Skip to main content

Imaging Techniques in Pharmacological Precision Medicine

  • Chapter
  • First Online:
Precision Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 280))

Abstract

Biomedical imaging is a powerful tool for medical diagnostics and personalized medicines. Examples of commonly used imaging modalities include Positron Emission Tomography (PET), Ultrasound (US), Single Photon Emission Computed Tomography (SPECT), and hybrid imaging. By combining these modalities, scientists can gain a comprehensive view and better understand physiology and pathology at the preclinical, clinical, and multiscale levels. This can aid in the accuracy of medical diagnoses and treatment decisions. Moreover, biomedical imaging allows for evaluating the metabolic, functional, and structural details of living tissues. This can be particularly useful for the early diagnosis of diseases such as cancer and for the application of personalized medicines. In the case of hybrid imaging, two or more modalities are combined to produce a high-resolution image with enhanced sensitivity and specificity. This can significantly improve the accuracy of diagnosis and offer more detailed treatment plans. In this book chapter, we showcase how continued advancements in biomedical imaging technology can potentially revolutionize medical diagnostics and personalized medicine.

We dedicate this work to Dr. James Ratnakar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agner SC et al (2014) Computerized image analysis for identifying triple-negative breast cancers and differentiating them from other molecular subtypes of breast cancer on dynamic contrast-enhanced MR images: a feasibility study. Radiology 272:91–99

    PubMed  Google Scholar 

  • Arai S et al (2018) RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew Chem Int Ed Engl 57:10873–10878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aron AT et al (2017) In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. Proc Natl Acad Sci 114:12669–12674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29:624–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagga P et al (2018) In vivo GluCEST MRI: reproducibility, background contribution and source of glutamate changes in the MPTP model of Parkinson’s disease. Sci Rep 8:2883

    PubMed  PubMed Central  Google Scholar 

  • Campbell AK, Campbell AK (1988) Chemiluminescence: principles and applications in biology and medicine. VCH

    Google Scholar 

  • Chang L, Munsaka SM, Kraft-Terry S, Ernst T (2013) Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol 8:576–593

    PubMed  PubMed Central  Google Scholar 

  • Chen Q et al (2017) Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging. Eur J Nucl Med Mol Imaging 44:1033–1041

    CAS  PubMed  Google Scholar 

  • Cheng P et al (2019) Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc 141:10581–10584

    CAS  PubMed  Google Scholar 

  • Ching-Roa VD, Huang CZ, Ibrahim SF, Smoller BR, Giacomelli MG (2022) Real-time analysis of skin biopsy specimens with 2-photon fluorescence microscopy. JAMA Dermatol 158:1175–1182

    PubMed  PubMed Central  Google Scholar 

  • Chu J et al (2016) A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat Biotechnol 34:760–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AS, Dubikovskaya EA, Rush JS, Bertozzi CR (2010) Real-time bioluminescence imaging of glycans on live cells. J Am Chem Soc 132:8563–8565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    CAS  PubMed  Google Scholar 

  • Darr C et al (2020) First-in-man intraoperative Cerenkov luminescence imaging for oligometastatic prostate cancer using 68Ga-PSMA-11. Eur J Nucl Med Mol Imaging 47:3194–3195

    PubMed  Google Scholar 

  • De P, Carlson JH, Leyland-Jones B, Williams C, Dey N (2018) Triple fluorescence staining to evaluate mechanism-based apoptosis following chemotherapeutic and targeted anti-cancer drugs in live tumor cells. Sci Rep 8:13192

    PubMed  PubMed Central  Google Scholar 

  • DeBrosse C et al (2016) Lactate chemical exchange saturation transfer (LATEST) imaging in vivo a biomarker for LDH activity. Sci Rep 6:19517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dibble EH, Yoo DC (2017) Precision medicine and PET/computed tomography in cardiovascular disorders. PET Clin 12:459–473

    PubMed  Google Scholar 

  • Doyle TC, Burns SM, Contag CH (2004) Technoreview: in vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317

