Skip to main content

Biosynthesis of S-Alk(en)yl-l-Cysteine Sulfoxides in Allium: Retro Perspective

  • Conference paper
  • First Online:
Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects

Abstract

The biosynthesis of S-alk(en)yl-l-cysteine sulfoxides is one of the most characteristic feature of plants that belong to the genus Allium. Upon tissue damage, these compounds are hydrolyzed by the enzyme alliinase to generate their respective sulfenic acids, which are spontaneously converted to a series of volatile sulfur-containing compounds with a range of health-beneficial activities. Therefore, the molecular understanding of the mechanism for the biosynthesis of S-alk(en)yl-l-cysteine sulfoxides is important for both basic and applied pharmaceutical researches. Information from chemical analysis and radiolabeling experiments, conducted in the latter half of last century, has suggested that S-alk(en)yl-l-cysteine sulfoxides are biosynthesized from glutathione via γ-glutamyl-S-alk(en)yl-l-cysteines; however, the molecular components that contribute to this biosynthetic pathway and their exact reaction order have long been unclear. Very recently, some genes encoding enzymes involved in the biosynthesis of S-alk(en)yl-l-cysteine sulfoxides have been identified through transcriptome-based approaches, and the characterization of these genes and the encoded enzymes has provided insights into this biosynthetic “black box”. Here we briefly summarize the current knowledge on the molecular basis of the generation of bioactive sulfur-containing compounds and the biosynthesis of S-alk(en)yl-l-cysteine sulfoxides in Allium plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnault I, Christidès JP, Mandon N, Haffner T, Kahane R, Auger J (2003) High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and UV detection. J Chromatogr A 991:69–75

    Article  CAS  PubMed  Google Scholar 

  • Block E (2010) Garlic and other Alliums: the Lore and the science. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Bloem E, Haneklaus S, Schnug E (2004) Influence of nitrogen and sulfur fertilization on the alliin content of onions and garlic. J Plant Nutr 27:1827–1839

    Article  CAS  Google Scholar 

  • El-Aasr M, Fujiwara Y, Takeya M, Ono M, Nakano D, Okawa M, Kinjo J, Ikeda T, Miyashita H, Yoshimitsu H, Nohara T (2011) Garlicnin A from the fraction regulating macrophage activation of Allium sativum. Chem Pharm Bull 59:1340–1343

    Article  PubMed  Google Scholar 

  • Ellmore GS, Feldberg RS (1994) Alliin lyase localization in bundle sheaths of the garlic clove (Allium sativum). Am J Bot 81:89–94

    Article  CAS  Google Scholar 

  • Ettala T, Virtanen AI (1962) Labeling of sulfur-containing amino acids and γ-glutamylpeptides after injection of labeled sulfate into onion (Allium cepa). Acta Chem Scand 16:2061–2063

    Article  CAS  Google Scholar 

  • Fritsch RM, Keusgen M (2006) Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L (Alliaceae). Phytochemistry 67:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–910

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Ide N, Yoshida J, Yamaguchi H, Ono K (2006a) Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J Agric Food Chem 54:1535–1540

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Ide N, Ono K (2006b) Changes in organosulfur compounds in garlic cloves during storage. J Agric Food Chem 54:4849–4854

    Article  CAS  PubMed  Google Scholar 

  • Iciek M, Kwiecień I, Włodek L (2009) Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen 50:247–265

    Article  CAS  PubMed  Google Scholar 

  • Jones MG, Hughes J, Tregova A, Milne J, Tomsett AB, Collin HA (2004) Biosynthesis of the flavour precursors of onion and garlic. J Exp Bot 55:1903–1918

    Article  CAS  PubMed  Google Scholar 

  • Koch HP, Lawson LD (1996) Garlic: the science and therapeutic application of Allium sativum L. and related species, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Krause RJ, Glocke SC, Elfarra AA (2002) Sulfoxides as urinary metabolites of S-allyl-l-cysteine in rats: evidence for the involvement of flavin-containing monooxygenases. Drug Metab Dispos 30:1137–1142

