Skip to main content

Advertisement

Log in

Curc-mPEG454, a PEGylated Curcumin Derivative, Improves Anti-inflammatory and Antioxidant Activities: a Comparative Study

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We previously demonstrated that a PEGylated curcumin (Curc-mPEG454) significantly inhibited cyclooxygenase 2 (COX-2) expression and improved the progression of liver fibrosis. The current study systematically evaluates its anti-inflammatory and antioxidant activities in vitro in a comparative study with curcumin, aspirin, NS-398, and vitamin C. RAW264.7 murine macrophages were pretreated with Curc-mPEG454, curcumin, aspirin, NS-398, or vitamin C at the indicated concentration for 2 h; then, the cells were stimulated with 1 μg/mL lipopolysaccharide (LPS) for 24 h. The levels of pro-inflammatory cytokines and mediators, including IL-6, TNF-α, PGE2, NO, and GSH, and the activities of COX-2, SOD, and CAT, and the transcription factors involved in inflammation, such as NF-κB, c-Jun, and Nrf2, were measured. Curc-mPEG454 showed lower cytotoxicity (IC50 57.8 μM) when compared with that of curcumin (IC50 32.6 μM) and inhibited the release of the inflammatory cytokines IL-6, TNF-α, IL-1β, and MCP-1 in a concentration-dependent manner. At 16 μM, Curc-mPEG454 was most potent in the suppression of COX-2 expression at a transcriptional level rather than in the suppression of the catalytic activity of COX-2. Like curcumin, Curc-mPEG454 significantly reduced intracellular ROS production and enhanced the activities of SOD and CAT and the level of GSH to protect cells from LPS-induced oxidative injury. Further, its anti-inflammatory and antioxidation mechanisms are related to inhibition of NF-κB p65 nuclear translocation and c-Jun phosphorylation and to activation of Nrf2. Taken together, these findings indicate that PEGylation of curcumin not only improves its biological properties but also interferes with multiple targets involved in the inflammatory response. Curc-mPEG454 is a powerful and beneficial anti-inflammatory and antioxidant agent that merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PGE2:

Prostaglandin E2

COX-2:

Prostaglandin-endoperoxide synthase 2

LPS:

Lipopolysaccharide

ROS:

Reactive oxygen species

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

IL-6:

Interleukin 6

TNF-α:

Tumor necrosis factor alpha

IL-1β:

Interleukin 1 beta

MCP-1:

Monocyte chemoattractant protein 1

iNOS:

Nitric oxide synthase

NO:

Nitric oxide

PEG:

Polyethylene glycol

NSAID:

Non-steroidal anti-inflammatory drug

AP-1:

Activator protein 1

JNK:

c-Jun N-terminal kinase

HO-1:

Heme oxygenase-1

SOD:

Superoxide dismutase

CAT:

Catalase

GSH:

Glutathione

REFERENCES

  1. Aggarwal, B.B., and K.B. Harikumar. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology 41 (1): 40–59. https://doi.org/10.1016/j.biocel.2008.06.010.

    Article  CAS  Google Scholar 

  2. Balaji, S., and B. Chempakam. 2010. Toxicity prediction of compounds from turmeric (Curcuma longa L). Food and Chemical Toxicology 48 (10): 2951–2959. https://doi.org/10.1016/j.fct.2010.07.032.

    Article  CAS  PubMed  Google Scholar 

  3. Balogun, E., M. Hoque, P. Gong, E. Killeen, C.J. Green, R. Foresti, J. Alam, and R. Motterlini. 2003. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. The Biochemical Journal 371 (Pt 3): 887–895. https://doi.org/10.1042/bj20021619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bengmark, S. 2006. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: A shield against acute and chronic diseases. JPEN Journal of Parenteral and Enteral Nutrition 30 (1): 45–51.

    Article  CAS  PubMed  Google Scholar 

  5. Brouet, I., and H. Ohshima. 1995. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochemical and Biophysical Research Communications 206 (2): 533–540.

    Article  CAS  PubMed  Google Scholar 

  6. Carmona-Ramirez, I., A. Santamaria, J.C. Tobon-Velasco, M. Orozco-Ibarra, I.G. Gonzalez-Herrera, J. Pedraza-Chaverri, and P.D. Maldonado. 2013. Retracted: Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. The Journal of Nutritional Biochemistry 24 (1): 14–24. https://doi.org/10.1016/j.jnutbio.2011.12.010.