    CAS  PubMed  Google Scholar 

  • Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects. Proc Natl Acad Sci 108:12060–12065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ermakova YG et al (2018) SypHer3s: a genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem Commun 54:2898–2901

    CAS  Google Scholar 

  • Feeney KA, Putker M, Brancaccio M, O’Neill JS (2016) In-depth characterization of firefly luciferase as a reporter of circadian gene expression in mammalian cells. J Biol Rhythms 31:540–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flori A et al (2015) Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model. Contrast Media Mol Imaging 10:194–202

    CAS  PubMed  Google Scholar 

  • Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med Off Publ Soc Nucl Med 49:1651–1663

    Google Scholar 

  • Freise AC, Wu AM (2015) In vivo imaging with antibodies and engineered fragments. Mol Immunol 67:142–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW (2018) Antibody fragment and affibody ImmunoPET imaging agents: radiolabelling strategies and applications. ChemMedChem 13:2466–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gambotto A et al (2001) Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope. Gene Ther 7:2036–2040

    Google Scholar 

  • Garg B, Sung C-H, Ling Y-C (2015) Graphene-based nanomaterials as molecular imaging agents. WIREs Nanomed Nanobiotechnol 7:737–758

    CAS  Google Scholar 

  • Garvey CJ, Hanlon R (2002) Computed tomography in clinical practice. BMJ 324:1077–1080

    PubMed  PubMed Central  Google Scholar 

  • Genevois C, Loiseau H, Couillaud F (2016) In vivo follow-up of brain tumor growth via bioluminescence imaging and fluorescence tomography. Int J Mol Sci 17:1815

    PubMed  PubMed Central  Google Scholar 

  • Genovese D et al (2020) Tandem dye-doped nanoparticles for NIR imaging via Cerenkov resonance energy transfer. Front Chem 8

    Google Scholar 

  • Glasser O (1993) Wilhelm Conrad Röntgen and the early history of the roentgen rays. Norman Publishing

    Google Scholar 

  • Goel S et al (2018) Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv Mater 30:1704367

    Google Scholar 

  • Goldenberg JM, Pagel MD (2019) Assessments of tumor metabolism with CEST MRI. NMR Biomed 32:e3943

    CAS  PubMed  Google Scholar 

  • Gordon JW et al (2019) Translation of carbon-13 EPI for hyperpolarized MR molecular imaging of prostate and brain cancer patients. Magn Reson Med 81:2702–2709

    CAS  PubMed  Google Scholar 

  • Grootendorst MR et al (2017) Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med Off Publ Soc Nucl Med 58:891–898

    CAS  Google Scholar 

  • Guo Z et al (2016) Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions. Sci Rep 6:28812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen KL, Nielsen MB, Ewertsen C (2016) Ultrasonography of the kidney: a pictorial review. Diagnostics 6:2

    Google Scholar 

  • He X et al (2022) An ultraviolet fluorophore with narrowed emission via coplanar molecular strategy. Angew Chem Int Ed 61:e202209425

    CAS  Google Scholar 

  • Heffern MC et al (2016) In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc Natl Acad Sci 113:14219–14224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiruta Y et al (2015) Near IR emitting red-shifting ratiometric fluorophores based on borondipyrromethene. Org Lett 17:3022–3025

    CAS  PubMed  Google Scholar 

  • Huang J, Jiang Y, Li J, Huang J, Pu K (2021) Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew Chem Int Ed 60:3999–4003

    CAS  Google Scholar 

  • Iagaru A et al (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 50:501–505

    PubMed  Google Scholar 

  • Im K, Mareninov S, Diaz MFP, Yong WH (2019) An introduction to performing immunofluorescence staining. Methods Mol Biol 1897:299–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inouye S, Sasaki S (2006) Blue fluorescent protein from the calcium-sensitive photoprotein aequorin: catalytic properties for the oxidation of coelenterazine as an oxygenase. FEBS Lett 580:1977–1982

