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Abstract 

Background It is widely accepted that chronic inflammatory bowel diseases significantly higher a risk for colorectal 
cancer development. Among different types of treatments for patients with colon cancer, novel protein‑based thera‑
peutic strategies are considered.

AIM To explore the effect of human plasma alpha‑1 antitrypsin (AAT) protein in the chemically induced mouse 
model of colorectal cancer.

Methods BALB/c mice with azoxymethane/dextran sodium sulfate (AOM/DSS)‑induced colitis‑associated colorectal 
cancer (CAC), we intraperitoneally treated with commercial preparation of human plasma AAT (4 mg per mouse). 
Effects of this therapy were evaluated histologically, and by immunohistochemical and gene expression assays.

Results When compared with non‑treated controls, AOM/DSS mice receiving AAT therapy exhibited significantly 
longer colons, and less anal bleeding. Concurrently, AAT‑treated mice had significantly fewer polyps, and lower 
numbers of large colon tumors. Immunohistochemical examinations of colon tissues showed significantly lower 
neutrophil counts, more granzyme B‑positive but fewer MMP9 (gelatinase B)‑positive cancer cells and lower num‑
bers of apoptotic cells in mice receiving AAT therapy. The expression levels of IL4 were significantly higher while TNFA 
was slightly reduced in tumor tissues of AOM/DSS mice treated with AAT than in AOM/DSS mice.

Conclusion Human AAT is an acute phase protein with a broad‑protease inhibitory and immunomodulatory activi‑
ties used as a therapeutic for emphysema patients with inherited AAT deficiency. Our results are consistent with pre‑
vious findings and support an idea that AAT alone and/or in combination with available anti‑cancer therapies may 
represent a new personalized approach for patients with colitis‑induced colon cancer.
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Introduction
Colorectal cancer (CRC) includes colon and/or rectum 
cancer, and is the third most commonly diagnosed and 
second most fatal cancer globally [1]. For example, in Jor-
dan, CRC ranked as most common in males and females 
accounting for about 12.2% of all cancers [2]. In Ger-
many, CRC accounts for about 60 000 cases and 25 000 
deaths per year [3].

CRC typically develops when epithelial cells acquire 
a series of genetic or epigenetic changes enabling them 
to become hyperproliferative [4]. The increased risk for 
CRC is strongly associated with a family history. As an 
example, a large-scale meta-analysis of 8091 subjects 
found that the mean risk is almost twice higher in those 
with a family history of CRC [5]. On the other hand, die-
tary, lifestyle, anthropometric, and other risk factors also 
play a significant role in CRC development [6].

Surgery is the most common treatment for CRC 
patients. However, many CRC cases are diagnosed at the 
advanced stage, and therefore, curative surgery alone is 
often challenging [7]. To stabilize the tumor, chemo-
therapy or radiotherapy is used before the surgery [8]. In 
recent years, an increasing number of monotherapy or 
combination therapy strategies using immune checkpoint 
inhibitors for CRC have been designed [9]. Cytokines, 
like TNF-α and IL-6, are also important drivers of CRC 
development and are therapeutic targets [10].

Research also focuses on natural products, such as 
alkaloids, polysaccharides, polyphenols, diterpenoids, 
and unsaturated fatty acids, as useful therapeutics for 
CRC prevention and/or treatment [11]. For example, 
case-controlled studies revealed an inverse correla-
tion between the levels of vitamin D and the incidence 
of human CRC [12]. Among the mechanisms proposed 
to explain this association are the immunomodulatory, 
antiangiogenetic, and pro-apoptotic effects of vitamin D 
[13]. Scientists are testing natural and/or recombinant 
human protein therapies as well. Under physiological 
conditions, various proteins control cell growth, survival, 
and responses to stimuli. Therefore, the deregulation of 
levels and/or functional activities of certain proteins can 
favor the development of cancer [14]. Among others, 
acute-phase proteins are involved in cancer development 
and some of them considered as therapeutics in CRC [15, 
16].

