Skip to main content

Advertisement

Log in

Molecular mechanisms of melatonin’s inhibitory actions on breast cancers

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hardeland R, Madrid JA, Tal DX et al (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166

    Article  PubMed  CAS  Google Scholar 

  2. Cardinali DP, Srinivasan V, Brzezinski A et al (2012) Melatonin and its analogues in insomnia and depression. J Pineal Res 52:167–202

    Article  CAS  Google Scholar 

  3. Reiter RJ, Tan DX, Manchester LC et al (2009) Melatonin and reproduction revisited. Biol Reprod 81:445–456

    Article  PubMed  CAS  Google Scholar 

  4. Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A et al (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52:167–202

    Article  PubMed  CAS  Google Scholar 

  5. Tan DX, Manchester LC, Fuentes-Broto L et al (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 12:167–188

    Article  PubMed  CAS  Google Scholar 

  6. Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ (2012) Melatonin and cardiovascular disease: myth or reality? Rev Esp Cardiol 65:215–218

    Article  PubMed  Google Scholar 

  7. Korkmaz A, Ma S, Topal T et al (2012) Glucose: a vital toxin and potential utility of melatonin in protecting against the diabetic state. Mol Cell Endocrinol 349(2):128–137

    Google Scholar 

  8. Sanchez-Barcelo EJ, Mediavilla MD, Tan RJ et al (2010) Scientific basis for the potential use of melatonin in bone diseases: osteoporosis and adolescent idiopathic scoliosis. J Osteoporos ID 830231

  9. Dx Tan, Chen LD, Poeggeler B et al (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  10. Hardeland R, Poeggeler B (2008) Melatonin beyond its classical functions. Open Physiol J 1:1–23

    Article  CAS  Google Scholar 

  11. Reiter RJ, Paredes SD, Manchester LC et al (2009) Reducing oxidative/nitrosative stress: a newly discovered genre for melatonin. Crit Rev Biochem Mol Biol 44:175–200

    Article  PubMed  CAS  Google Scholar 

  12. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  PubMed  CAS  Google Scholar 

  13. Sharman EH, Sharman KG, Bondy SC (2011) Extended exposure to dietary melatonin reduces tumor number and size in aged male mice. Exp Gerontol 46:18–22

    Article  PubMed  CAS  Google Scholar 

  14. Cutando A, Aneiros-Fernández J, Aneiros-Cachaza J, Arias-Santiago S (2011) Melatonin and cancer: current knowledge and its application to oral cavity tumours. J Oral Pathol Med 40:593–597

    Article  PubMed  CAS  Google Scholar 

  15. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 21:819–831

    Article  PubMed  CAS  Google Scholar 

  16. Hill SM, Blask DE, Xiang S et al (2011) Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia. 16:235–245

    Article  PubMed  Google Scholar 

  17. Lissoni P, Rovelli F (2012) Principles of psychoneuroendocrinoimmunotherapy of cancer. Immunotherapy 4:77–86

    Article  PubMed  CAS  Google Scholar 

  18. Zha L, Fan L, Sun G et al (2012) Melatonin sensitizes human hepatoma cells to endoplasmic reticulum stress-induced apoptosis. J Pineal Res 52:322–331

    Article  PubMed  CAS  Google Scholar 

  19. Blask DE (2009) Melatonin, sleep disturbance and cancer risk. Sleep Med Rev 13:252–264

    Article  Google Scholar 

  20. Jung-Hynes B, Reiter RJ, Ahmad N (2010) Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res 48:9–19

    Article  PubMed  CAS  Google Scholar 

  21. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem 17:4462–4481

    Article  PubMed  CAS  Google Scholar 

  22. Greene MW (2012) Circadian rhythms and tumor growth. Cancer Lett 318:115–123

    Article  PubMed  CAS  Google Scholar 

  23. Blask DE, Dauchy RT, Sauer LA (2005) Putting cancer to sleep at night. Endocrine 27(2):179–188

    Article  PubMed  CAS  Google Scholar 

  24. Russel JR, Tan DX, Korkmaz A (2007) Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog 13:303–328

    Article  Google Scholar 

  25. Georgiou E (1929) Über die Natur und die Pathogenese der Krebstumoren, Radikale Heilung des Krebses bei weißen Mäusen. J Cancer Res Clin Oncol (Zeitschrift für Kregsforshung) 28(1):562–572

    Google Scholar 

  26. Lapin V, Ebels I (1976) Effects of some low molecular weight sheep pineal fractions and melatonin on different tumours in rats and mice. Oncology 33:110–113

    Article  PubMed  CAS  Google Scholar 

  27. Gupta D, Attanasio A, Reiter RJ (1988) The pineal gland and cancer brain research promotion. Tübingen, Germany, pp 1–383

    Google Scholar 

  28. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in aetiology and treatment of breast cancer. Lancet 2:814–816

    Article  PubMed  CAS  Google Scholar 

  29. Srinivasan V, Spence DW, Pandi-Perumal SR et al (2008) Therapeutic actions of melatonin in cancer: possible mechanisms. Integr Cancer Ther 7:189–203

    Article  PubMed  CAS  Google Scholar 

  30. Villarini A, Pasanisi P, Traina A (2012) Lifestyle and breast cancer recurrences: the DIANA-5 trial. Tumori 98:1–18

    PubMed  CAS  Google Scholar 

  31. Adams SV, Newcomb PA, White E (2012) Dietary cadmium and risk of invasive postmenopausal breast cancer in the VITAL cohort. Cancer Causes Control 23:845–854

    Google Scholar 

  32. DeVita VT Jr, Rosenberg SA (2012) Two hundred years of cancer research. N Engl J Med 366:2207–2214

    Article  PubMed  CAS  Google Scholar 

  33. Reiter RJ, Tan DX, Erren TC et al (2009) Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis. Integr Cancer Ther 8:354–360

    Article  PubMed  CAS  Google Scholar 

  34. Hansen J, Stevens RG (2011) Night shiftwork and breast cancer risk: overall evidence. Occup Environ Med 68:236–240

    Article  PubMed  Google Scholar 

  35. Blask DE, Dauchy RT, Brainard GC et al (2009) Circadian stage-dependent inhibition of human breast cancer metabolism and growth by the nocturnal melatonin signal: consequences of its disruption by light at night in rats and women. Integr Cancer Ther 8:347–353

    Article  PubMed  CAS  Google Scholar 

  36. Bartsch C, Bartsch H (2006) The anti-tumor activity of pineal melatonin and cancer enhancing life styles in industrialized societies. Cancer Causes Control 17:559–571