    CAS  PubMed  Google Scholar 

  • Jenkins DE et al (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20:733–744

    CAS  PubMed  Google Scholar 

  • Jensen EC (2012) Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec 295:2031–2036

    CAS  Google Scholar 

  • Jiang Y, Pu K (2021) Molecular probes for autofluorescence-free optical imaging. Chem Rev 121:13086–13131

    CAS  PubMed  Google Scholar 

  • Jing M et al (2020) An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods 17:1139–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • John S et al (2020) Bioluminescence for in vivo detection of cell-type-specific inflammation in a mouse model of uveitis. Sci Rep 10:11377

    PubMed  PubMed Central  Google Scholar 

  • Jonson SD, Welch MJ (2002) Investigations into tumor accumulation and peroxisome proliferator activated receptor binding by F-18 and C-11 fatty acids. Nucl Med Biol 29:211–216

    CAS  PubMed  Google Scholar 

  • Judenhofer MS et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    CAS  PubMed  Google Scholar 

  • Kamkaew A et al (2016) Quantum dot–NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo. Chem Commun 52:6997–7000

    CAS  Google Scholar 

  • Kawada K et al (2015) Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med 56:1322–1327

    CAS  PubMed  Google Scholar 

  • Ke B et al (2018) In vivo bioluminescence imaging of cobalt accumulation in a mouse model. Anal Chem 90:4946–4950

    CAS  PubMed  Google Scholar 

  • Khan P et al (2014) Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol 173:333–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Picard L-P, Schönegge A-M, Bouvier M (2019) Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells. Nat Protoc 14:1084–1107

    CAS  PubMed  Google Scholar 

  • Kuchimaru T et al (2016) A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun 7:11856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB (2008) Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med Off Publ Soc Nucl Med 49:341–344

    CAS  Google Scholar 

  • Lakowicz JR, Keating-Nakamoto S (1984) Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. Biochemistry 23:3013–3021

    CAS  PubMed  Google Scholar 

  • Leach MO et al (1998) Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed 11:314–340

    CAS  PubMed  Google Scholar 

  • Li J-B et al (2018) A bioluminescent probe for imaging endogenous peroxynitrite in living cells and mice. Anal Chem 90:4167–4173

    CAS  PubMed  Google Scholar 

  • Lieto E et al (2018) Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors. Surg Innov 25:62–68

    PubMed  Google Scholar 

  • Lindeman LR et al (2018) A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH. Magn Reson Med 79:2766–2772

    PubMed  Google Scholar 

  • Lohrmann C et al (2015) Cerenkov luminescence imaging for radiation dose calculation of a 90Y-labeled gastrin-releasing peptide receptor. J Nucl Med 56:805–811

    CAS  PubMed  Google Scholar 

  • Longo DL et al (2014) A general MRI-CEST ratiometric approach for pH-imaging – demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc:14333–14336. https://doi.org/10.1021/ja5059313

  • Maier FC et al (2019) Comparative immuno-Cerenkov luminescence and -PET imaging enables detection of PSMA+ tumors in mice using 64Cu-radiolabeled monoclonal antibodies. Appl Radiat Isot 143:149–155

    CAS  PubMed  Google Scholar 

  • Mannheim JG et al (2016) Comparison of small animal CT contrast agents. Contrast Media Mol Imaging 11:272–284

    CAS  PubMed  Google Scholar 

  • Marcus C, Subramaniam RM (2017) PET/computed tomography and precision medicine: gastric cancer. PET Clin 12:437–447

    PubMed  Google Scholar 

  • Matlashov ME et al (2020) A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 11:239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI (2014) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273:365–372

    PubMed  Google Scholar 

  • McCapra F (1976) Chemical mechanisms in bioluminescence. Acc Chem Res 9:201–208

    CAS  Google Scholar 

  • Michelotti FC et al (2020) PET/MRI enables simultaneous in vivo quantification of β-cell mass and function. Theranostics 10:398–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller PW, Long NJ, Vilar R, Gee AD (2008) Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed 47:8998–9033