Human AAT is a serine protease inhibitor and one of 
the most abundant acute-phase glycoproteins (1–2  g/L) 
expressing broad protease inhibitory and immu-
nomodulatory effects [16, 17]. It is known that inher-
ited AAT deficiency is a risk factor for developing early 
onset emphysema, liver disease at any age, and in some 
cases panniculitis and systemic vasculitis [18, 19]. Vari-
ous clinical studies reported that AAT deficiency is also 

associated with hepatocellular carcinomas [20–22], lung 
cancer [23, 24], urinary bladder cancer [25], and malig-
nant lymphomas [26]. As a matter of fact, both high 
and low levels of AAT have been linked to the develop-
ment of CRC [20, 27–29], and AAT has been proposed 
as a biomarker for detecting early stages of gastrointesti-
nal inflammation [30]. Though the relationship between 
AAT and CRC remains controversial, the fact that AAT 
deficiency is linked to various cancers, and that the 
therapy with AAT expresses anti-inflammatory effects 
[31] prompted us to test the effects of AAT therapy in a 
mouse model of colitis-associated cancer (CAC). The 
CAC is a subtype of CRC that is associated with inflam-
matory bowel diseases and has a high mortality. A mouse 
model based on the combination of a colonic genotoxic 
carcinogen, azoxymethane (AOM), and an inducer of 
colitis, dextran sulfate sodium (DSS), represents one of 
the best tools for investigating the pathogenesis and/or 
prevention of colon cancer [32]. In this study, we used a 
model of AOM/DSS-induced CAC in BALB/c mouse to 
evaluate the effects of an intraperitoneally administered 
commercial preparation of human AAT (Prolastin).

Materials and methods
Animal model
Male BALB/c mice aged 8  weeks and weighing 27  g 
were provided by the animal facility, Yarmouk Univer-
sity, Irbid, Jordan. The animal groups were housed sep-
arately in plastic cages and received a normal diet and 
water ad libitum, with a light/dark cycle of 12:12 h. Food 
and water consumption were comparable between the 
treated and control groups. All measures were taken to 
avoid unnecessary animal stresses. Housing, anesthesia, 
and postoperative care concurred with the guidelines 
established by an Institutional Animal Ethics Committee 
approval (ACU-2021/11) Yarmouk University.

The AOM/DSS model [33] was based on a single intra-
peritoneal injection of (10  mg/kg body weight) AOM 
(ChemCruze, USA) and three cycles of 2.5% of DSS (TdB 
Consultancy, Sweden) in drinking water, over a period of 
ten weeks. Mice were randomly divided into four groups 
(n = 10 mice per group); group 1 was the controls receiv-
ing water; group 2 received AOM/DSS only, group 3 
received AOM/DSS and was injected intraperitoneally 
with human AAT protein (Grifols, Germany) and the 
group 4 received AAT only. Mice were injected with 4 mg 
of AAT at 15, 16, and 17  weeks. A schematic design of 
the experiment is shown in Fig. 1A.

Animals were individually weighed on a weekly basis 
and signs of bloody stool and diarrhea were recorded. On 
the day of experiment termination (end of week 17), the 
colon was recovered from each mouse and inspected for 
the presence of abnormalities, including tumor masses, 
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size, and other deformations. Colon length and weight 
were measured, and tissues were collected for RNA 
extraction and gross analyses.

Histological examination
Mice colon tissues were fixed in 10% formalin for 24  h, 
and cassetted. Tissue processing was performed using 
Spin Tissue Processor (Thermo Scientific, USA). Samples 
were serially dehydrated in baths with increasing ethanol 
percentage (70%, 80%, 96%, and 100%) for approximately 
1.5  h each. Subsequently, tissue samples were placed in 
100% xylene for 3 h to allow for tissue clearing. Samples 
were then incubated in paraffin wax for 4  h. After that, 
samples were placed into a mold maintaining their origi-
nal orientation, embedded in 100% paraffin wax, and 
then left to cool at room temperature (RT) overnight. 
Paraffin blocks were cut into thin Sects.  (5  µm) using 
Electronic Rotary Microtome (Thermo Scientific, USA). 
Sections were stained with hematoxylin and eosin (H&E) 
and slides were evaluated microscopically [34].

