Skip to main content

Advertisement

Log in

Transcriptomic profiling of nonneoplastic cortical tissues reveals epileptogenic mechanisms in dysembryoplastic neuroepithelial tumors

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Low-grade dysembryoplastic neuroepithelial tumors (DNTs) are a frequent cause of drug-refractory epilepsy. Molecular mechanisms underlying seizure generation in these tumors are poorly understood. This study was conducted to identify altered genes in nonneoplastic epileptogenic cortical tissues (ECTs) resected from DNT patients during electrocorticography (ECoG)-guided surgery. RNA sequencing (RNAseq) was used to determine the differentially expressed genes (DEGs) in these high-spiking ECTs compared to non-epileptic controls. A total of 477 DEGs (180 upregulated; 297 downregulated) were observed in the ECTs compared to non-epileptic controls. Gene ontology analysis revealed enrichment of genes belonging to the following Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: (i) glutamatergic synapse; (ii) nitrogen metabolism; (iii) transcriptional misregulation in cancer; and (iv) protein digestion and absorption. The glutamatergic synapse pathway was enriched by DEGs such as GRM4, SLC1A6, GRIN2C, GRM2, GRM5, GRIN3A, and GRIN2B. Enhanced glutamatergic activity was observed in the pyramidal neurons of ECTs, which could be attributed to altered synaptic transmission in these tissues compared to non-epileptic controls. Besides glutamatergic synapse, altered expression of other genes such as GABRB1 (synapse formation), SLIT2 (axonal growth), and PROKR2 (neuron migration) could be linked to epileptogenesis in ECTs. Also, upregulation of GABRA6 gene in ECTs could underlie benzodiazepine resistance in these patients. Neural cell-type–specific gene set enrichment analysis (GSEA) revealed transcriptome of ECTs to be predominantly contributed by microglia and neurons. This study provides first comprehensive gene expression profiling of nonneoplastic ECTs of DNT patients and identifies genes/pathways potentially linked to epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The RNA sequencing data is available in the NCBI’s Sequence Read Archive repository (BioProject: PRJNA612403). Reviewer’s link: https://dataview.ncbi.nlm.nih.gov/object/PRJNA612403?reviewer=1vj1su65ui3g88llq6106s8jjv.

Abbreviations

LEATs:

Low-grade epilepsy-associated tumors

DNTs:

Dysembryoplastic neuroepithelial tumors

ECTs:

Epileptogenic cortical tissues

RNAseq:

RNA sequencing

DEGs:

Differentially expressed genes

GSEA:

Gene set enrichment analysis

GO:

Gene ontology

ECoG:

Electrocorticography

MRI:

Magnetic resonance imaging

EEG:

Electroencephalography

PET:

Positron emission tomography

MEG:

Magnetoencephalography

EPSCs:

Excitatory postsynaptic currents

TLE:

Temporal lobe epilepsy

References

  • Akbar MT, Rattray M, Powell JF, Meldrum BS (1996) Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats. Brain Res Mol Brain Res 43(1–2):105–116

    Article  PubMed  CAS  Google Scholar 

  • Aronica E, Yankaya B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA et al (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27(3):223–237

    Article  PubMed  CAS  Google Scholar 

  • Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Ramkema M et al (2003) Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in Taylor-type focal cortical dysplasia. Epilepsia 44(6):785–795

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Wendling F, Regis J (2009) Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain 132:3072–3086

    Article  PubMed  Google Scholar 

  • Banerjee J, Banerjee Dixit A, Tripathi M, Sarkar C, Gupta YK et al (2015) Enhanced endogenous activation of NMDA receptors in pyramidal neurons of hippocampal tissues from patients with mesial temporal lobe epilepsy: a mechanism of hyper excitation. Epilepsy Res 117:11–16

    Article  PubMed  CAS  Google Scholar 

  • Banerjee J, Dixit AB, Srivastava A, Ramanujam B, Kakkar A, Sarkar C et al (2017) Altered glutamatergic tone reveals two distinct resting state networks at the cellular level in hippocampal sclerosis. Sci Rep 7(1):319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barba C, Coras R, Giordano F, Buccoliero AM, Genitori L, Blümcke I et al (2011) Intrinsic epileptogenicity of gangliogliomas may be independent from co-occurring focal cortical dysplasia. Epilepsy Res 97(1–2):208–213