    Article  PubMed  Google Scholar 

  37. Kerenyi NA, Pandula E, Feuer G (1990) Why the incidence of cancer is increasing: the role of "light pollution". Med Hypotheses 33:75–78

    Article  PubMed  CAS  Google Scholar 

  38. Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562

    Article  PubMed  CAS  Google Scholar 

  39. Hansen J (2001) Increased breast cancer risk among women who work predominantly at night. Epidemiology 12:74–77

    Article  PubMed  CAS  Google Scholar 

  40. Bartsch C, Bartsch H, Jain AK et al (1981) Urinary melatonin levels in human breast cancer patients. J Neural Transm 52:281–294

    Article  PubMed  CAS  Google Scholar 

  41. Bartsch C, Bartsch H, Bellmann O et al (1991) Depression of serum melatonin in patients with primary breast cancer is not due to an increased peripheral metabolism. Cancer 67:1681–1684

    Article  PubMed  CAS  Google Scholar 

  42. Falkson G, Falkson HC, Steyn ME et al (1990) Plasma melatonin in patients with breast cancer. Oncology 47:401–405

    Article  PubMed  CAS  Google Scholar 

  43. Tamarkin L, Cohen M, Roselle D et al (1981) Melatonin inhibition and pinealectomy enhancement of 7–12 dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res 41:4432–4436

    PubMed  CAS  Google Scholar 

  44. Blask DE (1984) The pineal: an oncostatic gland? In: Reiter RJ (ed) The pineal gland. Raven Press, New York, pp 253–284

    Google Scholar 

  45. Saez MC, Barriga C, Garcia JJ et al (2005) Melatonin increases the survival time of animals with untreated mammary tumours: neuroendocrine stabilization. Mol Cell Biochem 278:15–20

    Article  PubMed  CAS  Google Scholar 

  46. Sanchez-Barcelo EJ, Cos S, Fernandez R et al (2003) Melatonin and mammary cancer: a short review. Endocr Relat Cancer 10:153–159

    Article  PubMed  CAS  Google Scholar 

  47. Kubatka P, Bojkova B, Kalicka K et al (2001) Preventive effects of raloxifene and melatonin in N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats. Neoplasma 48:313–319

    PubMed  CAS  Google Scholar 

  48. Pawlikowski M, Winczyk K, Karasek M (2002) Oncostatic action of melatonin: facts and question marks. Neuro Endocrinol Lett 23:24–29

    PubMed  CAS  Google Scholar 

  49. Cos S, Mediavilla D, Martinez-Campa C et al (2006) Exposure to light-at-night increases the growth of DMBA-induced mammary adenocarcinomas in rats. Cancer Lett 235:266–271

    Article  PubMed  CAS  Google Scholar 

  50. Anisimov VN (2003) The role of pineal gland in breast cancer development. Crit Rev Oncol Hematol 46:221–234

    Article  PubMed  Google Scholar 

  51. Blask DE, Pellettier DB, Hill SM et al (1991) Pineal melatonin inhibition of tumor promotion in the N-nitroso-N-methylurea model of mammary carcinogenesis: potential involvement of antiestrogenic mechanisms in vivo. J Cancer Res Clin Oncol 117:526–532

    Article  PubMed  CAS  Google Scholar 

  52. Palmer HJ, Paulson KE (1997) Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev 55:353–361

    Article  PubMed  CAS  Google Scholar 

  53. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381

    Article  PubMed  CAS  Google Scholar 

  54. Reiter RJ, Tan DX, Terron M et al (2007) Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 54:1–9

    PubMed  CAS  Google Scholar 

  55. Burns JK (1973) Administration of melatonin to non-human primates and to women with breast carcinoma. J Physiol 229:38–39

    Google Scholar 

  56. Di Bella L, Scalera G, Rossi MT (1979) Perspectives in pineal function. Prog Brain Res 52:475–478

    Article  PubMed  Google Scholar 

  57. Lissoni P, Barni S, Meregalli S et al (1995) Modulation of cancer endocrine therapy by melatonin: a phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br J Cancer 71:854–856

    Article  PubMed  CAS  Google Scholar 

  58. Lissoni P, Barni S, Cattaneo G et al (1991) Clinical results with the pineal hormone melatonin in advanced cancer resistant to standard antitumor therapies. Oncology 48:448–450

    Article  PubMed  CAS  Google Scholar 

  59. Lissoni P, Barni S, Tancini G et al (1994) A randomised study with subcutaneous low-dose interleukin 2 alone vs interleukin 2 plus the pineal neurohormone melatonin in advanced solid neoplasms other than renal cancer and melanoma. Br J Cancer 69:196–199

    Article  PubMed  CAS  Google Scholar 

  60. Lissoni P, Barni S, Ardizzoia A et al (1994) A randomized study with the pineal hormone melatonin versus supportive care alone in patients with brain metastases due to solid neoplasms. Cancer 73:699–701

    Article  PubMed  CAS  Google Scholar 

  61. Lissoni P, Barni S, Ardizzoia A et al (1992) Randomized study with the pineal hormone melatonin versus supportive care alone in advanced non small cell lung cancer resistant to a first-line chemotherapy containing cisplatin. Oncology 49:336–339

    Article  PubMed  CAS  Google Scholar 

  62. Lissoni P, Barni S, Crispino S et al (1989) Endocrine and immune effects of melatonin therapy in metastatic cancer patients. Eur J Cancer Clin Oncol 25:789–795

    Article  PubMed  CAS  Google Scholar 

  63. Lissoni P, Barni S, Tancini G et al (1987) Clinical study of melatonin in untreatable advanced cancer patients. Tumori 73:475–480

    PubMed  CAS  Google Scholar 

  64. Panzer A, Viljioen M (1997) The validity of melatonin as an oncostatic agent. J Pineal Res 22:184–207

    Article  PubMed  CAS  Google Scholar 

  65. Mills E, Wu P, Seely D, Guyatt G (2005) Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res 39:360–366

    Article  PubMed  CAS  Google Scholar 

  66. Bartsch C, Bartsch H, Karasek M (2002) Melatonin in clinical oncology. Neuro Endocrinol Lett 23(1):30–38

    PubMed  CAS  Google Scholar 

  67. Hill SM, Blask DE (1988) Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res 48:6121–6126

    PubMed  CAS  Google Scholar 

  68. Cos S, Blask DE, Lemus-Wilson A et al (1991) Effects of melatonin on the cell cycle kinetics and oestrogen rescue of MCF-7 human breast cancer cells in culture. J Pineal Res 10:36–42