Immunohistochemistry
Mice colonic sections were harvested and fixed in 10% 
(v/v) formalin. Paraffin-embedded tissues were cut 
(5 µm) and fixed on slides coated with poly-L lysine. After 
being deparaffinized in xylene and rehydrated in graded 
alcohol, the formalin-fixed paraffin-embedded specimens 
were treated with boiling in 10 mmol/L citrate buffer (pH 
6.0) for 1 min using the microwave. Afterwards samples 
were cooled to RT and washed 3 times with phosphate-
buffered saline (PBS). The next steps were carried out 
by using an immunohistochemistry kit (Abcam, UK). 
Endogenous peroxidase activity was blocked using 3% 
hydrogen peroxide for 15  min, and after washing the 
sections were blocked with 1% BSA in PBS for 10  min. 
All primary antibodies were rabbit polyclonal anti-AAT 
(DAKO Denmark), anti-MMP9 (MyBiosource, USA) 
anti-Granzyme-B (ELK Biotechnology, China), and anti- 
Caspase-3 (CUSABIO, USA) were diluted according to 
the manufacturer’s recommendations and added to tis-
sue sections for 1 h. After washing, slides were incubated 
with anti-rabbit-HRP (Promega, USA) at RT for 15 min. 
Tissues were covered with Diaminobenzidine (DAB) Sub-
strate (Bioworld, USA) according to the manufacturer’s 
instructions. All sections were counterstained with Hema-
toxylin and rinsed with d.H2O, ascendingly dehydrated in 
graded alcohols followed by xylene. Then mounted with 
DPX and visualized under a light microscope. Grading 
was done based on the intensity and the extent of positivity 
as scored by an experienced pathologist.

Fig. 1 Schematic presentation of study design and AAT therapy 
effects on mice colon length and body weight. A. Mice were 
injected with AOM (day 0) followed by three cycles of 2.5% DSS 
in drinking water. AOM/DSS‑AAT group received i.p. AAT on weeks 
15, 16 and 17. At week 18, all mice were sacrificed for further 
analysis. B. Representative gross macroscopic image of the colon 
of AOM/DSS and AOM/DSS + AAT. C. Box plots show body weight 
differences between experimental groups of mice. D. Colon length, 
box plots show colon length in different experimental groups. E. 
Disease Activity Index (DAI) score.a composite measure of weight 
loss, stool consistency and blood in stool. A student’s t‑test 
was used to compare between each two groups. A value of p < 0.05 
was considered a significant
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Detection of apoptosis by TUNEL assay
The TUNEL assay (Promega, USA) was performed after 
pre-treatment of paraffin-embedded tissue. Briefly, five 
μm tissue sections were layered to poly-L-lysine-coated 
slides. Subsequently, sections were deparaffinized and 
rehydrated. Following that, tissue sections were fixed 
with 4% paraformaldehyde in two separate steps, Pro-
tein digestion was done by incubating tissue sections in 
20 mg/ml proteinase K (Promega, USA) for 10 min at RT. 
A rinsing step with PBS was carried out between each 
step of the experiment. Tissue sections were equilibrated 
in an equilibration buffer for 10 min at RT. The labeling 
mixture, which included biotinylated dUTP and rTdT 
enzyme in equilibrating buffer, was applied to sections 
and incubated for 60 min at 37  °C in a humid chamber. 
After stopping the enzymatic reaction by immersing tis-
sue sections in 2X SSC solutions for 15 min, the sections 
were rinsed thoroughly twice with PBS, and endogenous 
peroxidase was inactivated with 3%  H2O2 in distilled 
water for 10  min at RT and rinsing with PBS. Subse-
quently, 100 µl of streptavidin HRP diluted 1:500 in PBS 
was added to each tissue section for 30  min at RT in a 
humid chamber, after rinsing the slides twice by immers-
ing them in PBS for 5 min at RT. Finally, the DAB sub-
strate solution was applied to tissue sections until light 
brown color development was obtained. The slides were 
then rinsed with d.H2O several times, counterstained 
with hematoxylin, dehydrated, and mounted with DPX. 
A negative control slide was incubated with 100  ul of 
equilibration buffer and biotinylated dUTP without rTdT 
enzyme, and a positive control slide was incubated with 
100  ul of DNase I buffer-containing 1000  units/ml of 
DNase I (Promega, USA). Moreover, apoptotic cells were 
counted in four selected microscopic fields per colon tis-
sue (magnification, 400x) to determine the number of 
apoptotic cells.

