red, Green, Blue, Saturation, Brightness, and 

Fig. 1  Exemplary cores with three stains: A ERG, B H&E, and C PIN-4. The diameter of a core is in round 
numbers 2 mm
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Optical Density sum. For staining H&E and ERG, we also considered three stain spe-
cific color transforms, i.e., Hematoxilin, Eosin/Erg, and Residual, see Additional file 1: 
Sect.  1.4 Digitalization. Additionally, shape values, as, e.g., area, circularity, solidity, 
max/min diameter of the core, and the mean hue were determined per core. Exemplary, 
Fig. 1 shows cores with stain H&E, ERG, and PIN-4.

The values of the features are available as Additional files 2, 3, 4 and 5: Excel files. In 
Table 1 missing values and values with zero variance are excluded. None of shape fea-
tures had FDR below 5%.

We computed pairwise Pearson correlation coefficients of features and found features 
from different color transforms highly correlated. Due to highly correlated features from 
different color transforms, the selection of features with highest Gini score of the Wil-
coxon–Mann–Whitney–U test was not a valuable strategy. To reduce the redundancy of 
features, we decided to consider, in the first step, only features of a single color transform 
for each stain. We compared the predictive power of features in the color transforms to 
select a representative color transform for each stain.

Figure 2 shows the boxplots of Gini coefficients of sets of features with p ≤ 0.05 spe-
cific for individual color transforms and stainings H&E (top), ERG (middle), and PIN-4 
(bottom). A Gini coefficient of one corresponds to perfect predictive power whereas a 
Gini coefficient of zero corresponds to no predictive power, i.e., random choices. The 
predictive power of features varies for the stains. For H&E, the predictive powers of 
standard color transforms, Red, Green, Blue, Saturation, Brightness, and od sum, were 
preferable high with median Gini coefficients of in round numbers 0.6. For stain–specific 
colors Hematoxylin and Eosin, the median Gini coefficient drops to in round numbers 
0.4. Residual has the lowest median Gini coefficient of in round numbers 0.3. For ERG, 
the median Gini coefficients are also preferable high. Differences in the color transforms 
are more pronounced than in H&E. Blue has a higher median Gini coefficient than Red 
and Green. Note that, counterstaining with hematoxylin produces a blue-purple signal 
for cell nuclei. High concentration of the protein ERG would manifest in a brownish 
nuclear signal, i.e., a high value of Red and Green. Surprisingly, the signal of counter-
staining with hematoxylin has a higher median predictive power than the signal of ERG 
itself. Brightness has a higher predictive power than Saturation. Compared to ERG and 
H&E, the features of PIN-4 have rather low medians of Gini coefficient. An exceptional 
high Gini score of 0.865 gives, however, Maximum Saturation.

In the following, we denote features with p ≤ 0.001 as statistically significant. For 
H&E and ERG, we chose color transform Brightness and took 12 and 13 signifi-
cant features, respectively. For PIN-4, we chose the 16 significant features of color 

Table 1  Number of features for the H&E, ERG, and PIN-4 staining

We selected features with low FDR, p ≤ 0.05, p ≤ 0.01 , and p ≤ 0.001

Significance H&E ERG PIN-4

All 166 166 117

p ≤ 0.05 114 127 76

p ≤ 0.01 105 111 63

p ≤ 0.001 92 94 44
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transform Saturation, see Additional file  1: Sect.  1.5. On the stain–specific sets of 
features, we applied three ML algorithms: support vector machines classifier (SVM), 
neural networks (NN), and random forest (RF). We transformed the categorical labels 
malignant and benign to dichotomous labels 1 (positive) and 0 (negative), respec-
tively. Monte Carlo cross-validation with 100 random splits into 70% training set and 
30% test determined the mean AUC of the receiver operating characteristic (ROC) 

Fig. 2  Predictive power of sets of features with p ≤ 0.05 for H&E staining (top), ERG staining (middle), and 
PIN-4 staining (bottom). Boxplots of Gini coefficients of features are given specifically for color transforms: 
Red, Green, Blue, Saturation, Brightness, and od sum. For H&E, additional box-plots of the stain–specific 
colors Hematoxilin, Eosin, and Residual are plotted. For ERG, additional box-plots of the stain–specific color 
transforms Hematoxilin, ERG, and Residual are plotted. The predictive power of features varies for the color 
transforms in each staining



Page 6 of 14Zhdanovich et al. BMC Bioinformatics            (2023) 24:1 

curve. We applied stratification at patient (n = 48) level to avoid having cores coming 
from the same patient present in both training and validation.