    Article  CAS  PubMed  Google Scholar 

  • Lancaster JE, Collin HA (1981) Presence of alliinase in isolated vacuoles and of alkyl cysteine sulphoxides in the cytoplasm of bulbs of onion (Allium cepa). Plant Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  • Lancaster JE, Shaw ML (1989) γ-Glutamyl peptides in the biosynthesis of S-alk(en)yl-l-cysteine sulphoxides (flavour precursors) in Allium. Phytochemistry 28:455–460

    Article  CAS  Google Scholar 

  • Lancaster JE, Shaw ML (1994) Characterization of purified γ-glutamyl transpeptidase in onions: evidence for in vivo role as a peptidase. Phytochemistry 36:1351–1358

    Article  CAS  Google Scholar 

  • Lancaster JE, McCallion BJ, Shaw ML (1986) The dynamics of the flavour precursors, the S-alk(en)yl-l-cysteine sulphoxides, during leaf blade and scale development in the onion (Allium cepa). Physiol Plant 66:293–297

    Article  CAS  Google Scholar 

  • Li J, Hansen BG, Ober JA, Kliebenstein DJ, Halkier BA (2008) Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol 148:1721–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura H, Inagaki M, Maeshige K, Ide N, Kajimura Y, Itakura Y (1996) Changes in contents of γ-glutamyl peptides and fructan during growth of Allium sativum. Planta Med 62:70–71

    Article  CAS  PubMed  Google Scholar 

  • Nohara T, Kiyota Y, Sakamoto T, Manabe H, Ono M, Ikeda T, Fujiwara Y, Nakano D, Kinjo J (2012) Garlicnins B1, C1, and D, from the fraction regulating macrophage activation of Allium sativum. Chem Pharm Bull 60:747–751

    Article  CAS  PubMed  Google Scholar 

  • Nohara T, Fujiwara Y, Ikeda T, Murakami K, Ono M, Nakano D, Kinjo J (2013) Cyclic sulfoxides garlicnins B2, B3, B4, C2, and C3 from Allium sativum. Chem Pharm Bull 61:695–699

    Article  CAS  PubMed  Google Scholar 

  • Nohara T, Fujiwara Y, Ikeda T, Yamaguchi K, Manabe H, Murakami K, Ono M, Nakano D, Kinjo J (2014) Acyclic sulfoxides, garlicnins L-1–L-4, E, and F, from Allium sativum. Chem Pharm Bull 62:477–482

    Article  CAS  PubMed  Google Scholar 

  • Nohara T, Fujiwara Y, Komota Y, Kondo Y, Saku T, Yamaguchi K, Komohara Y, Takeya M (2015) Cyclic sulfoxides-garlicnins K1, K2, and H1-extracted from Allium sativum. Chem Pharm Bull 63:117–121

    Article  CAS  PubMed  Google Scholar 

  • Novick RM, Elfarra AA (2008) Purification and characterization of flavin-containing monooxygenase isoform 3 from rat kidney microsomes. Drug Metab Dispos 36:2468–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkama-Ohtsu N, Radwan S, Peterson A, Zhao P, Badr AF, Xiang C, Oliver DJ (2007a) Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J 49:865–877

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Zhao P, Xiang C, Oliver DJ (2007b) Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J 49:878–888

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Sasaki-Sekimoto Y, Oikawa A, Jikumaru Y, Shinoda S, Inoue E, Kakude Y, Yokoyama T, Hirai MY, Shirasu K, Kamiya Y, Oliver DJ, Saito K (2011) 12-Oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant Cell Physiol 52:205–209

    Article  CAS  PubMed  Google Scholar 

  • Ripp SL, Overby LH, Philpot RM, Elfarra AA (1997) Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing mono-oxygenases: studies with S-(1,2-dichlorovinyl)-l-cysteine, S-(1,2,2-trichlorovinyl)-l-cysteine, S-allyl-l-cysteine, and S-benzyl-l-cysteine. Mol Pharmacol 51:507–515

    CAS  PubMed  Google Scholar 

  • Rivlin RS (2001) Historical perspective on the use of garlic. J Nutr 131:951S–954S