    Article  PubMed  CAS  Google Scholar 

  69. Cos S, Recio J, Sanchez-Barcelo EJ (1996) Modulation of the cell cycle time of MCF-7 human breast cancer cells by melatonin. Life Sci 58:811–816

    Article  PubMed  CAS  Google Scholar 

  70. Cucina A, Proietti S, D’Anselmi F et al (2009) Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res 46:172–180

    Article  PubMed  CAS  Google Scholar 

  71. L’hermite-Baleriaux M, L’hermite M, Pasteels JM et al (1990) Effect of melatonin on the proliferation of human mammary cancer cell lines. Endocr Soc 140:59

    Google Scholar 

  72. Molis T, Muraoka HG, Castles C et al (1991) Growth regulatory effects of melatonin are linked to the oestrogen response pathway of human breast cancer cells. Endocr Soc 588:177

    Google Scholar 

  73. Shellard SA, Whelan RDH, Hill BT (1989) Growth inhibitory and cytotoxic effects of melatonin and its metabolites on human tumour cell lines in vitro. Br J Cancer 60:288–290

    Article  PubMed  CAS  Google Scholar 

  74. Bizzarri M, Cucina A, Valente MG et al (2003) Melatonin and vitamin D3 increase TGF-beta1 release and induce growth inhibition in breast cancer cell cultures. J Surg Res 110:332–337

    Article  PubMed  CAS  Google Scholar 

  75. Cos S, Fernandez F, Sanchez-Barcelo EJ (1996) Melatonin inhibits DNA synthesis in MCF-7 human breast cancer cells in vitro. Life Sci 58:2447–2453

    Article  PubMed  CAS  Google Scholar 

  76. Cos S, Sanchez-Barcelo EJ (2000) Melatonin and mammary pathological growth. Front Neuroendocrinol 21:133–170

    Article  PubMed  CAS  Google Scholar 

  77. Hill SM, Spriggs LL, Simon MA et al (1992) The growth inhibitory action of melatonin on human breast cancer cells is linked to the estrogen response system. Cancer Lett 64:249–256

    Article  PubMed  CAS  Google Scholar 

  78. Dauchy RT, Dauchy EM, Sauer LA et al (2004) Differential inhibition of fatty acid transport in tissue-isolated steroid receptor negative human breast cancer xenografts perfused in situ with isomers of conjugated linoleic acid. Cancer Lett 209:7–15

    Article  PubMed  CAS  Google Scholar 

  79. Blask DE (1993) Melatonin in oncology. In: Yu HS, Reiter RJ (eds) Melatonin. Biosynthesis, physiological effects, and clinical applications. CRC Press, Boca Raton, pp 447–475

  80. Brydon L, Roka F, Petit L (1999) Dual signaling of human Me11a melatonin receptors via Gi2, Gi3 and Gq/11 proteins. Mol Endocrinol 13:2025–2038

    Article  PubMed  CAS  Google Scholar 

  81. Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2:101–110

    Article  Google Scholar 

  82. Ram PT, Dai J, Yuan L et al (2002) Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett 179:141–150

    Article  PubMed  CAS  Google Scholar 

  83. Roka F, Brydon L, Waldhoer M (1999) Tight association of the human Mel (1a)-melatonin receptor and G (i): precoupling and constitutive activity. Mol Pharmacol 56:1014–1024

    PubMed  CAS  Google Scholar 

  84. Dubocovich ML (1988) Luzindole (N-0774): a novel melatonin receptor antagonist. J Pharmacol Exp Ther 246:902–910

    PubMed  CAS  Google Scholar 

  85. Dubocovich ML, Masana MI, Iacob S et al (1997) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch Pharmacol 355:365–375

    Article  PubMed  CAS  Google Scholar 

  86. Collins A, Yuan L, Kiefer TL et al (2003) Overexpression of the MT1 melatonin receptor in MCF-7 human breast cancer cells inhibits mammary tumour formation in nude mice. Cancer Lett 189:49–57

    Article  PubMed  CAS  Google Scholar 

  87. Yuan L, Collins AR, Dai J et al (2002) MT1 melatonin receptor overexpression enhances the growth suppressive effects of melatonin in human breast cancer cells. Mol Cell Endocrinol 192:147–156

    Article  PubMed  CAS  Google Scholar 

  88. Jawed S, Kim B, Ottenhof T et al (2007) Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur J Pharmacol 560:17–22

    Article  PubMed  CAS  Google Scholar 

  89. Bahia H, Ashman JN, Cawkwell L et al (2002) Karyotypic variation between independently cultured strains of the cell line MCF-7 identified by multicolour fluorescence in situ hybridization. Int J Oncol 20:489–494

    PubMed  CAS  Google Scholar 

  90. Hill SM, Cheng C, Yuan L et al (2011) Declining melatonin levels and MT1 receptor expression in aging rats is associated with enhanced mammary tumor growth and decreased sensitivity to melatonin. Breast Cancer Res Treat 127:91–98

    Article  PubMed  CAS  Google Scholar 

  91. Lai L, Yuan L, Chen Q et al (2008) The Gαi and Gαq proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res 45:476–488

    Article  PubMed  CAS  Google Scholar 

  92. Lai L, Yuan L, Cheng Q et al (2009) Alteration of the MT1 melatonin receptor gene and its expression in primary human breast tumors and breast cancer cell lines. Breast Cancer Res Treat 118:293–305

    Article  PubMed  CAS  Google Scholar 

  93. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N et al (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166

    Article  PubMed  CAS  Google Scholar 

  94. Pandi-Perumal SR, Trakht I, Srinivasan V et al (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85:335–353

    Google Scholar 

  95. Guerrero HY, Gauer F, Schuster C et al (2000) Melatonin regulates the mRNA expression of the mt1 melatonin receptor in the rat pars tuberalis. Neuroendocrinology 71:163–169

    Article  PubMed  CAS  Google Scholar 

  96. Gerdin MJ, Masana MI, Ren D et al (2003) Short-term exposure to melatonin differentially affects the functional sensitivity and trafficking of the hMT1 and hMT2 melatonin receptors. J Pharmacol Exp Ther 304:931–939

    Article  PubMed  CAS  Google Scholar 

  97. Baldwin SW, Travlos GS, Risinger JI et al (1998) Melatonin does not inhibit estradiol-stimulated proliferation in MCF-7 and BG-1 cells. Carcinogenesis 19:1895–1900