Table 2 shows, in the rows denoted by ”default”, the mean AUC with standard devia-
tion. The mean values of AUC are preferable high, 0.80 ≤ AUC ≤ 0.93 , and demon-
strate the predictive power of the three groups of features for H&E, ERG, and PIN-4, 
respectively. The group of features of PIN-4 yields the best results. NN performs with 
the mean AUC of 0.93± 0.04 for the group of selected features of PIN-4. The range of 
values of AUC, however, does not exceed the values that might be expected from the 
Gini score of individual features. Note that, the Gini score of 0.865 of a single feature, 
Maximum Saturation of PIN-4, corresponds to an AUC of 0.93. Exemplary, Fig.  3 
shows the mean ROC curve of a Monte Carlo 100 random–split cross-validation for 
NN and the 16 significant features in color transform Saturation of stain PIN-4.

To enhance the performance of the algorithms, we applied an exhaustive grid 
search to optimize their hyperparameters, see Additional file  1: Sect.  1.8. Table  2 
gives, in the rows denoted by ”tuned”, the mean AUC yielded by the classifiers with 
optimized parameters. The optimization of parameters improves the results for SVM 
and features of H &E, i.e., the mean AUC increases from 0.80 to 0.90. For all other 

Table 2  Mean AUC for three ML algorithms, support vector machines classifier (SVM), neural 
network (NN), and random forest (RF), trained on the sets of features from three stains, H&E (n=12), 
ERG (n=13), and PIN-4 (n=16), see text

SVM RF NN

Default Tuned Default Tuned Default Tuned

H&E 0.80± 0.07 0.90± 0.06 0.82± 0.08 0.82± 0.08 0.84± 0.07 0.89± 0.07

ERG 0.83± 0.06 0.84± 0.07 0.85± 0.06 0.85± 0.05 0.85± 0.06 0.86± 0.05

PIN-4 0.92± 0.05 0.93± 0.06 0.91± 0.06 0.92± 0.05 0.93± 0.04 0.94± 0.04

Fig. 3  ROC curves of Monte Carlo cross-validation with 100 random splits. The solid (blue) curve denotes the 
mean ROC curve and the shaded gray area highlights its standard deviation. NN uses 16 significant features 
of the color transform Saturation of stain PIN-4 to compute the curves, see text. The AUC 0.93± 0.04 of 
the mean ROC curve is preferable high and demonstrates the predictive power of the features of the color 
transform Saturation of stain PIN-4
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combinations of ML algorithms and feature sets, the optimization yields none or only 
minor improvement less than �AUC ≤ 0.05.

Since parameter optimizations yielded only small improvements of predictive power, 
we tested whether other groups of features may yield better results. We applied recur-
sive feature elimination (RFE) [29] to select sets of non-redundant features from all color 
transforms of a stain. To reduce the computational expense of RFE, we removed shape 
features and redundant features by setting thresholds for the Pearson correlation coef-
ficient. We chose thresholds for the Pearson correlation as large as possible but with the 
restriction to make the computation feasible on a conventional laptop computer with 
i7 processor and 8 GByte memory. The number of non-redundant features were n = 84 
(PIN-4, Pearson correlation ≤ 0.95 ), n = 104 (H&E, Pearson correlation ≤ 0.99 ), and 
n = 53 (ERG, Pearson correlation ≤ 0.95 ). We applied RFE with successively increased 
numbers of top features and saved the set with highest accuracy. If two sets yielded 
identical accuracy, we favoured the smaller set. RFE yielded 25 features (mean accuracy 
0.778± 0.070 ), 9 features (mean accuracy 0.844 ± 0.064 ), and 5 features (mean accu-
racy 0.979± 0.032 ) for H&E, ERG, and PIN-4, respectively. To compute accuracy values 
for the three sets of selected features, we applied NN and Monte Carlo cross-validation 
with stratification at patient (n=48) level and 100 random splits into 70% training set 
and 30% test. With only five selected features, PIN-4 reached the best mean accuracy 
of 97.9%. Additional file 1: Table S2 lists AUC values for SVM, RF, and NN. Compared 
to the corresponding AUC scores in Table 2, either no or minor improvement can be 
observed for stains H&E and ERG. For stain PIN-4, NN computed nearly perfect AUC of 
0.992± 0.012 , see Additional file 1: Fig. S1 for the mean ROC curve.