    Article  CAS  PubMed  Google Scholar 

  7. Chan, P.M., Y.S. Tan, K.H. Chua, V. Sabaratnam, and U.R. Kuppusamy. 2015. Attenuation of inflammatory mediators (TNF-alpha and nitric oxide) and up-regulation of IL-10 by wild and domesticated Basidiocarps of Amauroderma rugosum (Blume & T. Nees) Torrend in LPS-stimulated RAW264.7 cells. PLoS One 10 (10): e0139593. https://doi.org/10.1371/journal.pone.0139593.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen, C.C. 2006. Signal transduction pathways of inflammatory gene expressions and therapeutic implications. Current Pharmaceutical Design 12 (27): 3497–3508.

    Article  CAS  PubMed  Google Scholar 

  9. Cullinan, S.B., and J.A. Diehl. 2004. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. The Journal of Biological Chemistry 279 (19): 20108–20117. https://doi.org/10.1074/jbc.M314219200.

    Article  CAS  PubMed  Google Scholar 

  10. Dai, C., G.D. Ciccotosto, R. Cappai, S. Tang, D. Li, S. Xie, X. Xiao, and T. Velkov. 2016. Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Molecular Neurobiology. https://doi.org/10.1007/s12035-016-0276-6.

  11. Dai, C., B. Li, Y. Zhou, D. Li, S. Zhang, H. Li, X. Xiao, and S. Tang. 2016. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food and Chemical Toxicology 95: 52–63. https://doi.org/10.1016/j.fct.2016.06.025.

    Article  CAS  PubMed  Google Scholar 

  12. Dai, C., D. Li, L. Gong, X. Xiao, and S. Tang. 2016. Curcumin ameliorates furazolidone-induced DNA damage and apoptosis in human hepatocyte L02 cells by inhibiting ROS production and mitochondrial pathway. Molecules 21(8). https://doi.org/10.3390/molecules21081061.

  13. Das, L., and M. Vinayak. 2014. Curcumin attenuates carcinogenesis by down regulating proinflammatory cytokine interleukin-1 (IL-1alpha and IL-1beta) via modulation of AP-1 and NF-IL6 in lymphoma bearing mice. International Immunopharmacology 20 (1): 141–147. https://doi.org/10.1016/j.intimp.2014.02.024.

    Article  CAS  PubMed  Google Scholar 

  14. Fine, M. 2013. Quantifying the impact of NSAID-associated adverse events. The American Journal of Managed Care 19 (14 Suppl): s267–s272.

    PubMed  Google Scholar 

  15. Halliwell, B. 1992. Reactive oxygen species and the central nervous system. Journal of Neurochemistry 59 (5): 1609–1623.

    Article  CAS  PubMed  Google Scholar 

  16. Han, S.S., Y.S. Keum, H.J. Seo, and Y.J. Surh. 2002. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. Journal of Biochemistry and Molecular Biology 35 (3): 337–342.

    CAS  PubMed  Google Scholar 

  17. Hu, P., P. Huang, and M.W. Chen. 2013. Curcumin attenuates cyclooxygenase-2 expression via inhibition of the NF-kappaB pathway in lipopolysaccharide-stimulated human gingival fibroblasts. Cell Biology International 37 (5): 443–448. https://doi.org/10.1002/cbin.10050.

    Article  CAS  PubMed  Google Scholar 

  18. Hume, D.A., and D.P. Fairlie. 2005. Therapeutic targets in inflammatory disease. Current Medicinal Chemistry 12 (25): 2925–2929.

    Article  CAS  PubMed  Google Scholar 

  19. Ishihara, H. 2013. Current status and prospects of polyethyleneglycol-modified medicines. Biological & Pharmaceutical Bulletin 36 (6): 883–888.

    Article  CAS  Google Scholar 

  20. Kawahara, K., H. Hohjoh, T. Inazumi, S. Tsuchiya, and Y. Sugimoto. 2015. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochimica et Biophysica Acta 1851 (4): 414–421. https://doi.org/10.1016/j.bbalip.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, C.Y., N. Bordenave, M.G. Ferruzzi, A. Safavy, and K.H. Kim. 2011. Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property. Journal of Agricultural and Food Chemistry 59 (3): 1012–1019. https://doi.org/10.1021/jf103873k.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, H.R., D.Y. Shin, and K.H. Chung. 2015. The role of NF-kappaB signaling pathway in polyhexamethylene guanidine phosphate induced inflammatory response in mouse macrophage RAW264.7 cells. Toxicology Letters 233 (2): 148–155. https://doi.org/10.1016/j.toxlet.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, P., K. Sulakhiya, C.C. Barua, and N. Mundhe. 2017. TNF-alpha, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Molecular and Cellular Biochemistry 431 (1–2): 113–122. https://doi.org/10.1007/s11010-017-2981-5.