RNA extraction and cDNA synthesis
Total RNA was extracted from colon cancer tissue using 
TRIzol reagent (Life Technologies, Carlsbad, Ca, USA) 
according to the manufacturer`s instructions. The con-
centration of RNA was measured using NanoDrop 
(Thermo Fisher Scientific Multiskan GO, Finland). The 
isolated RNA was reverse transcribed to cDNA using a 
Reverse Transcription kit (Applied biosystem, Lithuania) 
according to the procedure supplied by the manufacturer.

Real time PCR
The expression of cytokines was quantified using 
Quantifast SYBR green qPCR kit according to the 
manufacturer`s instructions (Qiagen, USA). The qPCR 
reaction was started by adding 10 µl 2X Quantifast mix, 
1  µl (500  ng/µl) cDNA, 0.8  µl forward, 0.8  µl reverse 

primers, and 7.4 µl nuclease-free water to PCR tubes with 
a final volume of 20 µl. All cytokine expression levels were 
normalized to the GAPDH gene. The primer sequences 
for different genes under study were obtained from Al-
Omari et  al. [35] and the sequences were as follows: 
INF-γ FW: TTC TTC AGC AAC AGC AAG GC, RV: TCA 
GCA GCG ACT CCT TTT CC, IL-4 FW: GAA GCC CTA 
CAG ACG AGC TCA,RV: ACA GGA GAA GGG ACG CCA 
T, TGF- FW: CCT GCA AGA CCA TCG ACA TG,RV:TGT 
TGT ACA AAG C GAG CAC C, GAPDH (Housekeeping 
gene) FW:TGC AGT GCC AGG TGA AAA TC,RV:ATC 
ACG TCC TCC ATC ATC CC.TNF-α (FW: CTA CCT TGT 
TGC CTC CTC TTT, RV: GAG CAG AGG TTC AGT GAT 
GTAG. The PCR conditions were 95 °C initial denatura-
tion for 30 s, followed by 40 cycles of 95 °C denaturation 
for 10 s, annealing at 60 °C for 20 s, and extension for 20 s 
at 72  °C using Rotor-Gene Q-QIAGEN (Germany). The 
relative expressions of cytokine genes were calculated 
using comparative Ct  (2−ΔΔCT) analysis methods and 
assayed as in the equations below. ∆Ct = AVG. Ct (gene 
of interest)-AVG. Ct (housekeeping gene); ∆∆Ct = ∆Ct 
(treated sample)-∆Ct (control sample).

Statistical analysis
Statistical analysis was performed using Sigma Plot 
14.0. software package (Systat Software GmbH, Erkrath, 
Germany). The Student’s t-test was applied to compare 
two sample means on one variable. When more than 
two groups were involved in the comparison, one-way 
ANOVA was used. If the normality test failed, was per-
formed the nonparametric Kruskal–Wallis one-way 
analysis followed by the Mann–Whitney rank-sum or the 
Tukey post-hoc test. A p-value below 0.05 was consid-
ered significant.

Results
AAT therapy lowers disease activity index (DAI) in AOM/
DSS mice
The acute colitis-induced CAC model was designed as 
illustrated in Fig.  1A. After single intraperitoneal AOM 
administration mice were challenged with DSS (2.5% in 
the drinking water) for three cycles over a period of ten 
weeks, and AAT was administered once weekly from 
the end of week 14 to 18  week. Disease activity index 
(DAI), including body weight loss, presence of blood in 
stool, and diarrhea was monitored during the experiment 
period. Treatment with AAT per se resulted in slightly 
higher body weight (Fig. 1C) but did not influence colon 
length (Fig.  1D) and did not induce diarrhea or bleed-
ing as compared to vesicle controls. As expected, AOM/
DSS treatment increased the DAI score (Table 1, Fig. 1E). 
Notably, more AOM/DSS mice, which were treated with 
AAT, had diarrhea relative to AOM/DSS without AAT 
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therapy (Table  1). While the therapy with AAT did not 
influence AOM/DSS mice weight, the anal bleeding was 
reduced, and the length of the colon was higher relative 
to non-treated mice (Figs. 1B and D).