    Article  PubMed  CAS  Google Scholar 

  98. Reiter RJ, Tan DX, Manchester LC et al (2007) Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 52:11–28

    PubMed  CAS  Google Scholar 

  99. Bonnefont-Rousselot D, Collin F, Jore D, Gardès-Albert M (2011) Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. J Pineal Res 50:328–335

    Article  PubMed  CAS  Google Scholar 

  100. Kilic U, Yilmaz B, Ugur M et al (2012) Evidence that membrane-bound G protein-coupled melatonin receptors MT1 and MT2 are not involved in the neuroprotective effects of melatonin in focal cerebral ischemia. J Pineal Res 52:228–235

    Article  PubMed  CAS  Google Scholar 

  101. Tan DX, Manchester LC, Hardeland R et al (2003) Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 34:75–78

    Article  PubMed  CAS  Google Scholar 

  102. Hill SM, Blask DE (1986) Melatonin inhibition of MCF-7 breast cancer cell proliferation: influence of serum factors prolactin and oestradiol. Abstr Endocr Soc 863:246

    Google Scholar 

  103. Cos S, Sanchez-Barcelo EJ (1995) Melatonin inhibition of MCF-7 human breast cancer cells: influence of cell proliferation rate. Cancer Lett 93:207–212

    Article  PubMed  CAS  Google Scholar 

  104. Cos S, Sanchez-Barcelo EJ (1994) Differences between pulsatile or continuous exposure to melatonin on MCF-7 human breast cancer cell proliferation. Cancer Lett 85:105–109

    Article  PubMed  CAS  Google Scholar 

  105. Cos S, Blask DE (1990) Effects of melatonin on the anchorage-independent growth of human breast cancer cells (MCF-7) in a clonogenic culture system. Cancer Lett 50:115–119

    Article  PubMed  CAS  Google Scholar 

  106. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C (2012) Breast cancer therapy based on melatonin. Recent Pat Endocr Metab Immune Drug Discov 1(6):108–116

    Article  Google Scholar 

  107. Reiter RJ, Fraschini F (1969) Endocrine aspects of the mammalian pineal gland: a review. Neuroendocrinology 5:219–255

    Article  PubMed  CAS  Google Scholar 

  108. Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1:109–131

    Article  PubMed  CAS  Google Scholar 

  109. Barrett P, Bolborea M (2012) Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J Pineal Res 52:376–388

    Article  PubMed  CAS  Google Scholar 

  110. Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ et al (2003) Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci 8:1093–1108

    Article  Google Scholar 

  111. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in aetiology and treatment of breast cancer. Lancet 2:814–816

    Article  PubMed  CAS  Google Scholar 

  112. Tamura H, Nakamura Y, Terron MP (2008) Melatonin and pregnancy in the human. Reprod Toxicol 25:291–303

    Article  PubMed  CAS  Google Scholar 

  113. Tamura H, Nakamura Y, Korkmaz A et al (2009) Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 92:328–343

    Article  PubMed  CAS  Google Scholar 

  114. Kauppila A, Kivela A, Pakarinen A et al (1987) Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J Clin Endocrinol Metab 65:823–828

    Article  PubMed  CAS  Google Scholar 

  115. Aleandri V, Spina V, Morini A (1996) The pineal gland and reproduction. Hum Reprod Update 2:225–235

    Article  PubMed  CAS  Google Scholar 

  116. Luboshitzky R, Lavie P (1999) Melatonin and sex hormone interrelationships: a review. J Pediatr Endocrinol Metab 12:355–362

    Article  PubMed  CAS  Google Scholar 

  117. Woo MM, Tai CJ, Kang SK et al (2001) Direct action of melatonin in human granulosa-luteal cells. J Clin Endocrinol Metab 86:4789–4797

    Article  PubMed  CAS  Google Scholar 

  118. Soares JM, Masana MI, Ersahin C et al (2003) Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. J Pharmacol Exp Ther 306:694–702

    Article  PubMed  CAS  Google Scholar 

  119. Sanchez-Barcelo EJ, Cos S, Mediavilla D et al (2005) Melatonin–estrogen interactions in breast cancer. J Pineal Res 38:217–222

    Article  PubMed  CAS  Google Scholar 

  120. Ram PT, Yuan L, Dai J et al (2000) Differential responsiveness of MCF-7 human breast cancer cell line stocks to the pineal hormone melatonin. J Pineal Res 28:210–218

    Article  PubMed  CAS  Google Scholar 

  121. Del Rio B, Garcia Pedrero JM, Martinez-Campa C et al (2004) Melatonin an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem 279:38294–38302

    Article  PubMed  CAS  Google Scholar 

  122. Cos S, Fernandez R, Guezmes A et al (1998) Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res 58:4383–4390

    PubMed  CAS  Google Scholar 

  123. Wilson ST, Blask DE, Lemus-Wilson AM (1992) Melatonin augments the sensitivity of MCF-7 human breast cancer cells to tamoxifen in vitro. J Clin Endocrinol Metab 75:669–670

    Article  PubMed  CAS  Google Scholar 

  124. Mediavilla MD, Guezmez A, Ramos S et al (1997) Effects of melatonin on mammary gland lesions in transgenic mice overexpressing N-ras proto-oncogene. J Pineal Res 22:86–94

    Article  PubMed  CAS  Google Scholar 

  125. Kiefer TL, Lai L, Yuan L et al (2005) Differential regulation of estrogen receptor alpha, glucocorticoid, receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res 38:231–239

    Article  PubMed  CAS  Google Scholar 

  126. Garcia-Rato A, Garcia-Pedrero JM, Martinez MA et al (1999) Melatonin blocks the activation of estrogen receptor for DNA binding. FASEB J 13:857–868

    Google Scholar 

  127. Lawson NO, Wee BE, Blask DE et al (1992) Melatonin decreases estrogen receptor expression in the medial preoptic area of inbred (LSH/SsLak) golden hamsters. Biol Reprod 47:1082–1090

    Article  PubMed  CAS  Google Scholar 

  128. Ram PT, Dai J, Yuan L et al (2002) Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett 179:141–150

    Article  PubMed  CAS  Google Scholar 

  129. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  130. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    PubMed  CAS  Google Scholar 

  131. Benoit G, Cooney A, Giguere V et al (2006) International Union of Pharmacology LXVI. Orphan nuclear receptors. Pharmacol Rev 58:798–836

