Skip to main content

Molecular Biology of Malignant Gliomas

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

Malignant gliomas are the most common type of primary brain tumor. In spite of huge therapeutic efforts that include surgery, radiotherapy, and new alkylating agents, the disease progression and death is the rule. In recent years, genomic tools have provided extensive information, revealing key targets for new therapies that would shape our therapeutic strategies. This chapter summarizes the main molecular pathways with critical roles in malignant gliomas as well as new biological data that modulate our molecular, classical concepts on malignant gliomas. Furthermore, we describe gene expression profiles from human glioma samples that reveal new targets and clonal features critical for the ability of glioma cells to growth, invade, and migrate. In addition, recent studies suggest that there are malignant stem-like cells within a tumor that are responsible for tumor renewal, resistance to cytotoxic therapies, and relapse after radical treatments. In this regard, a subpopulation of stem cell-like tumor cells that diverge from side population cells have been isolated within human gliomas. Therefore, we have included an additional section focused on glioma stem-like cells and their genomic features.

To C. Belda Jr. He effectively disrupted my “signaling pathways” during the preparation of this manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

pRb:

Retinoblastoma protein

E2F:

Elongation 2 factor

CDK4:

Cyclin-dependent kinase 4

Mdm2:

Murine double minute 2

ARF:

Alternative reading frame

GBM:

Glioblastoma multiforme

PDGFB:

Platelet derived-growth factor-B

PI3K:

Phosphoinositide-3-kinase

mTOR:

Mammalian target of rapamycin

FGFR:

Fibroblast growth factor receptor

EGFR:

Epidermal growth factor receptor

PKB:

Protein kinase B

PTEN:

Phosphatase and tensin homolog

IGFBP-2:

Insulin growth factor binding protein-2

PKC:

Protein kinase C

NF-1:

Neurofibromin 1

EGF:

Epidermal growth factor

PAI-1:

Plasminogen activator inhibitor-1

VEGF:

Vascular endotelial growth factor

MAPK:

Mitogen-activated protein kinases

SPR:

Substance P receptor

FSTL1:

Follistatin-like 1

References

  • Baldwin RM, Parolin DA, Lorimer IA (2008) Regulation of glioblastoma cell invasion by PKC iota and RhoB. Oncogene 27:3587–3595

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Li Z et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68:6043–6048

    Article  CAS  PubMed  Google Scholar 

  • Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  PubMed  Google Scholar 

  • Beier D, Röhrl S, Pillai DR et al (2008) Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68:5706–5715

    Article  CAS  PubMed  Google Scholar 

  • Belda-Iniesta C, de Castro Carpeno J, Casado Saenz E et al (2006) Molecular biology of malignant gliomas. Clin Transl Oncol 8:635–641

    Article  CAS  PubMed  Google Scholar 

  • Belda-Iniesta C, de Castro Carpeño J, Sereno M et al (2007) Epidermal growth factor receptor and glioblastoma multiforme: molecular basis for a new approach. Clin Transl Oncol 10:73–77

    Article  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  CAS  PubMed  Google Scholar 

  • Bozinov O, Köhler S, Samans B et al (2008) Candidate genes for the progression of malignant gliomas identified by microarray analysis. Neurosurg Rev 31:83–89

    Article  PubMed  Google Scholar 

  • Brat DJ, Mapstone TB (2003) Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann Int Med 138:659–668

    PubMed  Google Scholar 

  • Bredel M, Bredel C, Juric D et al (2005) High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res 65:4088–4096

    Article  CAS  PubMed  Google Scholar 

  • Charest A, Kheifets V, Park J et al (2003) Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc Natl Acad Sci USA 100:916–921

    Article  CAS  PubMed  Google Scholar 

  • Charest A, Wilker EW, McLaughlin ME et al (2006) ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res 66:7473–7481

    Article  CAS  PubMed  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Czernicki T, Zegarska J, Paczek L et al (2007) Gene expression profile as a prognostic factor in high-grade gliomas. Int J Oncol 30:55–64

    CAS  PubMed  Google Scholar 

  • Dai C, Celestino JC, Okada Y et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    Article  CAS  PubMed  Google Scholar 

