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Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common
cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used
for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are
non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy
by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse
effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of
the members of STATs transcription factor family, has been implicated in signal transduction by different cyto-
kines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent
dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigene-
sis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharma-
cologically safe and effective agents that can block STAT3 activation have the potential both for the prevention
and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its
interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC
progression, inflammation, survival, invasion and angiogenesis.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The liver is the central organ for xenobiotic metabolism and exe-
cutes several key biological functions to maintain homeostasis and
health. These activities include production of proteins and hormones,
detoxification of foreign chemicals, as well as glucose and lipidmetab-
olism [1]. There are four major types of liver diseases that severely
affect liver health [2]. These are (1) liver cirrhosis, (2) fatty liver,
(3) virus-induced hepatitis and (4) liver cancer. Hepatitis and liver
cancer have been considered as the most serious global public health
problems [3–5]. Hepatocellular carcinoma (HCC), accounts for >90%
of all primary liver cancers and is the fifth most common and aggres-
sive malignancy worldwide and the third cause of global liver cancer
mortality [6–8]. It accounts for approximately one million deaths
each year [9] with median survival duration of 7 to 8 months from
the time of diagnosis [10]. Themajor risk factors for HCC development
include cirrhosis, hepatitis, infections with chronic hepatitis B (HBV)
or C (HCV) viral infections and environmental factors like aflatoxin ex-
posure and alcohol or tobacco consumption [2,11,12]. For example,
liver cirrhosis causes functional abnormalities that are characterized
by serum albumin level that is lower than 4 g\dl, increased prothrom-
bin time and persistently high serum alanine amino transferase (ALT)
levels and predisposes patients to the increased risk of HCC [2]. Simi-
larly, chronic hepatitis caused by HBV or HCV viral infections can re-
sult in death of hepatocytes with accompanying inflammatory cell
infiltration. Virus-infected hepatocytes can be destroyed by host im-
mune cells or by potential degenerative effects of either HBV or HCV
[11,12]. Continuing hepatocyte death triggers compensatory repair
and regeneration and eventually leads to severe fibrosis, the major
clinical risk factor for the development of HCC [4,5,13].

The HBV is a DNA virus that can integrate into the host genome and
is considered a major risk factor for initiation and development of HCC
[14]. The HBx gene of HBV encodes a viral protein that plays a central
role in HBV infection and liver cancer [15–17]. Point mutations in the
HBx gene leading to exchanges at position 31 with serine to alanine
(Ser31Ala), position 130 with lysine to methionine (Lys130Met), and
position 131 with valine to isoleucine (Val131Ile) were found to be
prevalent in patients with HCC [18,19]. The HBx protein is thought to
play a major role in HCC by modifying apoptosis, inhibiting nucleotide
excision and repair of damaged cellular DNA, andmodulating transcrip-
tional activation of cellular growth regulating genes [20]. Strong epide-
miological evidence correlating HCC to HBV infection is demonstrated
by the presence of HB surface antigen (HBs Ag) and HB core antibodies
(HBc antibodies) in the blood of HCC patients [21]. Hepatocyte transfor-
mation may also be indirectly influenced by HBV DNA integration [22].
Integrated HBV DNA is frequently observed in HCC, thereby suggesting
that HBV has a direct oncogenic effect through interaction with
transformation-associated genes [14]. Similarly HCV is an enveloped
single-stranded positive-sense RNA virus, approximately 9.6 kb in
length, and encodes a polyprotein of about 3000 amino acids [23]
which is processed by viral-encoded and host-encoded enzymes into
structural and non-structural proteins. This RNA virus does not
integrate into the host genome but likely induces HCC through viral
proteins by host–protein interactions or via the proinflammatory re-
sponse to the virus [14]. Several HCV proteins, including core, NS3,
and NS5A, have been shown to induce oxidative stress in cultured
cells [24,25]. ROS, which act as second messengers, activate cellular ki-
nases, although the mechanism of this activation remains unclear.

Alongsidewith etiological risk factors, environmental risk factors have
also been reported to contribute to the development of HCC (Fig. 1). Alco-
holic liver disease (steatohepatitis) has been shown to be an important
risk factor for HCC development [26]. Alcohol either directly initiates
HCC after its oxidation to acetaldehyde, which is genotoxic, or indirectly
through causing cirrhosis [26,27]. Cigarette smoking is considered as
one of the primary sources of exposure to 4-aminobiphenyl in humans.
An important report measuring DNA adducts of 4-aminobiphenyl, a he-
patic carcinogen showed a significant increase inHCC riskwith increasing
levels of adducts [27]. Diabetes increases the risk of HCC, as shown by the
first population-based study to assess the risk of HCC in diabetic patients
[28]. An increased risk of cancer mortality in general has long been asso-
ciated with obesity [29].

It has been proposed that lipid accumulation in obesity induces a
low-grade inflammatory response, which in turn increases IL-6 and
TNF expression in adipose tissue and Kupffer cells. IL-6 and TNF are
the main mediators in the development of steatohepatitis through ac-
tivation of the JAK/STAT pathway leading to HCC development [30].
Non-alcoholic fatty liver disease (NAFLD), known as non-alcoholic
steatohepatitis, is a risk factor for progressive liver disease [29]. He-
patic iron overload, or hemochromatosis can also lead to cirrhosis
and ultimately to HCC. HCC is an important cause of mortality in cir-
rhotic patients with chronic hemochromatosis [31]. Increased cancer
risk in a cohort of 230 patients with hereditary hemochromatosis in
comparison to matched control patients with non-iron-related
chronic liver disease [31]. It is an autosomal recessive condition with a
homozygous C282Ymutation in theHFE gene characterized by excessive
iron deposition in hepatocytes due to increased intestinal absorption of
iron from normal diet [32]. Thus, while liver disease is the commonest
cause of death in patients with hereditary hemochromatosis, 6% of
men and 1.5% of women are at absolute risk of liver cancer [31,32]. Afla-
toxin is a mycotoxin that commonly contaminates corn, soybeans and
peanuts, and is reported to be a cause for hepatocarcinogenesis [33].
High dietary aflatoxin intake has been associated with HCC. In another
study from Shanghai, the odds of developing HCC in individuals with
HBV and exposure to aflatoxin were 59.4 times that of the normal popu-
lation [34]. Sex hormones, such as estrogens, progesterone, and oral con-
traceptives have been shown to increase hepatic tumor development in
animals. Moreover, there have been several reports of HCC developing in
patients who have been treated with androgenic or anabolic steroids or
oral contraceptives [35,36].