    Article  PubMed  CAS  Google Scholar 

  132. Mukherjee R, Davies PJ, Crombie DL et al (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386:407–410

    Article  PubMed  CAS  Google Scholar 

  133. Mukherjee R, Jow L, Croston GE et al (1997) Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 272:8071–8076

    Article  PubMed  CAS  Google Scholar 

  134. Mckenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators—an update. Endocrinology 143:2461–2465

    Article  PubMed  CAS  Google Scholar 

  135. Mckenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    Article  PubMed  CAS  Google Scholar 

  136. Becker-Andre M, Wiesemberg I, Schaeren-Wiemers N et al. (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534

    Google Scholar 

  137. Agez L, LaurentV Pevet P et al (2007) Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144:522–530

    Article  PubMed  CAS  Google Scholar 

  138. Park HT, Baek SY, Kim BS et al (1996) Developmental expression of ‘RZR beta, a putative nuclear-melatonin receptor’ mRNA in the suprachiasmatic nucleus of the rat. Neurosci Lett 217:17–20

    Article  PubMed  CAS  Google Scholar 

  139. Baler R, Coon S, Klein DC (1996) Orphan nuclear receptor RZRbeta: cyclic AMP regulates expression in the pineal gland. Biochem Biophys Res Commun 220:975–978

    Article  PubMed  CAS  Google Scholar 

  140. Naji L, Carillo-Vico A, Guerrero JM et al (2004) Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Sci 74:2227–2236

    Article  PubMed  CAS  Google Scholar 

  141. Bordji K, Grillasca JP, Gouze JN et al (2000) Evidence for the presence of peroxisome proliferator-activated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage. PPARgamma activation modulates the effects of interleukin-1beta on rat chondrocytes. J Biol Chem 275:12243–12250

    Article  PubMed  CAS  Google Scholar 

  142. Smirnov AN (2001) Nuclear melatonin receptors. Biochemistry 66:19–26

    PubMed  CAS  Google Scholar 

  143. Sharma R, Ottenhof T, Rzeczkowska PA et al (2008) Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res 45:277–284

    Article  PubMed  CAS  Google Scholar 

  144. Korkmaz A, Sanchez-Barcelo EJ, Tan DX et al (2009) Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat 115:13–27

    Article  PubMed  CAS  Google Scholar 

  145. Korkmaz A (2009) Epigenetic actions of melatonin. J Pineal Res 46:117–118

    Article  PubMed  CAS  Google Scholar 

  146. Korkmaz A, Tamura H, Manchester LC et al (2009) Combination of melatonin and a peroxisome proliferator-activated receptor-gamma agonist induces apoptosis in a breast cancer cell line. J Pineal Res 46:115–116

    Article  PubMed  CAS  Google Scholar 

  147. Aronika SM, Kraus WL, Katzenellenbogen BS (1994) Oestrogen action via the cAMP signalling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci USA 91:8517–8521

    Article  Google Scholar 

  148. Kiefer T, Ram PT, Yuan L, Hill SM (2002) Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat 71:37–45

    Article  PubMed  CAS  Google Scholar 

  149. Ram PT, Kiefer T, Silverman M et al (1998) Estrogen receptor transactivation in MCF-7 breast cancer cells by melatonin and growth factors. Mol Cell Endocrinol 141:53–64

    Article  PubMed  CAS  Google Scholar 

  150. Benítez-King G, Ríos A, Martínez A et al (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1290:191–196

    Article  PubMed  Google Scholar 

  151. Pozo D, Reiter RJ, Calvo JR et al (1997) Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 1(65):430–442

    Article  Google Scholar 

  152. Soto-Vega E, Ramírez-Rodríguez G, Benitez-King G (2004) Melatonin stimulates calmodulin phosphorylation by protein kinase C. J Pineal Res 37:98–106

    Article  PubMed  CAS  Google Scholar 

  153. Garcia-Pedrero JM, Martinez MA, Del Rio B et al (2002) Calmodulin is a selective modulator of estrogen receptors. Mol Endocrinol 16:947–960

    Article  PubMed  Google Scholar 

  154. Dai J, Inscho EW, Yuan L et al (2002) Modulation of intracellular calcium and calmodulin by melatonin in MCF-7 human breast cancer cells. J Pineal Res 32:112–119

    Article  PubMed  CAS  Google Scholar 

  155. Li Z, Kim SH, Higgins JMG et al (1999) IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 274:37885–37892

    Article  PubMed  CAS  Google Scholar 

  156. Blask DE (1997) Systemic, cellular and molecular aspects of melatonin action on experimental breast carcinogenesis. In: Stevens RG, Wilson BW, Anderson LE (eds) The melatonin hypothesis-breast cancer and use of electric power. Battel Press, Columbus, p 189–230

  157. Blask DE, Wilson ST, Zalatan F (1997) Physiological melatonin inhibition of human breast cancer cell growth in vitro: evidence for a glutathione-mediated Pathway. Cancer Res 57:1909–1914

    PubMed  CAS  Google Scholar 

  158. Leung MF, Chov IN (1989) Relationship between l-chloro-2,4-diitrobenzene induced cytoskeletal perturbations and cellular glutathione. Cell Biol Toxicol 5:51–99

    Article  PubMed  CAS  Google Scholar 

  159. Benitez-King G, Anton-Tay F (1993) Calmodulin mediates melatonin cytoskeletal effects. Experientia 49:635–641

    Article  PubMed  CAS  Google Scholar 

  160. Roth JA, Rabin R, Agnello K (1997) Melatonin suppression of PC12 cell growth and death. Brain Res 768:63–70

    Article  PubMed  CAS  Google Scholar 

  161. Yang QH, Xu YN, Xu RK et al (2007) Antiproliferative effects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res 42:172–179

    Article  PubMed  CAS  Google Scholar 

  162. Zhou D, Clarke P, Wang J et al (1996) Identification of a promoter that controls aromatase expression in human breast cancer and adipose stromal cells. J Biol Chem 271:15194–15202

    Article  PubMed  CAS  Google Scholar 

  163. Michael MD, Michael LF, Simpson ER (1997) A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol 134:147–156

    Article  PubMed  CAS  Google Scholar 

  164. Zhao Y, Aagarwal VR, Mendelson CR et al (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137:5739–5742

    Article  PubMed  CAS  Google Scholar 

  165. Cardinali DP, Bonanni Rey RA et al (1992) Diurnal changes in cyclic nucleotide response to pineal indoles in murine mammary glands. J Pineal Res 13:111–116