  • Demuth T, Reavie LB, Rennert JL et al (2007) MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol Cancer Ther 6:1212–1222

    Article  CAS  PubMed  Google Scholar 

  • Demuth T, Rennert JL, Hoelzinger DB et al (2008) Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9:54–69

    Article  PubMed  Google Scholar 

  • Desjardins A, Quinn JA, Vredenburgh JJ et al (2007) Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol 83:53–60

    Article  CAS  PubMed  Google Scholar 

  • Frederick L, Wang XY, Eley G et al (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387

    CAS  PubMed  Google Scholar 

  • Fresno Vara JA, Casado E, de Castro J et al (2005) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204

    Article  Google Scholar 

  • Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Manzano C, Fueyo J, Kyritsis AP et al (1997) Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis. J Natl Cancer Inst 89:1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  • Hesselager G, Uhrbom L, Westermark B et al (2003) Complementary effects of platelet-derived growth factor autocrine stimulation and p53 or Ink4a-Arf deletion in a mouse glioma model. Cancer Res 63:4305–4309

    CAS  PubMed  Google Scholar 

  • Hoelzinger DB, Mariani L, Weis J et al (2005) Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7:7–16

    Article  CAS  PubMed  Google Scholar 

  • Holland EC, Celestino J, Dai C et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199

    Article  CAS  PubMed  Google Scholar 

  • Jarboe JS, Johnson KR, Choi Y et al (2007) Expression of interleukin-13 receptor alpha2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res 67: 7983–7986

    Article  CAS  PubMed  Google Scholar 

  • Jeon HM, Jin X, Lee JS et al (2008) Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes Dev 22:2028–2033

    Article  CAS  PubMed  Google Scholar 

  • Joo KM, Kim SY, Jin X et al (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Dougherty ER, Shmulevich I et al (2002) Identification of combination gene sets for glioma classification. Mol Cancer Ther 1:1229–1236

    CAS  PubMed  Google Scholar 

  • Kotliarova S, Pastorino S, Kovell LC et al (2008) Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 68:6643–6651

    Article  CAS  PubMed  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  • Kwon CH, Zhao D, Chen J et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294

    Article  CAS  PubMed  Google Scholar 

  • Lachat Y, Diserens AC, Nozaki M et al (2004) INK4a/Arf is required for suppression of EGFR/DeltaEGFR(2–7)-dependent ERK activation in mouse astrocytes and glioma. Oncogene 23:6854–6863

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim MS, Kwon HC et al (2000) Growth inhibitory effect on glioma cells of adenovirus-mediated p16/INK4a gene transfer in vitro and in vivo. Int J Mol Med 6:559–563

    CAS  PubMed  Google Scholar 

  • Li JY, Guessous F, Kwon S et al (2008a) PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res 68:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Wang H, May S et al (2008b) Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol 88:11–17

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol Cancer 5:67–79

    Article  PubMed  Google Scholar 

  • Lyustikman Y, Momota H, Pao W et al (2008) Constitutive activation of Raf-1 induces glioma formation in mice. Neoplasia 10:501–510

    CAS  PubMed  Google Scholar 

  • Markert JM, Fuller CM, Gillespie GY et al (2001) Differential gene expression profiling in human brain tumors. Physiol Genom 5:21–33

    CAS  Google Scholar 

  • Marko NF, Toms SA, Barnett GH et al (2008) Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: a preliminary feasibility study. Genomics 91:395–406

    Article  CAS  PubMed  Google Scholar 

  • Mehrian-Shai R, Chen CD, Shi T et al (2007) Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc Natl Acad Sci USA 104:5563–5568

    Article  CAS  PubMed  Google Scholar 

  • Mulholland PJ, Fiegler H, Mazzanti C et al (2006) Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle 5:783–791

    Article  Google Scholar 

  • Nutt CL, Mani DR, Betensky RA et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607

    CAS  PubMed  Google Scholar 

  • Ogden AT, Waziri AE, Lochhead RA et al (2008) Identification of A2B5 + CD133-tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514