    Article  CAS  PubMed  Google Scholar 

  24. Kunnumakkara, A.B., D. Bordoloi, G. Padmavathi, J. Monisha, N.K. Roy, S. Prasad, and B.B. Aggarwal. 2017. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology 174 (11): 1325–1348. https://doi.org/10.1111/bph.13621.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, K.H., F. Abas, N.B. Alitheen, K. Shaari, N.H. Lajis, and S. Ahmad. 2011. A curcumin derivative, 2,6-bis(2,5-dimethoxybenzylidene)-cyclohexanone (BDMC33) attenuates prostaglandin E2 synthesis via selective suppression of cyclooxygenase-2 in IFN-gamma/LPS-stimulated macrophages. Molecules 16 (11): 9728–9738. https://doi.org/10.3390/molecules16119728.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, K.H., Y.L. Chow, V. Sharmili, F. Abas, N.B. Alitheen, K. Shaari, D.A. Israf, N.H. Lajis, and A. Syahida. 2012. BDMC33, a curcumin derivative suppresses inflammatory responses in macrophage-like cellular system: Role of inhibition in NF-kappaB and MAPK signaling pathways. International Journal of Molecular Sciences 13 (3): 2985–3008. https://doi.org/10.3390/ijms13032985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lev-Ari, S., Y. Maimon, L. Strier, D. Kazanov, and N. Arber. 2006. Down-regulation of prostaglandin E2 by curcumin is correlated with inhibition of cell growth and induction of apoptosis in human colon carcinoma cell lines. Journal of the Society for Integrative Oncology 4 (1): 21–26.

    PubMed  Google Scholar 

  28. Li, J., Y. Wang, C. Yang, P. Wang, D.K. Oelschlager, Y. Zheng, D.A. Tian, W.E. Grizzle, D.J. Buchsbaum, and M. Wan. 2009. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Molecular Pharmacology 76 (1): 81–90. https://doi.org/10.1124/mol.109.054551.

    Article  CAS  PubMed  Google Scholar 

  29. Lim, J.H., and T.K. Kwon. 2010. Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-kappaB transcriptional activity. Food and Chemical Toxicology 48 (1): 47–52. https://doi.org/10.1016/j.fct.2009.09.013.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Z., W. Dou, Y. Zheng, Q. Wen, M. Qin, X. Wang, H. Tang, et al. 2016. Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress. Molecular Medicine Reports 13 (2): 1717–1724. https://doi.org/10.3892/mmr.2015.4690.

    Article  CAS  PubMed  Google Scholar 

  31. Lo, C.J., H.G. Cryer, M. Fu, and F.R. Lo. 1998. Regulation of macrophage eicosanoid generation is dependent on nuclear factor kappaB. The Journal of Trauma 45 (1): 19–23 discussion 23-14.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, Y., L. Miao, Y. Wang, Z. Xu, Y. Zhao, Y. Shen, G. Xiang, and L. Huang. 2016. Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Molecular Therapy 24 (2): 364–374. https://doi.org/10.1038/mt.2015.165.

    Article  CAS  PubMed  Google Scholar 

  33. Marenco de la Fuente, J.L. 2005. Applications of monoclonal antibodies and biotechnology products in the treatment of chronic inflammatory diseases. Revista Clínica Española 205 (3): 127–136.

    Article  CAS  PubMed  Google Scholar 

  34. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203): 428–435. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  35. Nasef, N.A., S. Mehta, and L.R. Ferguson. 2017. Susceptibility to chronic inflammation: An update. Archives of Toxicology 91 (3): 1131–1141. https://doi.org/10.1007/s00204-016-1914-5.

    Article  CAS  PubMed  Google Scholar 

  36. Pandey, M.K., S. Kumar, R.K. Thimmulappa, V.S. Parmar, S. Biswal, and A.C. Watterson. 2011. Design, synthesis and evaluation of novel PEGylated curcumin analogs as potent Nrf2 activators in human bronchial epithelial cells. European Journal of Pharmaceutical Sciences 43 (1–2): 16–24. https://doi.org/10.1016/j.ejps.2011.03.003.

    Article  CAS  PubMed  Google Scholar 

  37. Prasad, S., S.C. Gupta, A.K. Tyagi, and B.B. Aggarwal. 2014. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnology Advances 32 (6): 1053–1064. https://doi.org/10.1016/j.biotechadv.2014.04.004.