2. Role of STAT signaling pathway in the development of HCC

Signal transducer and activator of transcription (STAT) protein
was first discovered in 1993 by James Darnell [37]. It can be induced
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by signals from the cell membrane directly to the nucleus to activate
gene transcription, thus evading the involvement of secondary mes-
sengers [37]. STAT proteins have been shown to play pivotal roles in
cytokine signaling pathways, which are involved in regulating cell
growth and differentiation in systems ranging from Dictyostelium to
mammals [38]. STAT proteins have also been identified in Drosophila,
[39,40] Caenorhabditis elegans and [41] Anopheles [42] but are strik-
ingly absent in yeast [43]. The STAT family comprises sevenmembers:
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. They range
in size from 750 to 850 amino acids [44], (Fig. 2). The entire STAT
family can be divided into two groups, according to their specific
functions. The first group is comprised of STAT2, STAT4, and STAT6,
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Among other STAT family proteins, STAT3 has received considerable
attention during the last decade since it is a convergent point for a num-
ber of oncogenic signaling pathways and controls intra-cellular signal
transduction pathways of several pro-inflammatory cytokines and
growth factors that are implicated in liver damage and repair mecha-
nisms [47–50]. STAT3was initially identified as an acute phase response
factor (APRF), an inducible DNA binding protein that binds to the IL-6
responsive element within the promoters of hepatic acute phase
genes [51] and as a DNA binding protein in response to epidermal
growth factor [52]. The gene that encodes STAT3 is located on chromo-
some 17q21. The 92 kDa protein is 770 amino acids long [53]. A splice
variant of the mammalian STAT3 with deletion of a 50 nucleotides se-
quence near the C-terminus, codes for an 80-kDa STAT3 isomer
(STAT3b) that functions as a negative regulator of STAT3 [20].

STAT3 can be activated by IL-6, leukemia inhibitory factor (LIF),
oncostatin M, and the ciliary neurotrophic factor (CNTF) family of cy-
tokines, which are all known to mediate their signal through the
gp130 protein [54–56]. These receptor molecules harbor a common
STAT3 docking motif (YxxQ) in their cytoplasmic domain [57]. In-
deed, the expression of IL-6, one of the major STAT3 activating cyto-
kines, is elevated in human liver diseases and HCC [58,59]. IL-6 is a
key event in tumorigenesis with high levels associated with HCC
[60]. One of the normal functions of IL-6 in adult liver is to protect
against apoptosis via STAT3 pathway following viral infection or in-
gestion of chemicals [61,62]. When IL-6 binds to its specific receptor
subunit, it can induce dimerization of the gp130 receptor and activa-
tion of the gp130-associated Janus kinase (JAK). As in the
gp130-deleted animals, no STAT3 DNA binding was found, and activa-
tion is likely to be mediated through a gp130-dependent cytokine
while in IL-6 null animals, no STAT3 activation was found [63]. IL-6
levels in liver cancer patients are 25-fold higher than in healthy adults
[64]. Subsequent studies showed that the levels of IL-6 in SNU-387
and SNU-449 liver cancer cell lines were much higher than those in
human hepatocytes [65]. Acute-phase response is impaired in both
IL-6 and STAT3-deficient animals. It is most likely that the L−/−
STAT3 mice failed to survive because there was a disturbance in the
acute-phase response, which is fundamentally dependent on STAT3
activation [66]. Another cytokine, IL-22 induced phosphorylation of
STAT3 on a serine residue and has been shown to induce acute
phase genes in the liver [67], an effect that has been described to be
regulated by IL-6 mainly through STAT3 activation. It has been
shown that STAT3 Ser727 phosphorylation is induced upon IL-22
stimulation and is required for maximal transcriptional activation
[68].

Recent findings indicate that STAT activation is not mediated ex-
clusively by cytokine receptors that lack intrinsic tyrosine kinase do-
mains. STAT proteins are also triggered by receptor tyrosine kinases
such as epidermal growth factor-receptor (EGF-R), PDGF-R [69], and
colony stimulating factor-1R (CSF-1R) [70], seven transmembrane
G-protein-coupled receptors such as angiotensin II receptor [71] and
serotonin 5-HT2A receptor [72] and through the T cell receptor com-
plex [73] and the CD40 receptor [74]. EGF, TGFβ, and PDGF receptors
are also capable of directly phosphorylating STAT proteins in the ab-
sence of JAK activation, leading to the up-regulation of genes that pro-
mote cell proliferation, survival, and cell transformation [75–77].

The malignant transformation of hepatocytes in humans is a
multi-step process that occurs through progressive sequential evolu-
tion of chronic liver injury, regeneration, fibrosis and cirrhosis, small
cell dysplasia, and low-grade and high-grade dysplastic nodules,
resulting in the formation of fully developed HCC [78,79]. Different
subtypes of preneoplastic and neoplastic liver lesions may exhibit
common alterations of some key signal transduction pathways that
underlie cell survival and proliferation. Interference with these mo-
lecular mechanisms may be essential for HCC prevention and treat-
ment. These may involve over expression of several cytokines
(interleukins 1–11) and their receptors, growth factors and their
receptors, including vascular endothelial growth factor (VEGF), and
platelet-derived growth factor (PDGF) [69]. Transforming growth fac-
tor (TGF) and epidermal growth factor (EGF) receptors (also known as
ErbB1), fibroblast growth factor (FGF)), and its FGF receptor, hepato-
cyte growth factor (HGF) receptor (with unchanged or diminished ex-
pression of HGF), and insulin-like growth factor (IGF) familymembers
are also thought to play an important role in hepatocarcinogenesis.
These ligands and their receptors activate various signal transduction
pathways, including the JAK/STAT3 pathway, a critical signaling path-
way that supports the proliferation of preneoplastic and neoplastic
liver lesions [80].

3. Structure of STAT proteins

STAT proteins exhibit a modular structure with highly defined do-
mains, which include the N-terminal coiled-coil domain, DNA binding
domain, a linker, SH2 domain, and a C-terminal transactivation do-
main [77]. Each of these domains is important for the physiological
functions of STAT proteins [81]. The analysis of the crystal structure
of an NH2 conserved-terminal domain with ~130 residues show
that it is formed of eight α-helices that can form a hook like interface
which is involved in protein–protein polar interactions affecting tran-
scription, and thereby enhance the ability of dimerized STATs to bind
to DNA [82]. The N-terminal domain is involved in STAT dimerization
and also in tertramerization interactions. The tetramerization of
STATs contributes to stability of the STAT-DNA binding by means of
the interaction with randomly arranged low-affinity STAT binding
sites, thus increasing transcriptional activity [83]. Several studies
have implicated the N-domain in various protein–protein interac-
tions affecting transcription and it has been suggested that this do-
main enables dimerized STAT molecules to polymerize and to bind
multiple DNA sites that are involved in oncogenic growth signaling
pathways [84]. The region of STATs between residues 130 and 315
consists of a four-stranded helical coiled coil domain. This domain as-
sociates with a number of potentially important regulatory modifiers,
including IRF-9 and STIP1 which are ligand dependent [85]. A
sub-region of the C-terminal domain and the coiled-coil domain are
necessary for receptor binding and functional recruitment of STAT3
to gp130 upon stimulation with IL-6 [86], (Fig. 2).

The DNA-binding domain forms complexes between STAT pro-
teins and DNA and determines the DNA-binding specificity for each
STAT protein [87]. In this domain, a region of beta-sheet structures
is connected by unstructured loops. The DNA-binding domain adopts
an immunoglobulin-fold structure, and binds to DNA as a dimer. It is
also involved in nuclear translocation, probably by maintaining prop-
er conformation for importin binding and to exportin when STAT is
dephosphorylated and exiting the nucleus [88]. A linker domain
from ~500–575 is α-helical followed by a classical -SH2 domain
[89]. Domain SH2, sited in the region between the amino acid resi-
dues 600 and 700, is essential for the recruitment of STATs to phos-
phorylated receptors and for the dimerization between two
activated STAT monomers through reciprocal phospho-tyrosine
(pTyr)-SH2-domain interactions between monomeric STATs to form
dimers [89]. The differences in the STAT SH2 domain bring about se-
lectivity of the STAT protein-binding to the different cytokine recep-
tors [20], which in turn appear to be critical for nuclear localization
and DNA-binding activities. Thus, it is critical for the recruitment of
STATs to the activated receptor complexes and is also required for
the interaction with JAK and Src kinases. It is also possible that this
domain participates in other protein–protein interactions that have
not yet been fully deciphered [89]. The Src homology 2 (SH2)
domain-containing protein tyrosine phosphatase, SHP-2, interacts
with many proteins by recognizing the tyrosine-phosphorylated Y
(I/V)X(L/V/I) motifs through its amino-terminal SH2 domain [90].