    Article  PubMed  CAS  Google Scholar 

  166. Cos S, Martinez-Campa C, Mediavilla MD et al (2005) Melatonin modulates aromatase activity in MCF-7 human breast cancer cells. J Pineal Res 38:136–142

    Article  PubMed  CAS  Google Scholar 

  167. Gonzalez A, Martinez-Campa C, Mediavilla MD et al (2007) Effects of MT1 melatonin receptor overexpression on the aromatase-suppressive effect of melatonin in MCF-7 human breast cancer cells. Oncol Rep 17:947–953

    PubMed  CAS  Google Scholar 

  168. Martinez- Campa C, Gonzalez A, Mediavilla MD et al (2005) Melatonin enhances the inhibitory effect of aminoglutethimide on aromatase activity in MCF-7 human breast cancer cells. Breast Cancer Res Treat 94:249–254

    Article  PubMed  CAS  Google Scholar 

  169. Ryde CM, Nicholls JE, Dowsett M (1992) Steroid and growth factor modulation of aromatase activity in MCF-7 and T47D breast carcinoma cell lines. Cancer Res 52:1411–1415

    PubMed  CAS  Google Scholar 

  170. Cos S, Blask DE (1994) Melatonin modulates growth factor activity in MCF-7 human breast cancer cells. J Pineal Res 17:25–32

    Article  PubMed  CAS  Google Scholar 

  171. Martinez-Campa C, Gonzalez A, Mediavilla MD et al (2009) Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 101:1613–1619

    Article  PubMed  CAS  Google Scholar 

  172. Suzuki T, Miki Y, Nakamura Y et al (2005) Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer 12:701–720

    Article  PubMed  CAS  Google Scholar 

  173. Suzuki T, Miki Y, Nakata T et al (2003) Steroid sulfatase and estrogen sulfotransferase in normal human tissue and breast cancer. J Steroid Biochem Mol Biol 86:449–454

    Article  PubMed  CAS  Google Scholar 

  174. Gonzalez A, Cos S, Martinez-Campa C et al (2008) Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res 45:86–92

    Article  PubMed  CAS  Google Scholar 

  175. Cai Z, Kwintkiewicz J, Young ME et al (2007) Prostaglandin E2 increases cyp19 expression in rat granulosa cells: implication of GATA-4. Mol Cell Endocrinol 263:181–189

    Article  PubMed  CAS  Google Scholar 

  176. Subbaramaiah K, Howe LR, Port ER et al (2006) HER-2/neu status is a determinant of mammary aromatase activity in vivo: evidence for a cyclooxygenase-2-dependent mechanism. Cancer Res 66:5504–5511

    Article  PubMed  CAS  Google Scholar 

  177. Dong WG, Mei Q, Yu JP et al (2003) Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J Gastroenterol 9:1307–1311

    PubMed  CAS  Google Scholar 

  178. Mrnka L, Hock M, Rybova M et al (2008) Melatonin inhibits prostaglandin E2 and sodium nitroprusside-induced ion secretion in rat distal colon. Eur J Pharmacol 581:164–170

    Article  PubMed  CAS  Google Scholar 

  179. Deng WG, Tang ST, Tseng HP et al (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108:518–5124

    Article  PubMed  CAS  Google Scholar 

  180. Mohan N, Sadeghi K, Reiter RJ et al (1995) The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int 37:1063–1070

    PubMed  CAS  Google Scholar 

  181. Chuang JI, Mohan N, Meltz ML et al (1996) Effect of melatonin on NF-kappa-B DNA-binding activity in the rat spleen. Cell Biol Int 20:687–692

    Article  PubMed  CAS  Google Scholar 

  182. Esposito E, Iacono A, Muia C et al (2008) Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. J Pineal Res 44:78–87

    PubMed  CAS  Google Scholar 

  183. Crowe DL, Chandraratna RA (2004) A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res 6:R546–R555

    Article  PubMed  CAS  Google Scholar 

  184. Fan W, Yanase T, Morinaga H et al (2005) Activation of peroxisome proliferator-activated receptor-gamma and retinoid X receptor inhibits aromatase transcription via nuclear factor kappa B. Endocrinology 146:85–92

    Article  PubMed  CAS  Google Scholar 

  185. Molis TM, Spriggs LL, Jupiter Y (1995) Melatonin modulation of estrogen-regulated proteins, growth factors, and proto-oncogenes in human breast cancer. J Pineal Res 18:93–103

    Article  PubMed  CAS  Google Scholar 

  186. Calnaan DPK, Westley BR, May FEB et al (1999) The trefoil peptide TFF1 inhibits the growth of the human gastric adenocarcinoma cell line AGS. J Pathol 188:312–317

    Article  Google Scholar 

  187. Henry JA, Piggott NH, Mallick UK et al (1990) PNR-2/pS2 immunohistochemical staining in breast cancer: correlation with prognostic factors and endocrine response. Br J Cancer 4:615–622

    Google Scholar 

  188. Barnes DM, Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat 52:1–15

    Article  PubMed  CAS  Google Scholar 

  189. Cicatiello L, Addeo R, Sasso A (2004) Oestrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/oestrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 24:7260–7274

    Article  PubMed  CAS  Google Scholar 

  190. Fu M, Wang C, Li Z, Sakamaky T et al (2004) Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145:5439–5447

    Article  PubMed  CAS  Google Scholar 

  191. Fu M, Rao M, Bouras T et al (2005) Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280:16934–16941

    Article  PubMed  CAS  Google Scholar 

  192. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  193. Cini G, Neri B, Pacini A et al (2005) Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J Pineal Res 39:12–20

    Article  PubMed  CAS  Google Scholar 

  194. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  PubMed  CAS  Google Scholar 

  195. Mediavilla MD, Cos S, Sanchez-Barcelo EJ (1999) Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci 65:415–420

    Article  PubMed  CAS  Google Scholar 

  196. Rimler A, Matzkin H, Zisapel N (1999) Cross talk between melatonin and TGF-1 in human benign prostate epithelial cells. Prostate 40:211

    Article  PubMed  CAS  Google Scholar 

  197. Molis TM, Priggs LL, Hill SM (1994) Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells. Mol Endocrinol 8:1683–1690

    Article  Google Scholar 

  198. Czeczuga-Semeniuk E, Anchim T, Dziecioł J et al (2004) Can transforming growth factor-β1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells? Acta Biochim Pol 51:733–745

    PubMed  CAS  Google Scholar 

  199. Blask DE, Sauer LA, Dauchy RT (2002) Melatonin as a chronobiotic/anticanceragent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem 2:113–132