    Article  PubMed  Google Scholar 

  • Olson MV, Johnson DG, Jiang H et al (2007) Transgenic E2F1 expression in the mouse brain induces a human-like bimodal pattern of tumors. Cancer Res 67:4005–4009

    Article  CAS  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Google Scholar 

  • Paugh BS, Paugh SW, Bryan L et al (2008) EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKC{delta}, and sphingosine kinase 1 in glioblastoma cells. FASEB J 22:455–465

    Article  CAS  PubMed  Google Scholar 

  • Persson O, Krogh M, Saal LH et al (2007) Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets. J Neurooncol 85:11–24

    Article  CAS  PubMed  Google Scholar 

  • Petalidis LP, Oulas A, Backlund M et al (2008) Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Mol Cancer Ther 7:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Pfister S, Janzarik WG, Remke M et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA et al (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  CAS  PubMed  Google Scholar 

  • Purow BW, Sundaresan TK, Burdick MJ et al (2008) Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 29:918–925

    Article  CAS  PubMed  Google Scholar 

  • Ranza E, Facoetti A, Morbini P et al (2007) Exogenous platelet-derived growth factor (PDGF) induces human astrocytoma cell line proliferation. Anticancer Res 27:2161–2166

    CAS  PubMed  Google Scholar 

  • Raza SM, Fuller GN, Rhee CH et al (2004) Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res 10:212–221

    Article  CAS  PubMed  Google Scholar 

  • Reddy SP, Britto R, Vinnakota K et al (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14:2978–2987

    Article  CAS  PubMed  Google Scholar 

  • Rich JN, Hans C, Jones B et al (2005) Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 65:4051–4058

    Article  CAS  PubMed  Google Scholar 

  • Rickman DS, Bobek MP, Misek DE et al (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891

    CAS  PubMed  Google Scholar 

  • Saito M, Nakagawa K, Hamada K et al (2004) Introduction of p16INK4a inhibits telomerase activity through transcriptional suppression of human telomerase reverse transcriptase expression in human gliomas. Int J Oncol 24(5):1213–1220

    CAS  PubMed  Google Scholar 

  • Sallinen SL, Sallinen PK, Haapasalo HK et al (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622

    CAS  PubMed  Google Scholar 

  • Sampaio C, Dance M, Montagner A et al (2008) Signal strength dictates phosphoinositide 3-kinase contribution to Ras/extracellular signal-regulated kinase 1 and 2 activation via differential Gab1/Shp2 recruitment: consequences for resistance to epidermal growth factor receptor inhibition. Mol Cell Biol 28:587–600

    Article  CAS  PubMed  Google Scholar 

  • Shirahata M, Iwao-Koizumi K, Saito S et al (2007) Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis. Clin Cancer Res 13:7341–7356

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  • Solomon DA, Kim JS, Jenkins S et al (2008) Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme. Cancer Res 68:2564–2569

    Article  CAS  PubMed  Google Scholar 

  • Tchougounova E, Kastemar M, Bråsäter D et al (2007) Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 26:6289–6296

    Article  CAS  PubMed  Google Scholar 

  • The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  • Toepoel M, Joosten PH, Knobbe CB et al (2008) Haplotype-specific expression of the human PDGFRA gene correlates with the risk of glioblastomas. Int J Cancer 123:322–329

    Article  CAS  PubMed  Google Scholar 

  • Uhrbom L, Kastemar M, Johansson FK et al (2005) Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res 65:2065–2069

    Article  CAS  PubMed  Google Scholar 

  • van den Boom J, Wolter M, Kuick R et al (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163:1033–1043

    PubMed  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    Article  CAS  PubMed  Google Scholar 

  • Wiedemeyer R, Brennan C, Heffernan TP et al (2008) Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell 13:355–364

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Kugimiya T, Miyazaki T (2005) Substance P receptor in U373 MG human astrocytoma cells activates mitogen-activated protein kinases ERK1/2 through Src. Brain Tumor Pathol 22:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Bian X, Le Y et al (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 97:823–835

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Belda-Iniesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belda-Iniesta, C., Perona, R., Barriuso, J. (2009). Molecular Biology of Malignant Gliomas. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_1

Download citation

Publish with us

Policies and ethics