The C-terminal portion of the protein, which functions as the tran-
scriptional activation domain (TAD), is natively unfolded and forms
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structure only upon binding with interacting partners and is involved
in communication with transcriptional complexes [89]. Immediately
downstream of the SH2 domain, in position 705, is a tyrosine residue,
which plays a critical role in STAT activation [20]. Three-dimensional
structure of the Stat3β homodimer bound to DNA. Phosphorylation of
this tyrosine appears to be achieved by growth factor receptors as
well as JAK and Src kinases, depending on the nature of the cell
type and the ligand/receptor interactions [89]. This has been found
to be essential for the activation and dimerization of STATs. A con-
served serine in this STAT domain (apart from STAT2 and STAT6,
which have no such serine, is a phosphorylation site and regulates
STAT transcriptional activity [89]. STAT1 and 3, which have an altered
serine, have their transcriptional capacity reduced by 20% [91]. Struc-
tural determination of the transactivation domain is essential to un-
derstand its binding partners, which may provide crucial insight
into the regulation of this domain, and how it interacts with other
proteins in the transcriptional process.

4. Structure of JAK family proteins

JAKs phosphorylate STAT proteins when activated by signals from
interleukins and other cytokines. The unique structure of the JAKs
clearly separates them from other members of the protein tyrosine
kinase family [92], (Fig. 3). The most critical feature of these proteins
is the presence of two JAK homology (JH) domains, JH1 and JH2,
which share extensive homology to tyrosine kinase domains. JH1 do-
main is a functional tyrosine kinase domain but the JH2 domain,
lacks observable tyrosine kinase activity [93,94]. The SH2 domain
also contains JH3 and JH4 domains [95]. However, despite of the ho-
mology to SH2 sequences, these regions do not directly bind to
phosphotyrosine residues [96–98]. The JH6–JH7 domains comprise
the FERM domain, and the residues located in the JH7 domain medi-
ate binding to the box 1/proline-rich region of cytokine receptors
[93,99,100]. Moreover, this interaction between JAKs and cytokine
receptors can regulate receptor localization [101,102]. Specifically,
the surface expression of EPO receptors is regulated by the FERM do-
main of JAK2 [103] and both JAK2 and TYK2 have been shown to in-
hibit the proteasomal degradation of the thrombopoietin receptor
[99]. The selectivity of STAT activation by various ligands is deter-
mined mainly by the highly specific interactions between the SH2
domain and the phosphotyrosine residues on each receptor [94]. Al-
though JAK kinases have not been shown to have any substrate spec-
ificities, they do have different specific biological functions, as
demonstrated in vivo by gene targeting studies [104–106].

5. Src family of kinases (SFK)

Src comprises a family of 9 tyrosine kinases that regulate cellular
responses to extra-cellular stimuli [107]. SFKs have a critical role in
cell adhesion, invasion, proliferation, survival, and angiogenesis dur-
ing tumor development [35]. They share similar structure and func-
tion. Over expression or high activation of SFKs occurs frequently
in tumor tissues and they are central mediators in multiple signaling
JH-7 JH-6 JH-4 JH-5 JH-3 N

 Structure of Jan

FERM SH2
P

Fig. 3. Structural domains shown here are referred to as JAK homology regions (JH1-J
pseudotyrosine kinase (TK) domain and a catalytically active TK domain.
pathways that are important in oncogenesis [108]. SFKs can interact
with tyrosine kinase receptors, such as EGFR and the VEGF receptor.
The Src family of cytoplasmic non-receptor protein tyrosine kinaseswas
first discovered in the context of the transforming retroviral oncogene
v-src, which is responsible for the potent sarcoma-inducing activity of
the Rous sarcoma virus [109]. Src kinase is representative of the
non-receptor tyrosine kinases which are present in essentially all meta-
zoan cells,where their regulated activationbydiverse growth factor, cy-
tokine, adhesion, and antigen receptors is critical for generating an
appropriate cellular response to external stimuli [35,107]. The nine
members of the Src family include Src, Lck, Hck, Fyn, Blk, Lyn, Fgr, Yes
and Yrk. SFK proteins range in molecular mass from 52 to 62 kDa and
share a conserved domain structure consisting of consecutive SH4 do-
main, unique domain, SH3 domain, SH2–SH3 linker, SH2 domain, SH1
(catalytic domain), and Cterminal negative regulatory region. The
SH3 domain contributes to substrate recruitment [110,111] and is crit-
ical for the regulation of kinase activity [112–114], (Fig. 4). The SH3 do-
main can bind to proline rich peptide binding sites and thus is
important for protein–protein interactions. The SH2 domain also func-
tions in protein–protein interaction(s) by virtue of its affinity for
phosphotyrosine-containing peptide sequences [115,116]. All family
members also contain an SH4 membrane-targeting region at their
N-terminus, is always myristoylated and sometimes palmitoylated
prior to membrane localization [117,118]. The SH4 region is followed
by an ‘unique’ domain, which is the only non-conserved region within
the kinase family [119]. It contains 50–70 residues which are divergent
among familymembers and also contain a C-terminal regulatory region
[119]. The unique domain is followed by modular SH3 and SH2 do-
mains, a regulatory linker, the catalytic or kinase domain (SH1 domain),
and a C-terminal negative regulatory tail.
6. Activation of STAT3

STAT activation by phosphorylation is highly regulated and tran-
sient. Unphosphorylated STAT exists predominantly as dimers, with
a small fraction as monomers and higher-order complexes, which
shuttle continuously between the cytoplasm and nucleus in the latent
state [120]. In this “resting” state, there is also a small fraction of
STATs that is hypo-phosphorylated, with low level of serine, and thre-
onine phosphorylation. In this latent state, the STAT dimer was postu-
lated to be in the anti-parallel conformation in the cytoplasm as
inactive homodimers [121]. STAT signaling is critical for normal cellu-
lar processes such as embryonic development, organogenesis and
organ function, innate and adaptive immune function, regulation of
cell differentiation, growth, and apoptosis [122–127]. In normal
cells, STAT3 protein activation is strictly controlled to prevent
unscheduled gene regulation, while constitutive activation of STAT3
has been detected in a wide number of human cancer cell lines and
primary tumors, such as 50% of HCC, leukemias, lymphomas, multiple
myelomas, prostate, gastric, breast, lung, and head and neck cancer
[128–134].

Peak STAT3 phosphorylation occurs within 15–60 min of expo-
sure to cytokine, and even in the presence of continuous cytokine,
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STAT3 activation decreases over several hours [135]. This constitutive
activation of STAT3 is not due to mutations in STAT3 but occurs due to
deregulation of protein tyrosine kinases or constitutive release of
growth factors that activate STAT3 [136]. Binding of cytokines or
growth factors to their surface receptors resulted in rearrangement
of antiparallel unphosphorylated STAT dimers in the cytoplasm as
parallel unphosphorylated dimers [120]. The phosphorylation is me-
diated through the activation of non-receptor protein tyrosine ki-
nases called Janus-like kinase (JAK). JAK1, JAK2, JAK3, and tyrosine
protein kinase 2 have been implicated in the activation of STAT3
[137]. In addition, the role of c-Src kinase has been shown in STAT3
phosphorylation [138].