    CAS  Google Scholar 

  • Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR (2011) In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 369:4605–4619

    CAS  Google Scholar 

  • Muhanna N et al (2020) Sentinel lymph node mapping using ICG fluorescence and cone beam CT – a feasibility study in a rabbit model of oral cancer. BMC Med Imaging 20:106

    PubMed  PubMed Central  Google Scholar 

  • Nazari-Farsani S et al (2020) Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI. J Neurosci Methods 333:108575

    PubMed  Google Scholar 

  • Ni D et al (2018) Magnetic targeting of nanotheranostics enhances Cerenkov radiation-induced photodynamic therapy. J Am Chem Soc 140:14971–14979

    PubMed  PubMed Central  Google Scholar 

  • Nomura N et al (2019) Biothiol-activatable bioluminescent coelenterazine derivative for molecular imaging in vitro and in vivo. Anal Chem 91:9546–9553

    CAS  PubMed  Google Scholar 

  • Nowogrodzki A (2018) The world’s strongest MRI machines are pushing human imaging to new limits. Nature 563:24–27

    CAS  PubMed  Google Scholar 

  • Nummenmaa L et al (2018) μ-Opioid receptor system mediates reward processing in humans. Nat Commun 9:1500

    PubMed  PubMed Central  Google Scholar 

  • Osman AM, Laane C, Hilhorst R (2001) Enhanced sensitivity of Cypridina luciferin analogue (CLA) chemiluminescence for the detection of *O2(−) with non-ionic detergents. Lumin J Biol Chem Lumin 16:45–50

    CAS  Google Scholar 

  • Parrott D, Fernando WS, Martins AF (2019) Smart MRI agents for detecting extracellular events in vivo: progress and challenges. Inorganics 7:18

    CAS  Google Scholar 

  • Phelps ME (2000) PET: The Merging of Biology and Imaging into Molecular Imaging. J. Nucl. Med. 41:661–681

    Google Scholar 

  • Pichler BJ, Judenhofer MS, Pfannenberg C (2008) Multimodal imaging approaches: PET/CT and PET/MRI. In: Molecular imaging I, Springer, Berlin, pp 109–132. https://doi.org/10.1007/978-3-540-72718-7_6

  • Popp AK, Valentine MT, Kaplan PD, Weitz DA (2003) Microscopic origin of light scattering in tissue. Appl Optics 42:2871–2880

    Google Scholar 

  • Prendergast FG, Mann KG (1978) Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea. Biochemistry 17:3448–3453

    CAS  PubMed  Google Scholar 

  • Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318–318

    CAS  Google Scholar 

  • Raylman RR et al (2018) Small animal, positron emission tomography-magnetic resonance imaging system based on a clinical magnetic resonance imaging scanner: evaluation of basic imaging performance. J Med Imaging 5:033504

    Google Scholar 

  • Reitz SJ, Sauerbeck AD, Kummer TT (2021) Enhanced multiplexing of immunofluorescence microscopy using a long-stokes-shift fluorophore. Curr Protoc 1:e214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roder C et al (2014) Spectroscopy imaging in intraoperative MR suite: tissue characterization and optimization of tumor resection. Int J Comput Assist Radiol Surg 9:551–559

    PubMed  Google Scholar 

  • Romanyuk AV, Grozdova ID, Ezhov AA, Melik-Nubarov NS (2017) Peroxyoxalate chemiluminescent reaction as a tool for elimination of tumour cells under oxidative stress. Sci Rep 7:3410

    PubMed  PubMed Central  Google Scholar 

  • Röntgen WC (1898) Ueber eine neue Art von Strahlen. Ann Phys 300:12–17

    Google Scholar 

  • Roth-Konforti ME, Bauer CR, Shabat D (2017) Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme. Angew Chem Int Ed Engl 56:15633–15638

    CAS  PubMed  Google Scholar 

  • Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med Off Publ Soc Nucl Med 51:1123–1130