    Article  PubMed  Google Scholar 

  • Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H et al (2017) Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 140(6):1692–1705

    Article  PubMed  Google Scholar 

  • Blumcke I, Aronica E, Becker A, Capper D, Coras R, Honavar M et al (2016) Low-grade epilepsy-associated neuroepithelial tumours - the 2016 WHO classification. Nat Rev Neurol 12:732–740

    Article  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Copani A, Cespédes VM, Galindo MF, Ceña V et al (2001) An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci 13(8):1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Chang HJ, Yoo BC, Lim SB, Jeong SY, Kim WH, Park JG (2005) Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin Cancer Res 11(9):3288–3295

    Article  PubMed  CAS  Google Scholar 

  • Chassoux F, Devaux B, Landre E (2000) Stereoelectroencephalography in focal cortical dysplasia: a 3D approach to delineating the dysplastic cortex. Brain 123(Pt 8):1733–1751

    Article  PubMed  Google Scholar 

  • Chassoux F, Landré E, Mellerio C, Laschet J, Devaux B, Daumas-Duport C (2013) Dysembryoplastic neuroepithelial tumors: epileptogenicity related to histologic subtypes. Clin Neurophysiol 124(6):1068–1078

    Article  PubMed  Google Scholar 

  • Choi H, Kim YK, Oh SW, Im H-J, Hwang DW, Kang H et al (2014) In vivo imaging of mGluR5 changes during epileptogenesis using [11C]ABP688 PET in pilocarpine-induced epilepsy rat model. PLoS ONE 9(3):e92765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cossu M, Fuschillo D, Bramerio M, Galli C, Gozzo F, Pelliccia V et al (2013) Epilepsy surgery of focal cortical dysplasia-associated tumors. Epilepsia 54(Suppl 9):115–122

    Article  PubMed  Google Scholar 

  • Crino PB, Duhaime AC, Baltuch G, White R (2001) Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 56(7):906–913

    Article  PubMed  CAS  Google Scholar 

  • Daggett LP, Johnson EC, Varney MA, Lin FF, Hess SD, Deal CR et al (1998) The human N-methyl-D-aspartate receptor 2C subunit: genomic analysis, distribution in human brain, and functional expression. J Neurochem 71:1953–1968

    Article  PubMed  CAS  Google Scholar 

  • Dalby NO, Thomsen C (1996) Modulation of seizure activity in mice by metabotropic glutamate receptor ligands. J Pharmacol Exp Ther 276(2):516–522

    PubMed  CAS  Google Scholar 

  • Delev D, Daka K, Heynckes S, Gaebelein A, Franco P, Pfeifer D et al (2020) Long-term epilepsy-associated tumors: transcriptional signatures reflect clinical course. Sci Rep 10(1):96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit AB, Sharma D, Tripathi M, Srivastava A, Paul D, Prakash D, Sarkar C, Kumar K, Banerjee J, Chandra PS (2018) Genome-wide DNA methylation and RNAseq analyses identify aberrant signalling pathways in focal cortical dysplasia (FCD) type II. Sci Rep 8(1):17976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DuBois JM, Rousset OG, Guiot MC et al (2016) Metabotropic glutamate receptor type 5 (mGluR5) cortical abnormalities in focal cortical dysplasia Identified In vivo with [11C]ABP688 positron-emission tomography (PET) imaging. Cereb Cortex 26(11):4170–4179

    Article  PubMed  PubMed Central  Google Scholar 

  • Ermolinsky B, Pacheco Otalora LF, Arshadmansab MF, Zarei MM, Garrido-Sanabria ER (2008) Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: a comparative real-time PCR analysis. Brain Res 1226:173–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrier C, Aronica E, Leijten FSS, Spliet WGM, Van Huffelen AC, Van Rijen PC et al (2006) Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia. Epilepsia 47:1477–1486

    Article  PubMed  Google Scholar 

  • Goldstein ED, Feyissa AM (2018) Brain tumor related-epilepsy. Neurol Neurochir Pol 52(4):436–447