When IL-6 binds to its specific receptor subunit, it can induce di-
merization of gp130 receptor and activation of the gp130-associated
JAK [52,139]. The critical role of JAKs in cytokine signaling is evident
by the inherited immune-deficiencies caused by mutations that pre-
vent receptor-JAK interactions or the kinase activity of the JAKs [38].
JAKs can either bind to intracellular domains of cytokine receptor sig-
naling chains or catalyze ligand-induced phosphorylation of intracel-
lular tyrosine residues on the receptor [140]. The JAKs in turn
phosphorylate the specific tyrosines in the intracellular domain of
gp130, providing docking sites for the Src homology 2 (SH2) domain
of signaling molecules of STAT3. Phosphorylation of STAT3 has been
shown to occur both at the tyrosine 705 (Y705) and at the serine
727 (S727) residue on their cytoplasmic tail [141]. Homo- or
heterodimerization of STATs are achieved via reciprocal binding of
this critical pTyr of one monomer and SH2 domain of the partner
dimer [52]. Activated STAT dimers can translocate into the nucleus
and bind to specific elements [52]. STAT homodimers bind to mem-
bers of the IFN-γ activated sequences (GAS) family of enhancers
(TTCNNNGAA). Most STAT dimers recognize an 8- to 10-base pair
inverted repeat DNA element with a consensus sequence of 5-TT(N)
AA-3. The observed variation in the binding affinity of a particular ac-
tivated STAT dimer for a single target DNA sequence is determined by
differences in the nucleotide sequence [140]. Other known STAT
modifications include arginine methylation, ubiquitination and
sumoylation covalent modifications [142].

Unlike other STATs, such as STAT1 and STAT2, which accumulate
in the nucleus only after phosphorylation, STAT3 can enter the nucle-
us independent of its phosphorylation. Activated STATs shuttle more
rapidly than non-activated ones [143,144]. Direct interaction of
unphosphorylated STATswith the nuclear pore proteins (nucleoporins)
Nup153 and Nup214 allows carrier-independent nuclear translocation.
Nuclear translocation of activated STATs ismediated by the karyopherin
family of transport proteins called importins or exportins depending on
their movement direction [121]. Cytokine-induced nuclear import in-
volves binding to importin and following inactivation, the nuclear ex-
port of STATs involves a CRM1 (chromosome region maintenance 1)/
exportin1-dependent process [88]. Specific sequence motifs on the
surface of STATs, known as nuclear localization signals and nuclear
export signals, allow STAT-importin and STAT-exportin interactions
[88]. Additionally, specific adaptor molecules, the importin family,
are involved in STAT–importin interaction. Distinct importin sub-
types determine trafficking of different STATs. STAT activation with
nuclear accumulation terminates within minutes [145,146]. Recent-
ly, nucleocytoplasmic shuttling of STAT3 was shown by fluorescence
localization, after photobleaching (FLAP), to be a dynamic process
that involves constitutive shuttling of unstimulated STAT3 in the ab-
sence of cytokine stimulation [144]. Both import and export signals
contribute to the balanced shuttling and IL-6 induction reduces the
nuclear export signal, resulting in nuclear accumulation of STAT3.
Nuclear STAT3 can then bind to specific promoter elements on DNA
and activate target gene transcription [139]. Extensive research in
the past decades have shown that STATs can control cell growth
and differentiation and unraveled many structural features, regula-
tory mechanisms and functions, and are involved in the regulation
of the cells of the immune system and in development of organs
and tissues. Most importantly STATs are activated in pathological
states such as inflammation and cancer.

7. Functions of STAT3

The functions of STAT3 have been more difficult to define from
knockout mice studies as the embryos die early in embryogenesis
[147]. In fact, loss of STAT3 is lethal even to embryonic stem cells
[148] indicating a key role for STAT3 in cell growth and/or survival.
Also, by 7.5 days post-coitum, STAT3mRNA is substantially expressed
in the extra embryonic visceral endoderm, which is the principal site
of nutrient exchange between the maternal and embryonic environ-
ments [148,149]. STAT3 signaling also seems to play important roles
in several liver functions. Conditional knock-out of STAT3 expression
partially impairs liver regeneration [150] whereas tissue-specific
knock-out of hepatic STAT3 was found to affect glucose homeostasis
and induction of insulin resistance [151]. In addition to being associ-
ated with cell growth, STAT3 activation has been found to be critical
for differentiation of keratinocytes [152], and myeloid cells [153],
and plays an important role in mediating the formation of epithelial
tubules in response to hepatocyte growth factor [154]. Selective loss
of STAT3 in keratinocytes results in impaired wound healing, and
skin-specific STAT3-transgenic mice develop psoriasis [155]. In-vitro
studies on keratinocytes have shown that STAT3 plays an important
role in the migration of epidermal cells, and is essential for skin ren-
ovation [156].

STAT3 is also involved in the involution of the post-lactating mam-
mary gland [157]. This is an apoptotic process involving the epithelial
cells and results from an increased level of the insulin-like growth factor
binding protein-5 (IGFBP5) [87,91,158]. Selective targeting of the
STAT3b isoform was reported and mice exhibit diminished recovery
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from endotoxic shock and hyper-responsiveness of some endotoxin-
inducible genes in liver. This is the first in vivo evidence that STAT
isoforms have essential in vivo functions [159]. Whether other STATs
have similar cytoplasmic function is yet to be determined. In addition,
the functions of STATs in other cytosolic compartments are obscure.
The non-canonical regulation and function of non-phosphorylated
STATs is certainly an exciting new area of research interest.

8. Negative regulators of STAT3

In normal cells, the extent and duration of STAT activation is con-
trolled by a variety of mechanisms. These include feedback inhibition
of the JAK/STAT pathway by suppressor of cytokine signaling proteins
(SOCS) 1 and 3 or cytokine-inducible SH2-containing (CIS) protein
through inhibition and/or degradation of JAKs, dephosphorylation of
the receptor complex or nuclear STAT dimers by protein tyrosine
phosphatases (PTPases) and interaction of activated STATs with in-
hibitory molecules from the protein inhibitors of activated STAT
(PIAS) family [160–162]. Other physiological negative protein modu-
lators of the STAT3 signaling pathway also involving negative regula-
tion include the JAK binding protein (JAB) and STAT-induced STAT
inhibitor [163].

Cytokine-inducible SH2-containing (CIS) protein, the first member
of the SOCS family, was originally identified in 1995 as a
cytokine-inducible early gene [164]. The most intensively studied
group of negative regulators is the SOCS proteins [165]. Because of
their Src homology 2 domains, this family of eight cytokine-inducible
proteins (SOCS1–SOCS7 and CIS) binds phosphorylated receptors and/
or JAKs and thereby interferes with signaling. The second member of
the SOCS family, SOCS-1 (or JAK-binding protein, JAB; STAT-induced
STAT inhibitor-1, SSI-1) was independently identified in 1997 by three
different groups [166–168]. JAB was identified using a yeast
two-hybrid system as a protein that bound the catalytic domain of
JAK2 [167]. SSI-1 was identified as a STAT-inducible inhibitor using a
monoclonal antibody to the sequence motif of the STAT3 SH2 domain
[168]. SOCS-1, -2, and -3 were cloned as inhibitors of IL-6 signaling
using the murine monocytic leukemic M1 cell line [166].