    CAS  Google Scholar 

  • Sachpekidis C et al (2018) 68Ga-PSMA PET/CT in the evaluation of bone metastases in prostate cancer. Eur J Nucl Med Mol Imaging 45:904–912

    CAS  PubMed  Google Scholar 

  • Salamanca-Cardona L et al (2017) In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in IDH1/2 mutant tumors. Cell Metab 26:830–841.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarikaya I, Schierz J-H, Sarikaya A (2021) Liver: glucose metabolism and 18F-fluorodeoxyglucose PET findings in normal parenchyma and diseases. Am J Nucl Med Mol Imaging 11:233–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt J et al (2022) Translational immunoPET imaging using a radiolabeled GD2-specific antibody in neuroblastoma. Theranostics 12:5615–5630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiß C, Binder M (2022) Overcoming unintended immunogenicity in immunocompetent mouse models of metastasis: the case of GFP. Signal Transduct Target Ther 7:68

    PubMed  PubMed Central  Google Scholar 

  • Schuster GB et al (1975) Adamantylideneadamantane-1,2-dioxetane. Chemiluminescence and decomposition kinetics of an unusually stable 1,2-dioxetane. J Am Chem Soc 97:7110–7118

    CAS  Google Scholar 

  • Schütz L et al (2016) Feasibility and acceptance of simultaneous amyloid PET/MRI. Eur J Nucl Med Mol Imaging 43:2236–2243

    PubMed  Google Scholar 

  • Seetharam K, Lerakis S (2019) Cardiac magnetic resonance imaging: the future is bright. F1000Res 8:F1000

    PubMed  PubMed Central  Google Scholar 

  • Seitz CM et al (2021) Novel adapter CAR-T cell technology for precisely controllable multiplex cancer targeting. OncoImmunology 10:2003532

    PubMed  PubMed Central  Google Scholar 

  • Shields AF et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    CAS  PubMed  Google Scholar 

  • Slebe M et al (2022) Current state and upcoming opportunities for immunoPET biomarkers in lung cancer. Lung Cancer 169:84–93

    CAS  PubMed  Google Scholar 

  • Solon EG (2015) Autoradiography techniques and quantification of drug distribution. Cell Tissue Res 360:87–107

    PubMed  Google Scholar 

  • Song X et al (2019) Visual method for evaluating liver function: targeted in vivo fluorescence imaging of the asialoglycoprotein receptor. Biomed Opt Express 10:5015–5024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spath NB et al (2019) Manganese-enhanced MRI of the myocardium. Heart 105:1695–1700

    CAS  PubMed  Google Scholar 

  • Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients. J Nucl Med 57:420–430

    CAS  PubMed  Google Scholar 

  • Strauss LG et al (2008) Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors. J Nucl Med 49:1238–1244

    CAS  PubMed  Google Scholar 

  • Sun PZ, Longo DL, Hu W, Xiao G, Wu R (2014) Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH. Phys Med Biol 59:4493–4504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surti S (2015) Update on time-of-flight PET imaging. J Nucl Med 56:98–105

    PubMed  Google Scholar 

  • Takano Y et al (2017) Development of a reversible fluorescent probe for reactive sulfur species, sulfane sulfur, and its biological application. Chem Commun 53:1064–1067

    CAS  Google Scholar 

  • Tang Y, Ma Y, Yin J, Lin W (2019) Strategies for designing organic fluorescent probes for biological imaging of reactive carbonyl species. Chem Soc Rev 48:4036–4048

    CAS  PubMed  Google Scholar 

  • Tee S-S, Keshari KR (2015) Novel approaches to imaging tumor metabolism. Cancer J Sudbury Mass 21:165–173

    CAS  Google Scholar 

  • Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32:2–16

    PubMed  PubMed Central  Google Scholar 

  • Tian X, Li Z, Lau C, Lu J (2015) Visualization of in vivo hydrogen sulfide production by a bioluminescence probe in cancer cells and nude mice. Anal Chem 87:11325–11331