    CAS  PubMed  Google Scholar 

  • Rose P, Whiteman M, Moore PK, Zhu YZ (2005) Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 22:351–368

    Article  CAS  PubMed  Google Scholar 

  • Shaw ML, Pither-Joyce MD, McCallum JA (2005) Purification and cloning of a γ-glutamyl transpeptidase from onion (Allium cepa). Phytochemistry 66:515–522

    Article  CAS  PubMed  Google Scholar 

  • Shimomura Y, Honda T, Goto H, Nonami T, Kurokawa T, Nagasaki M, Murakami T (2004) Effects of liver failure on the enzymes in the branched-chain amino acid catabolic pathway. Biochem Biophys Res Commun 313:381–385

    Article  CAS  PubMed  Google Scholar 

  • Stoll A, Seebeck E (1948) Allium compounds. I. Alliin, the true mother compound of garlic oil. Helv Chim Acta 31:189–210

    Article  CAS  PubMed  Google Scholar 

  • Stoll A, Seebeck E (1949a) Allium compounds. II. Enzymic degradation of alliin and the properties of alliinase. Helv Chim Acta 32:197–205

    Article  CAS  PubMed  Google Scholar 

  • Stoll A, Seebeck E (1949b) Allium compounds. III. Specificity of alliinase and synthesis of compounds related to alliin. Helv Chim Acta 32:866–876

    Article  CAS  PubMed  Google Scholar 

  • Stoll A, Seebeck E (1951) Chemical investigations on alliin, the specific principle of garlic. Adv Enzymol 11:377–400

    CAS  Google Scholar 

  • Su T, Xu J, Li Y, Lei L, Zhao L, Yang H, Feng J, Liu G, Ren D (2011) Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23:364–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Sugii M, Kakimoto T (1961) New γ-glutamyl peptides in garlic. Chem Pharm Bull 9:77–78

    Article  CAS  Google Scholar 

  • Suzuki T, Sugii M, Kakimoto T (1962) Incorporation of l-valine-[14C] into S-(2-carboxypropyl)glutathione and S-(2-carboxypropyl)cysteine in garlic. Chem Pharm Bull 10:328–331

    Article  CAS  PubMed  Google Scholar 

  • Tate SS, Meister A (1981) γ-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368

    Article  CAS  PubMed  Google Scholar 

  • Turnbull A, Galpin IJ, Collin HA (1980) Comparison of the onion plant (Allium cepa) and onion tissue culture. III. Feeding of 14C labeled precursors of the flavor precursor compounds. New Phytol 85:483–487

    Article  CAS  Google Scholar 

  • Ueda Y, Kawajiri H, Miyamura N, Miyajima R (1991) Content of some sulfur-containing components and free amino acids in various strains of garlic. Nippon Shokuhin Kogyo Gakkaishi 38:429–434

    Article  CAS  Google Scholar 

  • Yamazaki M, Sugiyama M, Saito K (2002) Intercellular localization of cysteine synthase and alliinase in bundle sheaths of Allium plants. Plant Biotechnol 19:7–10

    Article  CAS  Google Scholar 

  • Yoshimoto N, Yabe A, Sugino Y, Murakami S, Sai-ngam N, Sumi S, Tsuneyoshi T, Saito K (2015a) Garlic γ-glutamyl transpeptidases that catalyze deglutamylation of biosynthetic intermediate of alliin. Front Plant Sci 5:758

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto N, Onuma M, Mizuno S, Sugino Y, Nakabayashi R, Imai S, Tsuneyoshi T, Sumi S, Saito K (2015b) Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic. Plant J 83:941–951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by JSPS KAKENHI Grant Number 26460118 (to N.Y.) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Yoshimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yoshimoto, N., Saito, K. (2017). Biosynthesis of S-Alk(en)yl-l-Cysteine Sulfoxides in Allium: Retro Perspective. In: De Kok, L., Hawkesford, M., Haneklaus, S., Schnug, E. (eds) Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-56526-2_5

Download citation

Publish with us

Policies and ethics