    Article  PubMed  Google Scholar 

  • Iacovelli L, Arcella A, Battaglia G, Pazzaglia S, Aronica E, Spinsanti P et al (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors inhibits the growth of medulloblastomas. J Neurosci 26(32):8388–8397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iijima K, Abe H, Okazawa M, Moriyoshi K, Nakanishi S (2008) Dual regulation of NR2B and NR2C expression by NMDA receptor activation in mouse cerebellar granule cell cultures. Proc Natl Acad Sci USA 105(33):12010–12015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadotani H, Hirano T, Masugi M, Nakamura K, Nakao K, Katsuki M et al (1996) Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 16(24):7859–7867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MS, Yamashita K, Baek JH, Park HL, Carvalho AL, Osada M et al (2006) N-methyl-D-aspartate receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer. Cancer Res 66(7):3409–3418

    Article  PubMed  CAS  Google Scholar 

  • Kirschstein T, Bauer M, Muller L, Rüschenschmidt C, Reitze M, Becker AJ et al (2007) Loss of metabotropic glutamate receptor-dependent long-term depression via downregulation of mGluR5 after status epilepticus. J Neurosci 27(29):7696–7704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Lee BL, Joo EY, Seo DW, Hong SB, Hong S-C et al (2009) Dysembryoplastic neuroepithelial tumors in pediatric patients. Brain Dev 31:671–681

    Article  PubMed  Google Scholar 

  • Lie AA, Becker A, Behle K, Beck H, Malitschek B, Conn PJ et al (2000) Up-regulation of the metabotropic glutamate receptor mGluR4 in hippocampal neurons with reduced seizure vulnerability. Ann Neurol 47(1):26–35

    Article  PubMed  CAS  Google Scholar 

  • Marianowski R, Pollard H, Moreau J, Després G, Ben Ari Y, Tran Ba Huy P et al (1995) N-Methyl-D-aspartate receptor subunits NR1 and NR2C are overexpressed in the inferior colliculus of audiogenic mice. Neurosci Lett 189(3):190–194

    Article  PubMed  CAS  Google Scholar 

  • Markert JM, Fuller CM, Gillespie GY, Bubien JK, McLean LA, Hong RL et al (2001) Differential gene expression profiling in human brain tumors. Physiol Genomics 5(1):21–33

    Article  PubMed  CAS  Google Scholar 

  • Mathern GW, Pretorius JK, Leite JP, Kornblum HI, Mendoza D, Lozada A, Bertram EH 3rd (1998) Hippocampal AMPA and NMDA mRNA levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy. Epilepsy Res 32(1–2):154–171

    Article  PubMed  CAS  Google Scholar 

  • Mathern GW, Cepeda C, Hurst RS, Flores-Hernandez J, Mendoza D, Levine MS (2000) Neurons recorded from pediatric epilepsy surgery patients with cortical dysplasia. Epilepsia 41(Suppl 6):62–67

    Google Scholar 

  • McKenzie AT, Wang M, Hauberg ME, Fullard JF, Kozlenkov A, Keenan A et al (2018) Brain cell type specific gene expression and co-expression network architectures. Sci Rep 8:8868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merlin LR (2002) Differential roles for mGluR1 and mGluR5 in the persistent prolongation of epileptiform bursts. J Neurophysiol 87(1):621–625

    Article  PubMed  CAS  Google Scholar 

  • Metcalf CS, Klein BD, Smith MD, Ceusters M, Lavreysen H, Pype S et al (2018) Potent and selective pharmacodynamic synergy between the metabotropic glutamate receptor subtype 2-positive allosteric modulator JNJ-46356479 and levetiracetam in the mouse 6-Hz (44-mA) model. Epilepsia 59(3):724–735

    Article  PubMed  CAS  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moddel G, Jacobson B, Ying Z, Janigro D, Bingaman W, González-Martínez J, Kellinghaus C, Prayson RA, Najm IM (2005) The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia. Brain Res 1046(1–2):10–23