    Article  CAS  PubMed  Google Scholar 

  38. Shishodia, S. 2013. Molecular mechanisms of curcumin action: Gene expression. BioFactors 39 (1): 37–55. https://doi.org/10.1002/biof.1041.

    Article  CAS  PubMed  Google Scholar 

  39. Shome, S., A.D. Talukdar, M.D. Choudhury, M.K. Bhattacharya, and H. Upadhyaya. 2016. Curcumin as potential therapeutic natural product: A nanobiotechnological perspective. The Journal of Pharmacy and Pharmacology 68 (12): 1481–1500. https://doi.org/10.1111/jphp.12611.

    Article  CAS  PubMed  Google Scholar 

  40. Singh, S., and B.B. Aggarwal. 1995. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. The Journal of Biological Chemistry 270 (42): 24995–25000.

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava, R., and R.C. Srimal. 1985. Modification of certain inflammation-induced biochemical changes by curcumin. The Indian Journal of Medical Research 81: 215–223.

    CAS  PubMed  Google Scholar 

  42. Strimpakos, A.S., and R.A. Sharma. 2008. Curcumin: Preventive and therapeutic properties laboratory studies and clinical trials. Antioxidants & Redox Signaling 10 (3): 511–545. https://doi.org/10.1089/ars.2007.1769.

    Article  CAS  Google Scholar 

  43. Taguchi, K., H. Motohashi, and M. Yamamoto. 2011. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes to Cells 16 (2): 123–140. https://doi.org/10.1111/j.1365-2443.2010.01473.x.

    Article  CAS  PubMed  Google Scholar 

  44. Takada, Y., A. Bhardwaj, P. Potdar, and B.B. Aggarwal. 2004. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 23 (57): 9247–9258. https://doi.org/10.1038/sj.onc.1208169.

    Article  CAS  PubMed  Google Scholar 

  45. Tang, H., C.J. Murphy, B. Zhang, Y. Shen, M. Sui, E.A. Van Kirk, X. Feng, and W.J. Murdoch. 2010. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: In vitro and in vivo effects. Nanomedicine (London, England) 5 (6): 855–865. https://doi.org/10.2217/nnm.10.67.

    Article  CAS  Google Scholar 

  46. Toda, S., T. Miyase, H. Arichi, H. Tanizawa, and Y. Takino. 1985. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull (Tokyo) 33 (4): 1725–1728.

    Article  CAS  Google Scholar 

  47. Tung, B.T., N.T. Hai, and P.K. Son. 2016. Developing and evaluating in vitro effect of poly(ethylene glycol) conjugated curcumin on human cancer cell lines. Current Drug Discovery Technologies 13 (4): 254–266.

    Article  CAS  PubMed  Google Scholar 

  48. Videla, L.A. 2009. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World Journal of Hepatology 1 (1): 72–78. https://doi.org/10.4254/wjh.v1.i1.72.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wichitnithad, W., U. Nimmannit, P.S. Callery, and P. Rojsitthisak. 2011. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-PEGylated curcumin conjugates. Journal of Pharmaceutical Sciences 100 (12): 5206–5218. https://doi.org/10.1002/jps.22716.

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Z.S., Z.H. Peng, X.L. Li, J.W. Song, and J.W. Ren. 2011. Effect of curcumin on IL-17-induced nitric oxide production and expression of iNOS in human keratinocytes. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 27 (9): 959–961.

    CAS  PubMed  Google Scholar 

  51. Huang, X.H., Y. Sun, N. Shen, H. Tang, D. Ren, and M.L. Peng. 2015. The amphiphilic curcumin derivative attenuates liver fibrosis by anti-inflammatory and antioxidant effect. Chinese Pharmacological Bulletin 04: 470–475.

    Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 30771921) and the National Science and Technology Major Project of China (2012ZX1002007-001, 2017ZX10202203-008).

Author information

Authors and Affiliations

Authors

Contributions

Mingli Peng and Fei Cheng are responsible for design of this study. Fei Cheng and Yuhe Chen performed the experiments. All authors participated in data analysis and interpretation.

Corresponding author

Correspondence to Mingli Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

ELECTRONIC SUPPLEMENTARY MATERIAL

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Chen, Y., Zhan, Z. et al. Curc-mPEG454, a PEGylated Curcumin Derivative, Improves Anti-inflammatory and Antioxidant Activities: a Comparative Study. Inflammation 41, 579–594 (2018). https://doi.org/10.1007/s10753-017-0714-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0714-2

KEY WORDS

Navigation