AAT therapy lowers tumor numbers
As expected, AOM/DSS mice developed multiple 
tumors, particularly in the middle and the distal colon 
(Fig.  2A). The macroscopic examinations revealed that 
the average number of large polyps (above 4  mm) was 
significantly higher in the AOM/DSS mice than in AOM/
DSS treated with AAT [mean (SD): 9 ± 2.2 vs. 0.8 ± 0.69, 
p = 0.012]. In general, the AOM/DSS mice had a high 
number of polyps and tumors of variable sizes and in dif-
ferent locations as compared to those treated with AAT 
(Fig. 2B).

AAT therapy reduces tumor progression and intestinal 
inflammation
Next, we performed the histomorphological evaluation 
of intestinal inflammation, hyperplasia, and tumorigenic-
ity using hematoxylin and eosin (H&E) staining. Accord-
ing to our findings, in AOM/DSS mice cancer cells were 
found in different parts of the colon including lamina 
propria (LP, a thin layer of connective tissue) and in 
Muscularis mucosa (MM, a layer of smooth muscle fib-
ers). Three of seven AOM/DSS mice treated with AAT 
revealed unremarkable colonic mucosa, whereas in the 
remaining mice, the tumor was found exclusively in the 
LP and MM regions (Fig.  3A). Furthermore, AOM/DSS 
mice treated with AAT had less progress in high-grade 
advanced cancer as compared to the AOM/DSS group. 
The relative frequency (%) of tumor progression between 
groups at week 18 was: (0)- representing colonic mucosa 
0% in AOM/DSS and 42.2% in AOM/DSS + AAT; (pT0)—
tumor intraepithelial or tumor invasion to LP with no 
extension through MM (AOM/DSS 44% vs.0.42.2% 
AOM/DSS/AAT), and (pT1)- tumor invasion in MM 
and submucosa (AOM/DSS 55.5% vs.0.14.2% in AOM/
DSS/AAT) (Fig. 3B). Histological evaluation of inflamma-
tory cell infiltration into the colon revealed significantly 
higher neutrophil counts in the AOM/DSS compared to 

Table 1 Disease activity index (DAI): Number of positive occult blood, diarrhea, and anal bleeding mice for each group

*  p < 0.05 was considered a significant

Animal Group Occult Blood positive mice number (%) Diarrhea positive mice number (%) Anal Bleeding 
positive mice 
number (%)

Control 0/7 (0%) 0/7(0%) 0/7(0%

AAT 0/7 (0%) 0/7(0%) 0/7(0%)

AOM/DSS 7/9 (77.8%) 4/9 (44.5%) 7/9 (77.8%)

AOM/DSS + AAT 4/7(57.1%) 5/7 (71.4%) 2/7 (28.6%) *

Fig. 2 A and B AAT therapy lowers tumor numbers. A. 
Representative colons recovered from AOM/DSS and AOM/DSS + AAT 
groups after 18 weeks showing polyps and tumors (blackarrows). B. 
Bars show number of polyps in different size in AOM/DSS and AOM/
DSS + AAT group. A value of p < 0.05 was considered to indicate 
a significant difference between groups
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the AOM/DSS/AAT [mean (SD): 70.3 (8.2) vs. 26.6 (7.9), 
p < 0.001] (Fig. 3C, S1). The numbers of eosinophils were 
low and similar in both groups of mice (Fig. 3D, S1).

Therapy with AAT reduces apoptotic 
and caspase‑3‑positive cancer tissue cells
To investigate putative pathways related to the benefi-
cial effects of AAT therapy, we focused on apoptotic and 
caspase-3- positive tumor cells in AOM/DSS mice. As 
shown in Figs.  4A and  B, the number of apoptotic cells 
per analyzed area was significantly lower in AOM/DSS/
AAT than in AOM/DSS mice. Remarkably, a strong 
to moderate positive staining for caspase-3 was found 
exclusively in the colon cancer tissue cells of AOM/DSS 
mice whereas significantly lower staining intensity and 
frequency were observed in AOM/DSS mice treated with 
AAT. Notably, caspase-3 staining was not detected in the 
colon cells of the control group treated with AAT, but a 
weak to moderate staining was detected near the villi sur-
face of the non-treated control mice (Figs. 5A and B).