    Article  PubMed  CAS  Google Scholar 

  200. Leon-Blanco MM, Guerrero JM, Reiter JR et al (2003) Melatonin inhibits telomerase activity in the MCF-7 tumour cell line both in vitro and in vivo. J Pineal Res 35:204–211

    Article  PubMed  CAS  Google Scholar 

  201. Martinez-Campa CM, Alonso-Gonzalez C, Mediavilla MD et al (2008) Melatonin down-regulates hTERT expression induced by either natural estrogens (17b-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells. Cancer Lett 268:272–277

    Article  PubMed  CAS  Google Scholar 

  202. Leon-Blanco MM, Guerrero JM, Reiter RJ et al (2004) RNA expression of human telomerase subunits TR and TERT is differentially affected by melatonin receptor agonists in the MCF-7 tumor cell line. Cancer Lett 216:73–80

    Article  PubMed  CAS  Google Scholar 

  203. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309

    Article  PubMed  CAS  Google Scholar 

  204. Reiter RJ (2004) Mechanisms of cancer inhibition by melatonin. J Pineal Res 37:213–214

    Article  PubMed  CAS  Google Scholar 

  205. Sainz RM, Mayo JC, Rodriguez C et al (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60:1407–1426

    Article  PubMed  CAS  Google Scholar 

  206. Sánchez-Hidalgo M, Guerrero JM, Villegas I (2012) Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem (in press)

  207. Karasek M, Winczyk K, Kunert-Radk J et al (1998) Antiproliferative effects of melatonin and CGP52608 on the murine colon 38 adenocarcinoma in vitro and in vivo. Neuroendocrinol Lett 19:71–78

    CAS  Google Scholar 

  208. Winczyk K, Pawlikowski M, Lawnicka H et al (2002) Effects of melatonin and melatonin receptors ligand N-[(4-methoxy-1H-indol-2yl) methyl] propanamide on murine Colon 38 cancer growth in vitro and in vivo. Neuroendocrinol Lett 1:50–54

    Google Scholar 

  209. Motilva V, García-Mauriño S, Talero E et al (2011) New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. J Pineal Res 51:44–60

    Article  PubMed  CAS  Google Scholar 

  210. Carbajo-Pescador S, García-Palomo A, Martín-Renedo J et al (2011) Melatonin modulation of intracellular signaling pathways in hepatocarcinoma HepG2 cell line: role of the MT1 receptor. J Pineal Res 51:463–471

    Article  PubMed  CAS  Google Scholar 

  211. Garcia-Santos G, Antolin I, Herrera F et al (2006) Melatonin induces apoptosis in human neuroblastoma cancer cells. J Pineal Res 41:130–135

    Article  PubMed  CAS  Google Scholar 

  212. El-Missiry MA, Abd EL-Aziz AF (2000) Influence of melatonin on proliferation and antioxidant system in Ehrlich ascites carcinoma cells. Cancer Lett 151:119–125

    Article  PubMed  CAS  Google Scholar 

  213. Rubio S, Estevez F, Cabrera J et al (2007) Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. J Pineal Res 42:131–138

    Article  PubMed  CAS  Google Scholar 

  214. Trubiani O, Recchioni R, Moroni F et al (2005) Melatonin provokes cell death in human B-lymphoma cells by mitochondrial-dependent apoptotic pathway activation. J Pineal Res 39:425–431

    Article  PubMed  CAS  Google Scholar 

  215. Leja-Szpak A, Jaworek J, Pierzchalski P et al (2010) Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49:248–255

    Article  PubMed  CAS  Google Scholar 

  216. Gonzalez A, del Castillo-Vaquero A, Miro-Moran A et al (2011) Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 50:250–260

    Article  PubMed  CAS  Google Scholar 

  217. Um HJ, Park JW, Kwon TK (2011) Melatonin sensitizes Caki renal cancer cells to kahweol-induced apoptosis through CHOP-mediated up-regulation of PUMA. J Pineal Res 50:359–366

    Article  PubMed  CAS  Google Scholar 

  218. Wolfler A, Caluba HC, Abuja PM et al (2001) Prooxidant activity of melatonin promotes fas-induced cell death in human leukemic Jurkat cells. FEBS Lett 502:127–131

    Article  PubMed  CAS  Google Scholar 

  219. Bejarano I, Espino J, Barriga C et al (2011) Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108:14–20

    Article  PubMed  CAS  Google Scholar 

  220. Casado-Zapico S, Martín V, García-Santos G et al (2011) Regulation of the expression of death receptors and their ligands by melatonin in haematological cancer cell lines and in leukaemia cells from patients. J Pineal Res 50:345–355

    Article  PubMed  CAS  Google Scholar 

  221. Cos S, Mediavilla MD, Fernandez R et al (2002) Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res 32:90–96

    Article  PubMed  CAS  Google Scholar 

  222. Czeczuga-Semeniuk E, Wołczyński S, Anchim T et al (2002) Effect of melatonin and all-trans retinoic acid on the proliferation and induction of the apoptotic pathway in the culture of human breast cancer cell line MCF-7. Pol J Pathol 53:59–65

    PubMed  CAS  Google Scholar 

  223. Eck-Enriquez KM, Yuan L, Duffy L et al (1998) A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells. Br J Cancer 77:2129–2137

    Article  Google Scholar 

  224. Eck-Enriquez KM, Kiefer TL, Spriggs LL et al (2000) Pathways through which a regimen of melatonin and retinoic acid induces apoptosis in MCF-7 human breast cancer cells. Breast Cancer Res Treat 61:229–239

    Article  PubMed  CAS  Google Scholar 

  225. Abd El-Aziz MA, Hassan HA, Mohamed MH et al (2005) The biochemical and morphological alterations following administration of melatonin, retinoic acid and Nigella sativa in mammary carcinoma: an animal model. Int J Exp Pathol 86:383–396

    Article  CAS  Google Scholar 

  226. Momand J, Wu HH, Dasgupta G (2000) MDM2–master regulator of the p53 tumor suppressor protein. Gene 242:15–29

    Article  PubMed  CAS  Google Scholar 

  227. RozieresS DE, Maya R, Oren M et al (2000) The loss of MDM2 induces p53-mediated apoptosis. Oncogene 19:1691–1697

    Article  CAS  Google Scholar 

  228. Inoue T, Geyer RK, Yu ZK et al (2001) Downregulation of MDM2 stabilizes p53 by inhibiting p53 ubiquitination in response to specific alkylating agents. FEBS Lett 490:196–201