    Article  PubMed  CAS  Google Scholar 

  • Morris HH, Matkovic Z, Estes ML, Prayson RA, Comair YG, Turnbull J et al (1998) Ganglioglioma and intractable epilepsy: clinical and neurophysiologic features and predictors of outcome after surgery. Epilepsia 39:307–313

    Article  PubMed  CAS  Google Scholar 

  • Navarrete-Modesto V, Orozco-Suárez S, Feria-Romero IA, Rocha L (2019) The molecular hallmarks of epigenetic effects mediated by antiepileptic drugs. Epilepsy Res 149:53–65

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pallud J, Le Van QM, Bielle F, Pellegrino C, Varlet P, Cresto N et al (2014) Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med 6(244):244ra89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasquier B, Péoc’ HM, Fabre-Bocquentin B, Bensaadi L, Pasquier D, Hoffmann D et al (2002) Surgical pathology of drug-resistant partial epilepsy. A 10-year-experience with a series of 327 consecutive resections. Epileptic Disord 4:99–119

    PubMed  Google Scholar 

  • Pitsch J, Schoch S, Gueler N, Flor PJ, van der Putten H, Becker AJ (2007) Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy. Neurobiol Dis 26(3):623–633

    Article  PubMed  CAS  Google Scholar 

  • Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A et al (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA Cytoscape and EnrichmentMap. Nat Protoc 14(2):482–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M et al (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132:435–445

    Article  PubMed  CAS  Google Scholar 

  • Stone TJ, Keeley A, Virasami A, Harkness W, Tisdall M, Izquierdo Delgado E et al (2018) Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours. Acta Neuropathol 135(1):115–129

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura H, Suzuki M, Moriya Y, Hoshino H, Okamoto T, Yoshida S et al (2011) Aberrant methylation of N-methyl-D-aspartate receptor type 2B (NMDAR2B) in non-small cell carcinoma. BMC Cancer 11:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tassi L, Garbelli R, Colombo N, Bramerio M, Lo Russo G, Deleo F et al (2010) Type I focal cortical dysplasia: surgical outcome is related to histopathology. Epileptic Disord 12(3):181–191

    Article  PubMed  Google Scholar 

  • Tripathi M, Garg A, Gaikwad S, Bal CS, Chitra S, Prasad K et al (2010) Intra-operative electrocorticography in lesional epilepsy. Epilepsy Res 89(1):133–141

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh HS, Johung TB, Caretti V et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161(4):803–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang T, Hakimian S, Schwartz TH (2014) Intraoperative ElectroCorticoGraphy (ECog): indications, techniques, and utility in epilepsy surgery. Epileptic Disord 16(3):271–279

    Article  PubMed  CAS  Google Scholar 

  • Ying Z, Babb TL, Comair YG, Bingaman W, Bushey M, Touhalisky K (1998) Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol 57(1):47–62

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The work in this study was generously supported by grants from the Office of the Principal Scientific Adviser to the Government of India wide sanction number: Prn.SA/Epilep/2017(G). The funder had no role in study design, data analysis, manuscript preparation, or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

KK designed the research, performed the experiments, analyzed the data, and wrote the paper; ABD designed the research and wrote the paper; MT designed the research and wrote the paper; VD performed the experiments; FS and MCS analyzed histopathological data; SL provided the autopsy samples; PSC provided DNT/glioma samples and wrote the paper; JB designed the research, performed experiments, analyzed the data, and wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jyotirmoy Banerjee.

Ethics declarations

Ethics approval

The study was pre-approved by the institutional human ethics committee (IHEC) of the All India Institute of Medical Sciences, New Delhi, and all the methods were performed in accordance with the relevant guidelines and regulations. A prior Informed written consent was obtained from all subjects, their parents, or legal guardians if the subjects were minor. We declare that we have followed the tenets of the Declaration of Helsinki in our study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Banerjee Dixit, A., Tripathi, M. et al. Transcriptomic profiling of nonneoplastic cortical tissues reveals epileptogenic mechanisms in dysembryoplastic neuroepithelial tumors. Funct Integr Genomics 22, 905–917 (2022). https://doi.org/10.1007/s10142-022-00869-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-022-00869-1

Keywords

Navigation