Therapy with AAT lowers MMP9 but elevates Granzyme B 
levels in the colon cancer tissues of AOM/DSS mice
Subsequent analysis of MMP-9 and Granzyme-B posi-
tive staining in a colon of AOM/DSS mice without and 
with AAT therapy revealed significantly more MMP9-
positive inflammatory cells in the AOM/DSS than in the 
AOM/DSS treated with AAT (Fig.  6A). Notably, tumor 
cells were negative for MMP9 staining. Moreover, cells 
in AAT-treated and non-treated control mice were also 
negative for MMP9 staining (Figs. 6A and B). Regarding 
colon cell positivity for Granzyme-B, we found no posi-
tively stained cells in AAT-treated and non-treated con-
trol mice, whereas colon samples of AOM/DSS + AAT 

Fig. 3 AAT therapy reduces tumor progression and intestinal 
inflammation. A. Representative histopathological images 
of the colorectal cancer in the mice at week 18. a: normal appearance 
of mouse colon tissue in control group, b: control group‑treated 
AAT with normal morphology of colonic wall, c: large tumor 
invasion to muscularis mucosa in DSS group, d: adenocarcinoma 
with submucosal invasion, pT1 (Arrow) in DSS group, e: A peicolic 
lymph node with adenocarcinoma invasion in DSS group, f: 
colon with perineural invasion in DSS group, g: adenocarcinoma 
invading the muscularis mucosa pT1 in the DSS/AAT group, h: 
adenocarcinoma invading the muscularis mucosa pT1 in DSS/AAT 
group. Histopathology sections were performed using hematoxylin 
and eosin staining. A‑f, h panels were with low power, 100  X 
magnification and panel (g) with low power, 100X, and high power, 
400X magnification. B. Relative frequency (%) of tumor formation 
and propagation between groups at week 18. (0) representing 
an unremarkable colonic mucosa, (pT0) represents tumor 
intraepithelial or tumor invasion to lamina propria with no extension 
through muscularis mucosa. (pT1) representing tumor invades 
muscularis mucosa and submucosa. C. Box plots show neutrophils 
infiltration into colon tissue between groups at week 18. D. Box 
plots show eosinophils infiltration into colon tissue between groups 
at week 18. Results shown as the mean ± SD. A value of p < 0.05 
was considered as significant
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mice with cancer pT0 or pT1 stages were significantly 
more positive than samples of AOM/DSS mice (Figs. 7A 
and B).

Therapy with AAT induces the expression of IL4 and INFG 
and reduces TNFA in colon cancer tissues of AOM/DSS mice
To evaluate the anti-inflammatory effects of AAT therapy 
we analyzed the expression of inflammatory cytokines in 
colon cancer tissues. As shown in Figure S2, AOM/DSS 
mice treated with AAT show significantly higher IL4, but 

slightly lower IFNG and TNFA mRNA as compared to 
AOM/DSS mice.

Discussion
The extension and duration of colon inflammation are 
considered highly significant risk factors for the initiation 
and progression of CRC [36]. Currently, a mouse model 
of AOM/DSS-induced CRC is one of the most widely 
used chemically induced models providing important 
insights into the mechanisms of inflammation-related 

Fig. 4 Therapy with AAT reduces apoptotic positive cells in cancer colon tissue. A. representative images of cell apoptosis in colon tissues detected 
by using the TUNEL assay: a. Control; b. AAT; c. AOM/DSS and d. AOM/DSS + AAT. Tissue fields at a magnification of 400 X. Red arrows indicate 
of apoptotic cells. B. Quantitative analysis of TUNEL positive cells. The number of apoptotic cells is shown as box plots. Pairwise multiple comparison 
(Holm‑Sidak method) was applied for statistical analysis. A value of p < 0.05 was considered as significant
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colon carcinogenesis, drug discoveries, and/or validation 
of novel therapeutics. An important advantage of this 
model is a relatively short timeline since tumor develop-
ment typically occurs within 10  weeks [32]. Moreover, 
the histopathology of AOM/DSS-induced tumors well 
recapitulates key features of human colitis-associated 
cancer [33].