SOCS, also known as STAT-induced STAT inhibitor (SSI) protein
family comprises several members including SOCS1, SOCS2 and
SOCS3 which are encoded by genes located in 16p13.13, 12q,
17q25.3, respectively [164,169]. SOCS proteins have a variable
NH2-terminal domain, a central SH2 domain, and a COOH-terminal
domain, termed SOCS-box motif [170–172]. The SOCS box is a se-
quence of 40 amino acids that is conserved throughout the SOCS fam-
ily. The SOCS box is thought to influence the stability of SOCS proteins
[173–175]. The SOCS box appears to mediate interactions with
Elongins B and C, which may target proteins for proteasomal degrada-
tion [175]. SOCS proteins are induced by cytokines and act in a nega-
tive feedback loop to inhibit the receptor. The SH2 domain of SOCS
proteins is able to interact with a specific phosphorylated tyrosine
residue in the kinase inhibitory region of JAK molecules with high af-
finity, resulting in the inhibition of STAT phosphorylation. Another
domain in SOCS proteins interacts with elongins B and C, and couples
the SH2 domain-binding proteins to the ubiquitin–proteasome path-
way [175–177]. COOH-terminal domain SOCS box is responsible for
the recruitment of the ubiquitin transferase complex. SOCS1 inhibits
JAK activation through its N-terminal kinase inhibitory region (KIR)
by direct binding to the activation loop of JAKs, while SOCS3
inhibits JAK kinase by binding to the cytokine receptor through its
SH2 domain [174,176].

Among the eight members of the SOCS family, SOCS-1 and SOCS-3
appear to be relevant to several aspects of hepatic pathobiology. For
example, SOCS-3 is up-regulated 40-fold 2 h after partial hepatecto-
my in mice [178]. It has been reported that SOCS-1 and SOCS-3, neg-
ative regulators of the JAK2-STAT signaling pathway, are silenced by
methylation in human hepatoma cell lines and HCC tissues, which
leads to constitutive activation of STAT3 in these cells [179,180].
Downregulation of the SOCS-1 may be a crucial event in the
hepato-carcinogenic process leading to formation of HCC. Additional-
ly, the results of several studies have shown that forced expression of
SOCS1 prevents liver injury [181] and inhibits the abnormal growth of
HCC cells [179,182].

The protein inhibitors of activated STATs (PIAS) family of proteins
are a negative regulator of STAT-mediated gene transcription
[183,184]. The four family members, including alternatively spliced
isoforms, have various names that reflect how they were identified:
PIAS1 (Gu-binding protein (GBP), PIAS3, PIAS3ß (potassium channel–
associated protein (KchaP), PIASxa (androgen receptor–interacting
protein 3 (ARIP3), PIASxß (Msx-interacting zinc finger protein 1
(Miz1) and PIASy. A Drosophila PIAS homolog, dPIAS (or Zimp), that
negatively regulates the JAK-STAT pathway also exists [183]. PIAS pro-
teins contain a SAP (SAF-A/B, Acinus and PIAS) domain, a ring-finger
domain and C-terminal serine/threonine rich domain. Although PIAS
proteins inhibit STAT mediated gene activation, they inhibit distinct
STAT proteins by different modes. For example, PIAS3 inhibits STAT3
and STAT5, whereas PIAS1 blocks STAT1-dependent signaling [185]
and directly inhibits STAT-DNA binding activity and recruits other tran-
scriptional co-repressors such as histone deacetylases (HDACs). Fur-
thermore, they have small ubiquitin related modifier (SUMO) E3
ligase activity [183]. Upon cytokine stimulation, PIAS-1 and PIAS-3
bind activated STAT1 and -3, respectively, and prevent their ability to
bind to DNA [184].

Phosphatases are reported to be involved in regulating JAKs and
STATs. Numerous PTPs have been implicated in STAT3 signaling includ-
ing SHP1, SH-PTP2, TC-PTP, PTEN, PTP-1D, CD45, PTP-e, LMW, and PTP
[186]. Cytosolic and membrane-bound phosphatases inhibit JAKs,
whereas nuclear phosphatases terminate STAT signaling. Three types
of PTPs have been shown to negatively regulate JAK–STAT pathways.
The first phosphatases that demonstrated a regulatory role in this path-
way are the SH2-containing phosphatases. SHP1 is implicated in the
negative regulation of JAK/STAT signaling pathways [187] and it has
been found that loss of SHP1 may contribute to the activation of JAK
or STAT proteins in cancer [188]. The second phosphatase that negative-
ly regulates JAK–STAT signaling is the transmembrane PTPase CD45,
which is highly expressed in all hematopoietic lineages at all stages of
development and is a key regulator of antigen receptor signaling in T
and B cells [90]. Although Src family kinases were identified as primary
molecular targets for CD45, targeted disruption of the CD45 gene leads
to enhanced cytokine and IFN receptor-mediated activation of JAKs and
STAT proteins. Two PTPases, SHP-1 and SHP-2, as well as a protein
serine/threonine phosphatase, PP2A, are also strongly implicated in
STAT signaling, including STAT1, STAT3 and STAT5 [188]. This suggests
that loss of SHP1 is linked to constitutive high levels of activated STAT3.
However, it is not clear whether or not the upregulation of SOCS-1, CIS,
and PIAS3 can act as a compensatorymechanism to constitutively active
STAT3.

9. Role of STAT3 in oncogenic transformation

Constitutive activation of STAT3 is involved in many cellular pro-
cesses including cell growth, survival, metastasis, angiogenesis, and im-
mune suppression, all of which favor HCC initiation and progression
[189]. A critical role for STAT3 in malignant transformation was first
proposed after initial studies showed that STAT3 is constitutively acti-
vated during v-Src transformation. STAT3 signaling is required for onco-
genic transformation by v-Src [108,190–192]. Blocking of STAT3 DNA
binding with antisense oligonucleotides or a dominant-negative
STAT3 protein, further established the critical role of STAT3 in oncogen-
esis [128,193,194]. In all cases, inhibition of persistent STAT3 signaling
suppressed the transformed phenotype and tumor progression. Consti-
tutive activation of STAT3 has been frequently detected in clinical inci-
dences of HCC and in more than 50% of human HCC cell lines but not
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in normal or non-transformed liver cells [179,180,195]. For example,
STAT3 was found to be over expressed in proteomemicroarray analysis
of primary HCC [196]. Its phosphorylationwas highly positive in immu-
nohistochemical analysis of HCC biopsies [197] while increased STAT3
DNA binding activity was observed in chemically-induced HCC [198].
This is surprising, since rapid activation of the STAT3 transcriptional
complex has been reported in the regenerating liver following partial
hepatectomy [199]. Also, STAT3 antisense oligonucleotide has been
reported to significantly reduce the amount of STAT3 protein and inhib-
it cell proliferation and tumorigenic growth of several human HCC cell
lines transplanted into mice [195]. Activating mutations in the gene
encoding the gp130 signaling subunit of IL-6 receptor family members
have been identified in benign hepatic adenomas [200]. Elevated
STAT3 and p705 STAT3 expression in HCC tissue has also been reported
[120]. Recent data also indicate an association of pSTAT3with the histo-
logical grade of HCC tissue from 67 patients [201]. When anti-cancer
small molecule S3I-201 was administered at a dose of 5 mg/kg every
other day to xenografts of the human HCC cell line HUH-7, it was
found that S3I-201 inhibited STAT3 tyrosine phosphorylation and
tumor growth [6]. The amelioration of the malignant behaviors of
HCCLM3 following orthotopic implantation, included impeded migra-
tion, hampered neovascularization, inhibited local metastasis, and re-
duced lung metastasis, indicating that STAT3 also mediates the
metastatic potential of HCCLM3, a highly malignant variant of HCC
[195].