    Article  PubMed  CAS  Google Scholar 

  229. Proietti S, Cucina A, D’Anselmi F et al (2011) Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J Pineal Res 50:150–158

    PubMed  CAS  Google Scholar 

  230. Lopez-Burillo S, Tan DX, Mayo JC et al (2003) Melatonin, xanthurenic acid, resveratrol, EGCG, vitamin C and a-lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents: a study of their individual and synergistic actions. J Pineal Res 34:269–277

    Article  PubMed  CAS  Google Scholar 

  231. Mao L, Yuan L, Hill SM. Inhibition of cell proliferation and blockade of cell invasion by melatonin in human breast cancer cells mediated through multiple signaling pathways. Paper presented at: 97th annual meeting of the American Association for Cancer Research 2006 Washington, DC. Abstract 495

  232. Cos S, Fernandez R (2000) Melatonin effects on intercellular junctional communication in MCF-7 human breast cancer cells. J Pineal Res 29:166–171

    Article  PubMed  CAS  Google Scholar 

  233. Trosko JE, Chang CC, Madhukar BV et al (1990) Chemical, oncogene and growth factor inhibition of gap junctional intercellular communication: an integrative hypothesis of carcinogenesis. Pathobiology 58:265–278

    Article  PubMed  CAS  Google Scholar 

  234. Hamada J, Takeichi N, Kobayashi H (1987) Inverse correlation between the metastatic capacity of cell clones derived from a rat mammary carcinoma and their intercellular communication with normal fibroblasts. Gann 78:1175–1178

    PubMed  CAS  Google Scholar 

  235. Crespo D, Fernandez-Viadero C, Verdura R et al (1994) Interaction between melatonin and estradiol on morphological and morphometric features of MCF-7 human breast cancer cells. J Pineal Res 16:215–222

    Article  PubMed  CAS  Google Scholar 

  236. Swarnakar R, Paul S, Singh LP et al (2011) Matrix metalloproteinases in health and disease: regulation by melatonin. J Pineal Res 50:8–20

    Article  PubMed  CAS  Google Scholar 

  237. Sainz RM, Mayo JC, Tan DX et al (2005) Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63:29–43

    Article  PubMed  CAS  Google Scholar 

  238. Rodriguez-Garcia A, Mayo JC, Heria D et al (2012) Phenotypic changes caused by melatonin increased sensitivity of prostate cancer cells to cytokine-induced apoptosis. J Pineal Res (in press)

  239. Roberts K (1974) Cytoplasmic microtubules and their functions. Prog Biophys Mol Biol 28:371–420

    Article  PubMed  CAS  Google Scholar 

  240. Ingber DE (2003) Tensegrity, II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    Article  PubMed  CAS  Google Scholar 

  241. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature Rev Mol Cell Biol 10:75–82

    Article  CAS  Google Scholar 

  242. Pourati J, Maniotis A, Speigel DM et al (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol 274:C1283–C1289

    PubMed  CAS  Google Scholar 

  243. Hammond TG, Lewis FC, Goodwin TJ et al (1999) Gene expression in space. Nat Med 5:359

    Article  PubMed  CAS  Google Scholar 

  244. Stein GS, Van Wijnen AJ, Stein JL et al (1999) Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions. FASEB 13:S157–S166

    CAS  Google Scholar 

  245. Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  246. Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261:91–103

    Article  PubMed  CAS  Google Scholar 

  247. D’Anselmi F, Valerio MC, Cucina A et al (2011) Metabolism and cell shape in cancer: a fractal analysis. Int J Biochem Cell Biol 43:1052–1058

    Article  PubMed  CAS  Google Scholar 

  248. Raz A, Geiger B (1982) Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res 42:5183–5190

    PubMed  CAS  Google Scholar 

  249. Benitez-King G, Tunez I, Bellon A et al (2003) Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E−115 cells. Exp Neurol 182:151–159

    Article  PubMed  CAS  Google Scholar 

  250. Wang LH (2004) Molecular signaling regulating anchorage independent growth of cancer cells. Mt Sinai J Med 71:361–367

    PubMed  Google Scholar 

  251. Bharadwaj S, Thanawala R, Bon G et al (2005) Resensitization of breast cancer cells to anoikis by tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene 24:8291–8303

    Article  PubMed  CAS  Google Scholar 

  252. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32

    Article  PubMed  CAS  Google Scholar 

  253. Huerto-Delgadillo L, Anton-Tay F, Benitez-King G (1994) Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist. J Pineal Res 17:55–62

    Article  PubMed  CAS  Google Scholar 

  254. Benitez-King G, Soto-Vega E, Ramirez-Rodriguez G (2009) Melatonin modulates microfilament phenotypes in cancer cells: implications for adhesion and inhibition of cancer cell migration. Histol Histopathol 24:789–799

    PubMed  CAS  Google Scholar 

  255. Ortiz-Lopez L, Morales-Mulia S, Ramiraz-Rodriguez G et al (2009) ROCK-regulated cytoskeletal dynamics participate in the inhibitory effect of melatonin on cancer cell migration. J Pineal Res 46:15–21

    Article  PubMed  CAS  Google Scholar 

  256. Ramirez-Rodriguez G, Meza I, Hernandez ME et al (2003) Melatonin induced cyclic modulation of vectorial water transport in kidney-derived MDCK cells. Kidney Int 63:1356–1364

    Article  PubMed  CAS  Google Scholar 

  257. Ramirez-Rodriguez G, Ortiz-Lopez L, Benitez-King G (2007) Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C. J Pineal Res 42:180–190

    Article  PubMed  CAS  Google Scholar 

  258. Yuan J, Shi GX, Shao Y et al (2008) Calmodulin bound to stress fibers but not microtubules involves regulation of cell morphology and motility. Int J Biochem Cell Biol 40:284–293

    Article  PubMed  CAS  Google Scholar 

  259. Benitez-King G (2006) Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res 40:1–9

    Article  PubMed  CAS  Google Scholar 

  260. Lee SE, Kim SJ, Youn JP et al (2011) MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 51:345–352

    Article  PubMed  CAS  Google Scholar 

  261. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C et al (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 21:819–831

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Bizzarri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proietti, S., Cucina, A., Reiter, R.J. et al. Molecular mechanisms of melatonin’s inhibitory actions on breast cancers. Cell. Mol. Life Sci. 70, 2139–2157 (2013). https://doi.org/10.1007/s00018-012-1161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1161-8

Keywords

Navigation