Skip to main content

Advertisement

Log in

In vitro evaluation of the anti-apoptotic drug Z-VAD-FMK on human ovarian granulosa cell lines for further use in ovarian tissue transplantation

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Because ovarian granulosa cells are essential for oocyte survival, we examined three human granulosa cell lines as models to evaluate the ability of the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) to prevent primordial follicle loss after ovarian tissue transplantation.

Methods

To validate the efficacy of Z-VAD-FMK, three human granulosa cell lines (GC1a, HGL5, COV434) were treated for 48 h with etoposide (50 μg/ml) and/or Z-VAD-FMK (50 μM) under normoxic conditions. To mimic the ischemic phase that occurs after ovarian fragment transplantation, cells were cultured without serum under hypoxia (1 % O2) and treated with Z-VAD-FMK. The metabolic activity of the cells was evaluated by WST-1 assay. Cell viability was determined by FACS analyses. The expression of apoptosis-related molecules was assessed by RT-qPCR and Western blot analyses.

Results

Our assessment of metabolic activity and FACS analyses in the normoxic experiments indicate that Z-VAD-FMK protects granulosa cells from etoposide-induced cell death. When cells are exposed to hypoxia and serum starvation, their metabolic activity is reduced. However, Z-VAD-FMK does not provide a protective effect. In the hypoxic experiments, the number of viable cells was not modulated, and we did not observe any modifications in the expressions of apoptosis-related molecules (p53, Bax, Bcl-xl, and poly (ADP-ribose) polymerase (PARP)).

Conclusion

The death of granulosa cell lines was not induced in our ischemic model. Therefore, a protective effect of Z-VAD-FMK in vitro for further use in ovarian tissue transplantation could not be directly confirmed. It will be of interest to potentially use Z-VAD-FMK in vivo in xenograft models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Donnez J, Dolmans MM. Transplantation of ovarian tissue. Best Pract Res Clin Obstet Gynaecol. 2014;28(8):1188–97. doi:10.1016/j.bpobgyn.2014.09.003.

    Article  PubMed  Google Scholar 

  2. Imbert R, Moffa F, Tsepelidis S, Simon P, Delbaere A, Devreker F et al. Safety and usefulness of cryopreservation of ovarian tissue to preserve fertility: a 12-year retrospective analysis. Hum Reprod. 2014. doi:10.1093/humrep/deu158

  3. Nugent D, Meirow D, Brook PF, Aubard Y, Gosden RG. Transplantation in reproductive medicine: previous experience, present knowledge and future prospects. Hum Reprod Update. 1997;3(3):267–80.

    Article  CAS  PubMed  Google Scholar 

  4. Aubard Y, Piver P, Cogni Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 1999;14(8):2149–54.

    Article  CAS  PubMed  Google Scholar 

  5. Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 C. Endocrinology. 1999;140(1):462–71. doi:10.1210/en.140.1.462.

    CAS  PubMed  Google Scholar 

  6. Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74(1):122–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nugent D, Newton H, Gallivan L, Gosden RG. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J Reprod Fertil. 1998;114(2):341–6.

    Article  CAS  PubMed  Google Scholar 

  8. Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9. doi:10.1073/pnas.1312830110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1–24. doi:10.1210/er.2014-1020.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605–11.

    Article  PubMed  Google Scholar 

  11. Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(4):1550–8. doi:10.1016/j.fertnstert.2007.08.086.

    Article  CAS  PubMed  Google Scholar 

  12. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod. 1990;43(4):543–7.

    Article  CAS  PubMed  Google Scholar 

  13. Siebzehnrubl E, Kohl J, Dittrich R, Wildt L. Freezing of human ovarian tissue--not the oocytes but the granulosa is the problem. Mol Cell Endocrinol. 2000;169(1–2):109–11.

    Article  CAS  PubMed  Google Scholar 

  14. Koos RD. Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biol Reprod. 1995;52(6):1426–35.

    Article  CAS  PubMed  Google Scholar 

  15. Shikanov A, Zhang Z, Xu M, Smith RM, Rajan A, Woodruff TK et al. Fibrin Encapsulation and Vascular Endothelial Growth Factor Delivery Promotes Ovarian Graft Survival in Mice. Tissue engineering Part A. 2011. doi:10.1089/ten.TEA.2011.0204

  16. Abir R, Fisch B, Jessel S, Felz C, Ben Haroush A, Orvieto R. Improving posttransplantation survival of human ovarian tissue by treating the host and graft. Fertil.Steril. 2011; p. 1205–10.

  17. Labied S, Delforge Y, Munaut C, Blacher S, Colige A, Delcombel R, et al. Isoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation. Transplantation. 2013;95(3):426–33. doi:10.1097/TP.0b013e318279965c.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Ying YF, Ouyang YL, Wang JF, Xu J. VEGF and bFGF increase survival of xenografted human ovarian tissue in an experimental rabbit model. J Assist Reprod Genet. 2013;30(10):1301–11. doi:10.1007/s10815-013-0043-9.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Henry L, Labied S, Fransolet M, Kirschvink N, Blacher S, Noel A, et al. Isoform 165 of vascular endothelial growth factor in collagen matrix improves ovine cryopreserved ovarian tissue revascularisation after xenotransplantation in mice. Reprod Biol Endocrinol. 2015;13(1):15. doi:10.1186/s12958-015-0015-2.