STAT3 can also act as a stem cell renewal factor, and hyperactive
STAT3 signaling results in enhanced liver progenitor cell proliferation
[202]. In addition, over-expression of a constitutively active form of
STAT3 in immortalized rat or mouse fibroblasts induced tumors in
nudemice [203]. Owing to its role inmodulating stem cell survival, pro-
liferation and transformation, STAT3 is thought to be critical for cancer
stem cell survival in some tissues [204]. Studies from STAT3-deficient
mice (STAT3Δhep) were found to exhibit more than a 6-fold reduction
in HCC load relative to STAT3F/F mice [46]. Furthermore, tumors in
STAT3 mice were smaller, suggesting that STAT3 may play a role in
HCC cell proliferation and/or survival. Deletion of STAT3 in cultured
STAT3F/F dih cells, accomplished by infecting the cells with a
Cre-expressing adenovirus, resulted in cell death, suggesting that acti-
vated STAT3 is required for the survival of HCC cells. Although cells
that are completely STAT3-deficient cannot survive, cells with a partial
reduction of STAT3 expression, accomplished by shRNA transduction
are viable, but exhibit a senescent phenotype and fail to form subcuta-
neous tumors upon transplantation [205].

One can conclude from the above reports that STAT3 indeed plays
a major role in HCC initiation and development. As compelling data
continue to accumulate, STAT3 has become an attractive molecular
target both for the prevention and treatment of HCC and various
pharmacological inhibitors derived from synthetic and natural
sources have been employed to target aberrant STAT3 activation in
HCC (Table 1). While safety remains a point of concern, given the
fact that STAT3-null mice are embryonically lethal, tissue-specific
STAT3 deletion experiments have indicated that STAT3 may not be
essential for the survival of normal differentiated cells. These results
provide further evidence that it may be safe to target STAT3 for HCC
therapy [206].

10. Role of STAT3 in inflammation

Various published studies indicate the potential role of HCC as a
pro-inflammatory transcription factor in HCC and other malignancies
[207]. STAT3 was initially discovered as an acute-phase response pro-
tein, thus suggesting its casual link to inflammation [51]. IL-6 is one of
the major mediators of inflammation and primarily exerts its effects
through the activation of the STAT3 pathway [52]. Also, in various tu-
mors, STAT3 can directly interact with nuclear factor NF-κB family
member RELA, trapping it in the nucleus and thereby contributing
to constitutive NF-κB activation in cancer [208]. STAT3 has also
been shown to increase NF-κB activity in cancer cells while persistent
activation of STAT3 in tumors, especially in immune cells of the tumor
microenvironment, is dependent on NF-κB. This reciprocal relation-
ship with RELA stems from the fact that several cytokines and growth
factors encoded by RELA target genes such as IL-6 are STAT3 activa-
tors in HCC [206].

Another elegant study by Nadiminty et al. showed that active but
not latent STAT3 induces p100 processing to p52 through the activa-
tion of IKK and that the subsequent phosphorylation of p100 indi-
cates the diverse targets of STAT3 and may show the use of multiple
pathways by cancer cells to survive and escape therapy [209]. The
processing of p100 to p52 is a tightly controlled event in many cells
and tissues. Constitutive processing of p100 protein resulting in the
over expression of p52 leads to lymphocyte hyperplasia and transfor-
mation [179]. The p65 subunit of NF-κB has been shown to interact
with STAT3 [205,210]. Also, some of the target genes for NF-κB and
STAT3 overlap and in addition, the two transcription factors are en-
gaged in both positive and negative cross-talk [210]. In mouse DEN
model, DEN-induced hepatocyte death results in release of IL-1α
which in turn can activate NF-κB signaling in Kupffer cells, and pro-
duce a panel of cytokines and growth factors, including IL-6 [211].
IL-6 released by Kupffer cells activates STAT3 in hepatocytes and
STAT3-activated genes are critical for compensatory hepatocyte pro-
liferation and liver tumorigenesis [60,205].

There are also few reports in literature that have analyzed the po-
tential cross talk between STAT3 and Wnt/β-catenin signaling path-
ways in HCC. Wang et al. by using Hepatitis B virus X (HBx)
transgenic mice and a 3,5-diethoxycarbonyl-1,4-dihydrocollidine
(DDC)-induced liver injury model, the relationship between HBx ex-
pression and tumorigenicity of hepatic progenitor cells (HPCs) was
analyzed. All HBx transgenic mice developed liver tumors character-
ized by histological features of both HCC and cholangiocarcinoma
after 7 months of DDC feeding. They also found higher titers of circu-
lating IL-6, activities of IL-6/STAT3, and Wnt/β-catenin signaling
pathways in HBx transgenic mice, suggesting HBx may induce intrin-
sic changes in HPCs by way of the above signaling cascades that may
enable HPCs with tumorigenicity potential [212]. In another study,
while evaluating the role of Wnt/β-catenin signaling cascade in HCC
development, Wang and coworkers found that transfection with
β-catenin siRNA in HepG2 cells effectively knocked down β-catenin
mRNA and protein expression levels and also suppressed tumor cell
proliferation. Flow cytometry assay showed that tumor cells were
arrested at the G0/G1 phase of the cell cycles. However, there no
change was observed between the expression of STAT3 and the
HSP27 protein following transfection [213]. Also, recent studies have in-
dicated that a number of signaling cascades including STAT3 and Wnt/
β-catenin pathways may play an important role in the development
of hepatic cancer stem cells [214]. For example, in order to understand
the role of Oct4 in HCC and the relationship among Oct4 and Wnt/
β-catenin and TGF-β signal pathways, Yuan and coworkers detected
the expression of Oct4, Nanog, Sox2, STAT3 as well as the genes in
Wnt/β-catenin, and TGF-β families in HCC cell lines and in tumor spec-
imens from HCC patients. They observed that both HCC cell lines and
HCC samples from patients express more than one key modulator in
embryonic development such as Oct4, Nanog, Sox2, and STAT3 together
with the genes in Wnt/β-catenin and TGF-β families. Knocking down
Oct4 reduced the expression of TGF-β family genesWnt/β-catenin fam-
ily genes, as well as STAT3 [215]. Overall, the exact crosstalk between
STAT3 and Wnt/β-catenin signaling cascades in HCC requires further
investigation.

11. Role of STAT3 in regulation of apoptosis

Constitutively activated STAT3 is found to participate in oncogen-
esis of the liver through up-regulation of STAT3-targeted genes



Table 1
Selective list of pharmacological STAT3 inhibitors in HCC.