    CAS  PubMed  Google Scholar 

  • Tian M et al (2021) Transpathology: molecular imaging-based pathology. Eur J Nucl Med Mol Imaging 48:2338–2350

    PubMed  PubMed Central  Google Scholar 

  • Timm KN et al (2017) Assessing oxidative stress in tumors by measuring the rate of hyperpolarized [1-13C]dehydroascorbic acid reduction using 13C magnetic resonance spectroscopy. J Biol Chem 292:1737–1748

    CAS  PubMed  Google Scholar 

  • Tscherepanow M, Zöllner F, Hillebrand M, Kummert F (2006) Automatic segmentation of unstained living cells in bright-field microscope images. pp 158–172

    Google Scholar 

  • Vaidya T, Agrawal A, Mahajan S, Thakur MH, Mahajan A (2019) The continuing evolution of molecular functional imaging in clinical oncology: the road to precision medicine and radiogenomics (part II). Mol Diagn Ther 23:27–51

    PubMed  Google Scholar 

  • Venneti S et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7

    Google Scholar 

  • Vilchis-Juárez A et al (2014) Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol 10:393–404

    PubMed  Google Scholar 

  • Vilela P, Rowley HA (2017) Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol 96:162–172

    PubMed  Google Scholar 

  • Wang H et al (2015) Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed Opt Express 6:1363–1375

    PubMed  PubMed Central  Google Scholar 

  • Wei W et al (2020) ImmunoPET: concept, design, and applications. Chem Rev 120:3787–3851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wester HJ et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med Off Publ Soc Nucl Med 40:205–212

    CAS  Google Scholar 

  • Wollenweber SD, Alessio AM, Kinahan PE (2016) A phantom design for assessment of detectability in PET imaging. Med Phys 43:5051–5062

    PubMed  Google Scholar 

  • Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    PubMed  Google Scholar 

  • Yang J et al (2016) Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca++ sensing. Nat Commun 7:13268

    PubMed  PubMed Central  Google Scholar 

  • Yao Z, Zhang BS, Prescher JA (2018) Advances in bioluminescence imaging: new probes from old recipes. Curr Opin Chem Biol 45:148–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh H-W et al (2019) ATP-independent bioluminescent reporter variants to improve in vivo imaging. ACS Chem Biol 14:959–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youk JH, Son EJ, Chung J, Kim J-A, Kim E (2012) Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes. Eur Radiol 22:1724–1734

    PubMed  Google Scholar 

  • Zhang Y et al (2020) Activity-based genetically encoded fluorescent and luminescent probes for detecting formaldehyde in living cells. Angew Chem Int Ed 59:16352–16356

    CAS  Google Scholar 

  • Zhen X et al (2016) Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 10:6400–6409

    CAS  PubMed  Google Scholar 

  • Zhu Y et al (2017) Alteration of monoamine receptor activity and glucose metabolism in pediatric patients with anticonvulsant-induced cognitive impairment. J Nucl Med 58:1490–1497

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Swiss Werner Siemens Foundation and the Faculty of Medicine at the University of Tuebingen (Nachwuchsgruppen-Programm). The work was also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2180-390900677 and by the Alexander von Humboldt Foundation through the Sofja Kovalevskaja award. We thank the colleagues Oliver Hihn, Gina Dunkel, Martina Giampetraglia, Dr. Marcel Krueger, and Prof. Dr. Bettina Weigelin at the Werner Siemens Imaging Center, University of Tübingen for kindly providing the FLM, BLI, MPM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André F. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freidel, L., Li, S., Choffart, A., Kuebler, L., Martins, A.F. (2023). Imaging Techniques in Pharmacological Precision Medicine. In: Cascorbi, I., Schwab, M. (eds) Precision Medicine. Handbook of Experimental Pharmacology, vol 280. Springer, Cham. https://doi.org/10.1007/164_2023_641

Download citation

Publish with us

Policies and ethics