Discussion and conclusion
Automatically extracted features of the texture and intensity distribution of stained 
TMA turned out to be highly valuable to distinguish between malignant and benign tis-
sue of the prostate gland. High predictive power could be shown already for individual 
features, as, e.g., Maximal Saturation of the PIN-4 stain. The three staining protocols 
H&E, ERG, and PIN-4 yielded different predictive power.

Cost-effective and simple H&E revealed promising results. Our results for H&E, e.g., 
AUC​= 0.90± 0.06 , SVM, tuned, were not impressive when compared to results of pre-
vious studies applying deep learning. Recently, AUC of in round numbers 0.99 have been 
reported for the application of convolutional neural networks to H&E stained TMA [32] 
and whole slide images [20]. Application of deep learning requires large number of data. 
Its black-box characteristic may be seen as possible drawback for medical decision mak-
ing [32–34].

ERG stain revealed results of similar quality as H&E. Averaged over all cores, staining 
high expression of the proto-oncogene ERG seems to give no advantage compared to a 
simple H&E stain. Elevated expression of ERG occurs only in a subset of approximately 
50% of PCa cases [35, 36]. The high fraction of PCa cases with no elevated expression of 
ERG may significantly reduce the sensitivity and accuracy of ERG as a PCa-identifying 
biomarker in a machine learning approach.

In individual cases, the ERG stain may give valuable additional information.
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We abstained from testing the possible advantage of the combination of features of 
ERG stain with features of other stains, e.g., H&E and PIN-4.

In our study, PIN-4 showed the most accurate results. For PIN-4, NN yielded AUC​
= 0.94 ± 0.04 for features extracted from color transform Saturation. PIN-4 has been 
reported to be useful in distinguishing prostatic adenocarcinoma from the benign 
mimickers [27, 37, 38]. We applied the stain PIN-4 as a cocktail of two antibodies, 
a brownish signal for high molecular weight cytokeratins, and a second, reddish sig-
nal for the protein alpha-methylacyl-CoA racemase (AMCAR,P504S). P504S is a bio-
marker for prostate adenocarcinoma [39, 40]. Positive staining with a monoclonal 
antibody to high molecular weight cytokeratins has been shown to be of value in dis-
tinguishing between well-differentiated, small-acinar prostatic adenocarcinoma and 
its mimics [41]. Therefore, the superior performance of PIN-4 compared to H&E and 
ERG is not surprising. To our knowledge, PIN-4’s potential application for automatic 
stratification of PCa in medical AI has not been tested up to now. In AI applications, 
staining with PIN-4 has been merely used as a preferable additional immunohisto-
chemical workup to generate the ground truth by visual inspection [8, 22].

In the year 2010, Sabata et al. [27] studied the potential of computer–aided diagno-
ses of PIN-4 stained needle biopsies. Their algorithm has identified the glands in the 
tissue and has classified the glands by the three simple criteria: 

1	 “If gland has only the brown basal staining then the tumor is benign”,
2	 “If gland has both the red racemace and the brown basal staining then it is classified 

as high-grade prostatic intraepithelial neoplasia (HGPIN)”,
3	 “If gland has only the red racemace then it is classified as adenocarcinoma”.

Sabata et al. have discussed several possible sources of miss-classification.
For small glands, a big variation in the intensity of racemace staining may cause 

recognition of the red staining to be error–prone. It has been important to not merge 
a gland with the surrounding glands or the diagnosis would have been incorrect. Note 
that, automated object segmentation is a task and a potential source of missclassifica-
tion. In view of recent studies, the three simple rules proposed by Sabata et  al. are 
not likely to be able to account for possible heterogeneity of staining of benign and 
malignant tissue. It is possible that benign glands may show some weak to moderate 
AMCAR expression and, on the other hand, it is not a necessity for prostate cancer to 
be AMCAR–positive (especially high grade subtypes can be negative, and inter- and 
intratumoral heterogeneity can occur) [42, 43]. For benign tissue, e.g., tissue of atypi-
cal adenomatous hyperplasia (AHH), high expression of AMCAR has been reported 
in up to more than 50% of the cases [44].