Natural/synthetic Inhibitors Mechanism of inhibition Cell lines Reference

Celecoxib Inhibits JAK2 phosphorylation Hep3B, HepG2, HUH-7, SNU-387 and SNU-449 [254]
Parthenolide along with TRAIL Inhibits activation of JAK proteins HepG2, Hep3B and SK-Hep1 [272]
Galiellalactone STAT3 inhibitory effect by covalently modifying a cysteine

residue in the STAT3 DNA-binding domain
HepG2 [273]

XZH-5 Reduced constitutive STAT3 phosphorylation at Tyr705 and
the expression of STAT3-regulated genes.

Hep3B, HepG2, HUH-7, SNU-387 and SNU-449 [255]

SD-1029 Inhibits JAK/STAT3 pathway Hep3B, SNU398, SNU-387, HepG2 and HUH-7 [274]
Sorafenib SHP-1-dependent STAT3 inactivation. PLC/PRF5, HUH-7, Hep3B and SK-Hep1 [275]
Soreafenib in combination with TRAIL Upregulates SHP-1 activity PLC/PRF5, HUH-7, Hep3B and Sk-Hep1 [276]
CADPE Inhibits both IL-6-mediated STAT3 activation and recruitment

of STAT3 to the cyclin D1 promoter.
HUH-7 [277]

FLL32 JAK/STAT inhibitor inhibits STAT3 phosphorylation, DNA
binding activities, and STAT3-regulated gene products.

SNU-449, SNU-398, HEp3B and SNU387 [256]

Diosgenin Induces the expression of Src homology 2 phosphatase 2
(SH-PTP2) that correlate with down-regulation of
constitutive STAT3 activation

HepG2, C3A [259]

Butein Inhibits activation of upstream kinases c-Src, JAK2 and
induces the expression of SHP-1

HepG2, SNU-387, HCCLM3 and PLC/PRF5 [261]

γ-tocotrienol Increases the expression of SHP-1 in HCC cells HepG2 and HUH-7 [262]
β-escin Inhibits activation of upstream kinases c-Src, JAK1, and JAK2. HepG2, HUH-7, PLC/PRF5 [260]
NSC 74859 TGF-β signaling HepG2, PLC/PRF/5, HUH-7, SNU-398,SNU-449,

SNU-182 and SNU-475
[6]

17-Hydroxy-jolkinolide B (HJB) HJB reacts with cysteine residues of JAKs to form covalent
bonds that inactivate JAKs.

HepG2 [278]

ENMD-1198 Inhibits STAT3 phosphorylation HUH-7 and HepG2 [257]
AG490 Janus kinase 2 specific inhibitor HUH-1, HUH-7, HepG2 and Hep3B [224]
IL-6-RFP A high affinity cytokine-binding protein HepG2 [279]
YC-1 Inhibits STAT3 activity by enhancing the polyubiquitination

of p-STAT3(705) induced by cisplatin
HepG2, Hep3B and PLC/PRF/5 [280]

Atiprimod Suppresses STAT3-mediated through the inhibition of
activation of upstream kinases c-Src, JAK1 and JAK2

HUH-7 and HepG2 [281]

Antisense oligonucleotide Suppression of phosphorylated STAT3 reduced its
DNA-binding activity

HCCLM3, SNU423, HUH-7 and HCCLM3 [195]

Stattic Inhibit SH2 domain, STAT3 dimerization and DNA binding. HepG2 [271]
Luteolin Accelerated ubiquitin-dependent degradation in the

Tyr705-phosphorylated STAT3
HepG2, HLF and HAK-1B [282]

Statins Statins reduced IL-6-induced serine phosphorylation of STAT3. Hep3B [283]
2-(1-chloropropenyl)-4,
5-dihydroxy-cyclopent-2-enone

Suppresses IL-6-dependent pathway by inhibiting the
tyrosine phosphorylation of STAT3 as well as the serine
phosphorylation of the STAT3 by direct inhibition of JAK.

HepG2 [270]
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encoding apoptosis inhibitors, e.g., Bcl-2, Bcl-xL, and survivin, Mcl-1,
XIAP, and subsequently inhibiting pro-apoptotic molecules such as
Bax, Bad and Bid [81,189]. For example, STAT3 activation can support
tumor cell survival through up-regulating the expression of the
Bcl-xL. In fact, Bcl-xL was the first antiapoptotic factor shown to be
regulated by STAT3 [216,217]. Mcl-1 is another anti-apoptotic gene
of the Bcl-2 family that is a target of both STAT3 and STAT5. Blocking
either of these STAT proteins in human tumor cells has been shown to
downregulate Mcl-1 expression and can induces apoptosis [218].

Of all inhibitor of apoptosis (IAP), X-linked inhibitor of apoptosis
(XIAP) is a principal inhibitor of apoptosis through its ability to inhibit
caspase-3 and caspase-7, particularly in HCC cells. XIAP is constitutively
expressed in all HCC cell lines and in approximately 70% of HCC tissue
[219], whereas little or no expression is seen in chronic hepatitis or cir-
rhotic tissue [220]. Among the members of the IAP family, survivin is
particularly highly expressed in various types of human cancers, includ-
ingHCC [132,221]. Survivin is expressed at high levels in HCC and is reg-
ulated by STAT3 [222,223]. In vitro and in vivo investigations have also
revealed that the application of STAT3 decoy ODN of the sequence of
5′CATTTCCCGTAAATC-3′ can significantly block STAT3-dependent tran-
scription of such genes as cyclin D1, c-Myc, Bcl-xL, and survivin, leading
to reduced proliferation and induction of apoptosis in HCC cells [224].

12. Role of STAT3 in cell cycle progression

The expression of cyclin D1, which can associate with cdk4 or
cdk6 and controls progression from G1 to S phase, is elevated in
STAT3-C expressing cells [203]. Previous studies have also indicated a
role for STAT3 in the G1 to S phase transition,mediated by the gp130 re-
ceptor subunit. Since STAT3-C possesses oncogenic potential, it is possi-
ble that STAT3-mediated transcriptional regulation of key components
of cell cycle control contributes to malignant progression by promoting
inappropriate cell cycle traversal [120]. Interestingly, at the peak of S
phase, which is approximately 40 h post-hepatectomy in mouse livers,
the percentage of hepatocytes undergoing DNA synthesis is 5-fold
lower in IL-6−/− livers than IL-6+/+ livers, whereas the difference
between the Alb+and Alb- STAT3 fl/fl livers is smaller at about 3-fold
[150]. Thus the regulation of cyclin D1 expression is critical for the pro-
liferation and differentiation of hepatocytes. Recent studies have indi-
cated that inappropriate expression of cell cycle-related proteins, such
as cyclin D1, cyclin-dependent kinase 4 (Cdk4), cyclin E, cyclin A, p16
and p27, as one of the major factors contributing to HCC initiation and
development [225–227]. Moreover, Cressman et al. found that
IL-6-deficient mice exhibit defects in STAT3 activation and in cyclin
D1 induction after partial hepatectomy [63]. Therefore, it is likely that
STAT3 can act as a potential negative regulator of cyclinD1 transcription
during fetal liver development, whereas it positively regulates cyclin D1
expression in hepatoma cells and at the initial phase of liver regenera-
tion. These findings clearly indicate that cyclin D1 gene is an important
target of STAT3 in hepatocytes and that its regulation by STAT3 varies,
depending on the cell stage, i.e. proliferation or differentiation.