Human AAT is one of the major anti-protease and anti-
inflammatory proteins [37]. Therefore, inherited and/or 
acquired deficiencies of AAT might favor proteolysis and 
persistent inflammation, which can benefit the initiation 
of carcinogenesis. In support, previous studies demon-
strated a relationship between low levels of AAT and a 
risk for colorectal cancer [23, 38]. Concomitantly, other 

Fig. 5 Therapy with AAT reduces caspase‑3‑positive cells in colon cancer tissue. A. Representative images of caspase‑3‑positive cells in cancer 
tissue (a. Control; b. AAT; c. AOM/DSS and d. AOM/DSS + AAT). Tissue fields are at a magnification of 400X. Black arrows indicate caspase‑3‑positice 
areas. B. Bars show IHC of caspases‑3 score based on the stain intensity (0 = no stain, 1 = weak, 2 = moderate; and 3 = strong). A value of p < 0.05 
was considered as significant



Page 9 of 14Al‑Omari et al. BMC Cancer          (2023) 23:722  

Fig. 6 Therapy with AAT lowers MMP‑9‑positive cells in colon cancer tissue. A. Representative images of MMP‑9 staining in colon tissue for four 
experimental groups. The tissue fields at a magnification of 100 × and 400 × respectively. The black arrows indicate areas of MMP‑9‑positive cells. 
B. Bars show IHC score of MMP‑9 based on the stain intensity (0 = no stain, 1 = weak, 2 = moderate; 3 = strong). A value of p < 0.05 was considered 
as significant
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studies found that a therapy with AAT attenuates colitis 
and chronic ileitis through the suppression of cytokine 
production [39]. These findings led to the idea that com-
mercially available human AAT preparations, designed to 
treat emphysema patients with inherited AAT deficiency, 

might be useful beyond inherited deficiency states. In 
fact, a short while ago Qing Cai, and co-authors reported 
that CRC development in colitis associated AOM/DSS 
mouse model is characterized by neutrophilic inflam-
mation, oxidative stress, and increased serine protease 

Fig. 7 AAT Therapy elevates Granzyme B levels in the colon cancer tissues. A. Representative images of Granzyme‑B‑positive cells in colon 
of experimental groups (staining were performed in 4 mice per group). pT0 shows tumor invasion to the lamina propria with no extension 
through the muscularis mucosa; pT1 represents tumor invades the muscularis mucosa and submucosa. The tissue fields at a magnification 
of 100 X  and 400 X  respectively. The arrows indicate Granzyme‑B‑positive cell areas. B. Bars show IHC of Granzyme B score according to the stain 
intensity (0 = no stain, 1 = weak, 2 = moderate; and 3 = strong). A value of p < 0.05 was considered as significant



Page 11 of 14Al‑Omari et al. BMC Cancer          (2023) 23:722  

activity. Furthermore, the authors demonstrated that 
augmentation therapy with AAT (commercial prepara-
tion, Aralast NP) suppresses inflammatory response and 
proteolysis and inhibits cancer progression [40].

In keeping with a lately published report, we further 
confirm the preventive and therapeutic potential of 
another commercial preparation of human AAT (Pro-
lastin) in the AOM/DSS mouse model. Colon mucosal 
inflammation, colon length shortening, and body weight 
loss characterize colitis induced by DSS. According to 
our results, AAT therapy significantly prevents colon 
shortening, and anal bleeding, and diminishes histo-
pathological changes in the colon of AOM/DSS. In paral-
lel, therapy with AAT reduced polyp numbers and tumor 
sizes, which paralleled lowered neutrophil infiltration. 
Current knowledge suggests that the reduction of tumor 
number and size can occur after depletion of neutrophils, 
which massively infiltrate the lamina propria and sub-
mucosa during the progression of colitis-associated CRC 
[41, 42]. Thus, AAT inhibits CAC development, most 
likely, as a negative regulator of neutrophil recruitment.

It is important to point out that the number of Gran-
zyme B-positive-cancer and inflammatory cells in colon 
tissue increased upon AAT therapy. Granzyme B is 
a pro-apoptotic cytotoxin produced and secreted by 
immune and non-immune cells but also by neoplastic 
cells, e.g., cancer of the colon [43]. For instance, Salama 
and co-authors observed that a higher number of tumor-
associated Granzyme B-positive cells is associated with 
better survival among CRC patients [44]. The relation-
ship between Granzyme B expression and tumor stage 
has also been suggested [45]. Granzyme B can promote 
cell apoptosis through a direct cleavage and activation of 
cysteine proteases, specifically caspase-3 [46, 47]. Alter-
natively, mitochondrial cytochrome release might be the 
primary mode of Granzyme B-induced apoptosis, and 
caspase activation is not required for cytochrome release 
[48]. We did not study cytochrome release in our experi-
mental model, however, the finding that AAT therapy 
significantly lowers the numbers of tumors and caspase-
3-positive cancer cells in the colonic tissues, supports 
the idea that Granzyme B employs different apoptotic 
pathways and/or enhances natural cytotoxicity. Notably,  
tissue-protective role of AAT has previously been related to 
its property to inhibit caspases, specifically caspase-3 [49].