In our approach, we used intensity and texture features of a core with, in general, 
multiple glands for its classification. Ranking features by their predictive power, i.e., 
their Gini coefficient, we found Maximum Saturation of PIN-4 by far the top feature. 
High Maximum Saturation indicated malignancy: 87% , i.e., 33 out of 38, malignant 
cores compared to only 6%, i.e., four out of 66, benign cores had Maximum Saturation 
above 0.953.
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Brownish membranous signal for cytokeratin yielded low values of Saturation whereas 
a pure reddish cytoplasmic signal for AMACR yielded high values of Saturation. Maxi-
mum Saturation identified a local region (2 µm resolution) with reddish cytoplasmic sig-
nal and no brownish membranous signal for cytokeratin. The presence of such a local 
region inside a core with high and pure reddish signal was a good condition to diagnose 
malignancy, see, e.g., Additional file 1: Fig. S6. Our finding of 87% malignant cores and 
6% benign cores with Maximum Saturation above 0.953 is in line with Murphy et al. [42] 
who described 91% and 11% AMCR positivity of prostate cancers and benign tissues, 
respectively.

Within our data set, we found five malignant cores with low values of Maximum Satu-
ration. Additional file 1: Fig. S2 shows the five malignant cores with Maximum Satura-
tion values below 0.953. Based on the threshold value 0.953 for Maximum Saturation, 
these five cores would had been missclassified as benign cores. The cores have low 
reddish signal if compared to cores with high Saturation as shown, e.g., in Additional 
file 1: Fig. S6. The low reddish signal for some malignant cores might be a results of the 
known potential inter- and intra-tumoral heterogeneity of prostate cancer AMACR pos-
itivity [42]. Heterogenous AMCAR expression is significantly associated with increased 
Gleason score and poorly differentiated tumors [42]. Respectively, the two tumor cores 
in Additional file 1: Fig. S2 A, B show AMCAR negative high grade prostate cancers. The 
tumor cores in Additional file 1: Fig. S2 C–E show low grade prostate cancers with low 
AMCAR expression.

In our data set, we found also four benign cores with values of Maximum Saturation 
above 0.953, see Additional file 1: Fig. S3. Staining artefacts, see, e.g., core (A), or intense 
dark brown staining, see, e.g., cores (B–D), lead to high values of Maximum Saturation. 
Three of these four benign cores were on the same slide, RPX3. Averaged exclusively 
over benign cores, Maximum Saturation 0.910± 0.043 of slide RPX3 was higher than 
Maximum Saturation 0.839± 0.029 and 0.873± 0.039 of slides RPX1 and RPX2, respec-
tively. Compared to the mean value of Maximum Saturation 0.967± 0.037 of malignant 
cores, the mean values of benign cores on each slide were low. Slide–to–slide vari-
ations and the potentially heterogenous AMCAR expression of malignant and benign 
glands, however, made it problematic to determine a global threshold for a classification 
based solely on Maximum Saturation. Inclusion of definite benign tissue with and with-
out AMCAR expression on a slide as reference for benign saturation values might be a 
potential solution.

In a previous study [45], the biological variance between punches within the same tis-
sue, i.e., intra-tissue variance, has been shown to be of similar magnitude as the variation 
between tissues and patients. In accordance with this finding, we found no difference 
between an approach with and without stratification at patient level. Numerical results 
were, beside insignificant statistical variations, identical with and without patient strat-
ification. For our data set, the assumption of independence of cores from one patient 
produced no bias in the numerical results. For other data sets, the assumption of inde-
pendence of cores from one patient may not be a valid strategy and hence, we presented 
only numerical values with stratification at patient level to avoid having cores coming 
from the same patient present in both training and validation sets.
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Spots located on the same slide may share bias. Exemplary, we chose the cores of 
two slides as train set and the cores of the third slide as test set. We observed no 
significant drop in model performance, e.g., SVM trained on five features of PIN-4 
obtained preferable values of 100% and 97.5–100% for sensitivity and AUC, respec-
tively. Future studies with a larger number of slides may give a more conclusive pic-
ture of the relevance of stratification at the level of slides.

Our patient cohort was biased towards older population (mean age, 66± 6.6 years). 
Since age-associated changes in AMACR expression has been reported in nonneo-
plastic prostatic tissues [46], age may be a valuable additional feature for populations 
with heterogeneous age distributions.