13. Role of STAT3 in angiogenesis

Angiogenesis, considered as one of the ten hallmarks of cancer is
required not only for tumor growth at primary sites but also for
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continued tumor growth at metastatic sites [228]. During organogen-
esis, all cells in a tissue must reside within close proximity of a capil-
lary [229]. Similarly, most tumors cannot sustain their growth unless
they are supplied with oxygen and nutrients from newly formed
blood vessels, and a crucial role of activated oncogene products in
stimulating angiogenesis has been established [230]. The most potent
angiogenesis-inducing signal identified so far is vascular endothelial
growth factor (VEGF) [231–235]. Compared with their normal coun-
terparts, cancer cells produce increased levels of VEGF, which binds
to transmembrane receptor tyrosine kinases of endothelial cells
[230]. This activates endothelial-cell migration and proliferation,
which is necessary for the formation of new blood vessels [230,231].
Activated STAT3 affects tumor angiogenesis by regulating the expres-
sion of multiple pro-angiogenic molecules in tumor cells and by par-
ticipating in the signal transduction of angiogenic molecule receptors
in tumor endothelial cells. Hepatocellular cancer is notable for its
highly aggressive behavior, hypervascularity, portal and hepatic vein
invasion and metastasis [236–238]. Aberrant VEGF expression is a
prominent clinical feature in HCC and may correlate with HCC
tumor invasion and metastasis [239]. It has been observed that
STAT3 can also regulate the expression of other angiogenic molecules,
such as basic FGF (bFGF) [133] which participates in angiogenesis by
inducing themigration, proliferation, and differentiation of endothe-
lial cells and by regulating VEGF expression in tumor cells in an auto-
crine and paracrine fashion [240]. It is widely believed that the
ability of PDGFs to induce liver fibrosis and neoplastic cell transfor-
mation is closely associated with the transcriptional induction of
TGFβ, an essential mediator of fibrogenesis [241,242]. TGFβ and
PDGFs act through activation of STAT3 [75,76] leading to the
upregulation of genes promoting cell proliferation, survival, and
cell transformation [77]. The role of TGFβ and PDGF pathways in
the induction of liver fibrosis and cirrhosis, and putative contributing
events to the neoplastic transformation of hepatocytes [243–246] is
well established. In addition, STAT3 also regulates the transcription
of VEGF indirectly by controlling the expression of hypoxia-
inducible factor (HIF)-1, a key inducible transcription factor for the
VEGF gene [84].

14. Role of STAT3 in cellular invasion

Recent studies have linked STAT3 to metastatic progression of
liver cancer [195]. Contribution of STAT3 to metastatic progression
of liver cancers occurs through a variety of molecular mechanisms
[53]. For example, STAT3 activation regulates the expression of ma-
trix metalloproteinases MMP-2 and MMP-1, which then mediate
tumor invasion and metastasis [133]. Moreover, a number of studies
using mouse embryo fibroblasts as the model system established
STAT3 as a component of the Rho GTPase-signaling cascade and an
effector of cell migration via regulation of actin cytoskeleton
[247–250]. Recent results from gene profiling analysis indicate that
the expression signature of primary HCC is very similar to that of
its corresponding metastases, suggesting that transcriptional
changes which control metastatic progression are initiated in the
primary tumors [251]. STAT3 however, is also known to upregulate
tissue inhibitors of metalloproteinase TIMP-1, a cytokine known to
block metalloproteinases and decrease invasiveness in certain can-
cer cell types [252]. STAT3 also controls the expression of the
MUC1 gene, which can mediate tumor invasion [253]. Interestingly,
the malignant development of HCCLM3 tumors orthotopically
implanted in athymic mice prior was effectively inhibited, including
inhibition of tumor growth, local transmission, and lung metastasis,
resulting in significantly prolonged survival time upon treatment
with STAT3 antisense oligonucleotide [195]. Thus, it is clear that
STAT3 signaling plays a key role in HCC invasion and metastasis,
and that targeting STAT3 may have therapeutic benefit for patients
with primary or recurrent HCC.
15. Pharmacological inhibition of STAT3 activation pathway
in HCC

Numerous studies as described above have validated the critical
role of aberrant STAT3 activity in malignant transformation and
tumor progression in HCC [65,254–256]. Since constitutive activation
of STAT3 has also been reported in a number of hematological neopla-
sias, as well as in solid tumors other than HCC, STAT3 protein has
emerged as a promising molecular target for the treatment of cancer
[257]. Natural agents, peptides, platinum compounds and other small
molecules have been used to inhibit STAT3 activity in various tumor
models including HCC [258]. Our group has identified number of
STAT3 inhibitors including diosgenin, β-escin, γ-tocotrienol, butein,
honokiol, and celastrol that can suppress growth and induce apopto-
sis in diverse HCC cell lines [259–264]. In addition, Chen and co-
workers recently reported that a novel obatoclax derivative,
SC-2001, can induce apoptosis in hepatocellular carcinoma cells
through SHP-1-dependent STAT3 inactivation [265]. Sorafenib has al-
ready been reported to inhibit both the growth and metastasis of HCC
by blocking STAT3 activation [266].

Moreover, another multikinase inhibitor Dovitinib has been found to
induce apoptosis and overcome sorafenib resistance in HCC through
SHP-1-mediated inhibition of STAT3 [267]. Additionally, STAT3 inhibitor
NSC74859 has been found to be greatly effective in HCC with disrupted
TGF-β signaling [6]. Also, oligonucleotide-based decoys of the STAT3
DNA-binding sequence have already entered clinical trials [268].

Furthermore, as discussed above, tumorigenesis induced by IL-6
has also been linked to constitutive or aberrant activation of STAT3
in various cancers, including HCC [65,81,256,269]. Thus, molecules
which inhibit IL-6 or GP-130 receptor may act as good target for inhi-
bition of STAT3 mediated tumorigenesis [65]. The necessity of an in-
tact SH2 domain for optimal STAT3 activation also makes it a
rational target for the disruption of STAT3 signaling [221]. Targeting
the SH2 domain would uncouple STAT3 from the growth and survival
signaling pathways and is a reasonable approach for the development
of anticancer agents [270,271]. Also, targeting the upstream mole-
cules of STAT3 such as JAKs and Src kinases can also be used as a strat-
egy to block STAT3 activation [254,271]. However, ideal STAT3
inhibitors should not affect activation of other STAT proteins and
should exhibit minimal side effects. Various natural and synthetic in-
hibitors of STAT3 targeting aberrant proliferation in HCC are de-
scribed in Table 1.

16. Conclusions

A variety of animal models have been used to study the role of
STAT3 signaling cascades in HCC development. In addition, most of
our mechanistic understanding of STAT3 pathway in HCC comes
from studies using cell type-specific knockout mice. STAT3 in these
mice is knocked out only in specific cell types and remains functional
in most other cell types. Thus, the results obtained may not precisely
predict the effect of inhibitors that interfere with the activity of this
transcription factors in cells that remain unaffected in knockout
mice. Hence, the knowledge gained about STAT3 in HCC will depend
on solutions to these potential problems. The current literature clear-
ly indicates that STAT3 activation plays a major role in oncogenesis
and that the suppression of STAT3 activation will pave the way for
more effective treatment of HCC in near future. However, appropriate
human studies are required to validate the promising results obtained
in mice and move the STAT3 inhibitors from the bench side to the bed
for the treatment of HCC patients.
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