The excessive activity of matrix metalloproteinases 
(MMPs), especially MMP9, can directly contribute to 
cell apoptosis. Moreover, neutrophil MMP9 seems to be 
important for tumor progression [50]. The therapy with 
AAT reduced the numbers of MMP9 (gelatinase B)- posi-
tive cells in cancer tissues. As already mentioned above, 
AAT therapy significantly lowered neutrophil infiltration 
into colons of AOD/DSS mice. Thus, lowered neutrophil 

counts and concomitants reduction in MMP-9-positive 
tumor tissue cells together with increased Granzyme 
B-positive tumor-associated cells, reflect the anti-cancer 
mechanisms of AAT augmentation therapy.

Cytokines of the intestinal microenvironment domi-
nate immunological responses, and therefore the abnor-
malities in the expression of cytokines, like IL-4, and 
IFN-γ, mirror the dysregulation of intestinal immunity 
associated with pathological processes, including cancer 
[51]. Moreover, the intrinsic defense cells, especially acti-
vated macrophages produce pro-inflammatory cytokines, 
like TGF-β and TNF-α, which directly or indirectly affect 
the intestinal epithelial cells [52]. The induction of acute 
DSS colitis is characterized by extensive epithelial ero-
sion, loss of goblet cells, leukocyte infiltration, and simul-
taneous increase in expression of the TNF-α and IFN-γ 
in colon tissues of diseased animals [53]. Interestingly, 
AAT therapy significantly induced expression of IL4 and 
slightly induced IFNG but lowered TNFA and showed 
no effect on TGFB in colon tumor tissues of AOM/DSS 
mice. IFN-γ was described as one of the most highly 
upregulated cytokines in the DSS mouse model of intes-
tinal inflammation [54], which causes a breakdown of the 
vascular barrier through the disruption of the adherents 
junction protein VE-cadherin and is a crucial driver of 
DSS-induced experimental colitis [55]. Indeed, increased 
IFNG mRNA in tumor tissues of AOM/DSS mice receiv-
ing AAT might be linked with higher number of mice 
having diarrhea in this group. This observation remains 
to be addressed in further studies.

Taken together, our data support beneficial effects 
of AAT therapy in the CAC mice model, which can be 
attributed to the reduced neutrophilic inflammation and 
direct and/or indirect reduction of colon cancer devel-
opment. It is known that AAT regulates inflammatory 
responses via both -protease inhibitory and non-inhibi-
tory functions. For example, in vitro findings show that 
AAT binds to cell surfaces, enters intracellularly via lipid 
rafts, and promotes a switch from pro-inflammatory 
to anti-inflammatory pathways. Moreover, AAT can 
directly interact with inflammatory molecules and abro-
gate their activities. Among others, AAT can scavenge 
reactive oxygen species, and interact with free heme, 
defensins, IL-8, and leukotriene B. It is also worth men-
tioning, that AAT interacts with lipoproteins and free 
fatty acids. These pleiotropic properties of AAT provide 
a rationale for testing AAT therapy outside patients with 
inherited AAT deficiency. So far, the therapy with AAT 
showed beneficial effects in experimental models of 
transplant rejection, ischemia–reperfusion injury, colla-
gen-induced arthritis, graft-versus-host disease, experi-
mental autoimmune encephalomyelitis, preeclampsia, 
and inflamed pancreatic islets, among others [56–64]. 
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Small clinical trials have been conducted to address the 
potential benefit of AAT therapy for patients with graft-
versus-host disease, acute myocardial infarction, and cystic 
fibrosis [65, 66].

Conclusion
Newly published data and results presented in this study 
suggest that AAT therapy expressing anti-inflammatory 
and anti-protease activities inhibits early progression of 
colorectal cancer in mice. Hence, commercial prepara-
tions of human AAT might be of interest for testing in 
patient cohorts with IBD-related cancer.
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