For PIN-4, the algorithms SVM and NN yielded even higher AUC of 0.997± 0.009 
with five features that were extracted not only from Saturation but also from two 
additional color channels, Red, and Blue. The relevance of Red and Blue probably 
arose from the role of reddish signal for the protein alpha-methylacyl-CoA racemase 
and the role of brownish signal for high molecular weight cytokerine, respectively. 
Saturation contributed to high value of AUC but, interestingly, not Maximum Satura-
tion but Haralick Sum Variance of Saturation was one of the five selected features.

In contrast to the local property Maximum Saturation, the Haralick Sum Variance 
measured a global property, i.e., a normalized value averaged over all neighbored 
pixel pairs of a core. In view of the slide–to–slide variation of staining in our data set, 
the application of a global and normalized Haralick feature may be more robust than 
the local measure of Maximum Saturation.

Notice that, our feature selection procedure may suffer from overfitting, for a discus-
sion of a possible bias we refer to Demirciouglu [47]. The application of strategies to 
avoid overfitting in feature selection requires a larger data set. Our AUC values of clas-
sification without feature selection may be more reliable and relevant for applications to 
independent data sets. Despite the possible bias by overfitting, the sets of selected fea-
tures on its own may be valuable for studies with an independent data set.

Analysis of performance variation, based on different combinations of features from 
different stainings was beyond the scope of this manuscript, due to sample size limi-
tations. A valid analysis of performance improvement based on multiple stainings, 
i.e. ERG and PIN-4, would require a larger data set. Of note, we revealed PIN-4 as 
best suited staining for discriminating between benign and malignant prostate tissue 
and therefore its inclusion in digitized pathology may be recommendable. Dedicated 
analysis of the relevance of individual texture features for given stainings as, e.g., ERG 
and PIN-4, may provide valuable insights into the phenotype of PCa.

From what we have pointed out, we draw the conclusion that the automatic extrac-
tion of imaging features from stained prostate tissue slides may be feasible to dis-
criminate malignant and benign tissue with high accuracy. PIN-4 staining was best 
suited for the classification. In future studies, it may be worthwhile to test deep-learn-
ing algorithms on PIN-4 images, to evaluate images of different image resolutions, to 
develop a suitable color model for PIN-4, and to study strategies to correct for slide–
to–slide differences in staining, e.g., by a reference tissue cores or automated slide 
specific normalization techniques.
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Material and methods
All methods were carried out in accordance with relevant guidelines.

The patient cohort comprised 48 patients (mean age, 66 ± 6.6 years), 38 patients with 
PCa and ten patients with BPH, for details screening process and inclusion criteria, we 
refer to Bernatz et al. [48] and Additional file 1: Sect. 1.1. In total, 106 cores of prostate 
tissue (malignant, n=38; benign opposite site of PCa-patients, n=38; repetitive punches 
of HoLEP tissue, n=30) were punched to construct three TMA. TMA 1, TMA 2, and 
TMA  3 contained 42, 42, and 22 cores of prostate tissue, respectively, see Additional 
file 1: Fig. S4. Afterwards, we stained the TMA with H&E, ERG, and PIN-4, respectively, 
see Fig. 1.

We digitized the histology slides with a digital slide scanner (Sysmex GmbH, Germany, 
resolution 2 µm per pixel). The image processing included de-arraying of the TMA and 
computation of feature values for each core. Out of a total number of 318 stained cores, 
106 cores times three stains, three cores had to be excluded from our analysis due to 
poor staining quality. The three excluded cores could not be recognized and processed 
by QuPath. Additional file 1: Table S4 gives the final number of processed malignant and 
benign cores. We refer to Additional file 1: Sects. 1.2–1.4, for details of preparations of 
TMA, their histological staining, digitalization, and the computation of features.

Software

We processed tissue microarrays with the open–source software for digital pathology 
and whole slide image analysis QuPath (version 0.2.0)  [28]. We wrote Python scripts 
(Python version 3.7.6) [49]) in Jupyter Notebook [50]. We used modules from the scipy 
package (version 1.4.1) [51] for statistical calculations and applied ML algorithms from 
the scikit-learn library (version 0.22.1) [52]. For recursive feature elimination, we applied 
the implementation RFECV [29] from the scikit-learn library (version 0.22.1).
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05124-9.

Additional file 1: Supplementary data.

Additional file 2: Classification labels (benign=0; malignant=1) for each tissue core.
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