    Article  Google Scholar 

  20. Fransolet M, Henry L, Labied S, Masereel MC, Blacher S, Noel A, et al. Influence of mouse strain on ovarian tissue recovery after engraftment with angiogenic factor. J Ovarian Res. 2015;8(1):14. doi:10.1186/s13048-015-0142-6.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Havelock JC, Rainey WE, Carr BR. Ovarian granulosa cell lines. Mol Cell Endocrinol. 2004;228(1–2):67–78. doi:10.1016/j.mce.2004.04.018.

    Article  CAS  PubMed  Google Scholar 

  22. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–44.

    Article  PubMed  Google Scholar 

  23. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005;11(2):162–77. doi:10.1093/humupd/dmi001.

    Article  PubMed  Google Scholar 

  24. Hutt KJ. The role of BH3-only proteins in apoptosis within the ovary. Reproduction. 2015;149(2):R81–9. doi:10.1530/rep-14-0422.

    Article  CAS  PubMed  Google Scholar 

  25. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine −1-phosphate therapy. Nat Med. 2000;6(10):1109–14.

    Article  CAS  PubMed  Google Scholar 

  26. Hancke K, Strauch O, Kissel C, Gobel H, Schafer W, Denschlag D. Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. Fertil Steril. 2007;87(1):172–7. doi:10.1016/j.fertnstert.2006.06.020.

    Article  CAS  PubMed  Google Scholar 

  27. Kaya H, Desdicioglu R, Sezik M, Ulukaya E, Ozkaya O, Yilmaztepe A, et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? Fertil Steril. 2008;89(3):732–5. doi:10.1016/j.fertnstert.2007.03.065.

    Article  CAS  PubMed  Google Scholar 

  28. Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KY, Toscano NP, et al. In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril. 2011;95(4):1440–5. doi:10.1016/j.fertnstert.2011.01.012. e1-7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Meng Y, Xu Z, Wu F, Chen W, Xie S, Liu J et al. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. Fertility and sterility. 2014. doi:10.1016/j.fertnstert.2014.05.040

  30. Hancke K, Walker E, Strauch O, Gobel H, Hanjalic-Beck A, Denschlag D. Ovarian transplantation for fertility preservation in a sheep model: can follicle loss be prevented by antiapoptotic sphingosine-1-phosphate administration? Gynecol Endocrinol. 2009;25(12):839–43. doi:10.3109/09513590903159524.

    Article  CAS  PubMed  Google Scholar 

  31. Jee BC, Lee JR, Youm H, Suh CS, Kim SH, Moon SY. Effect of sphingosine-1-phosphate supplementation on follicular integrity of vitrified-warmed mouse ovarian grafts. Eur J Obstet Gynecol Reprod Biol. 2010;152(2):176–80. doi:10.1016/j.ejogrb.2010.06.019.

    Article  CAS  PubMed  Google Scholar 

  32. Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6(4):e19475.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tsai YC, Tzeng CR, Wang CW, Hsu MI, Tan SJ, Chen CH. Antiapoptotic Agent Sphingosine-1-Phosphate Protects Vitrified Murine Ovarian Grafts. Reproductive sciences. 2013. doi:10.1177/1933719113493515

  34. Zhang JM, Li LX, Yang YX, Liu XL, Wan XP. Is caspase inhibition a valid therapeutic strategy in cryopreservation of ovarian tissue? J Assist Reprod Genet. 2009;26(7):415–20. doi:10.1007/s10815-009-9331-9.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Cursio R, Gugenheim J, Ricci JE, Crenesse D, Rostagno P, Maulon L, et al. Caspase inhibition protects from liver injury following ischemia and reperfusion in rats. Transpl Int. 2000;13(1):S568–72.

    Article  PubMed  Google Scholar 

  36. Himi T, Ishizaki Y, Murota S. A caspase inhibitor blocks ischaemia-induced delayed neuronal death in the gerbil. Eur J Neurosci. 1998;10(2):777–81.

    Article  CAS  PubMed  Google Scholar 

  37. Montolio M, Tellez N, Biarnes M, Soler J, Montanya E. Short-term culture with the caspase inhibitor z-VAD.fmk reduces beta cell apoptosis in transplanted islets and improves the metabolic outcome of the graft. Cell Transplant. 2005;14(1):59–65.

    Article  PubMed  Google Scholar 

  38. Stroh C, Cassens U, Samraj AK, Sibrowski W, Schulze-Osthoff K, Los M. The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. The FASEB Journal. 2002

  39. Nitta M, Katabuchi H, Ohtake H, Tashiro H, Yamaizumi M, Okamura H. Characterization and tumorigenicity of human ovarian surface epithelial cells immortalized by SV40 large T antigen. Gynecol Oncol. 2001;81(1):10–7. doi:10.1006/gyno.2000.6084.

    Article  CAS  PubMed  Google Scholar 

  40. Okamura H, Katabuchi H, Ohba T. What we have learned from isolated cells from human ovary? Mol Cell Endocrinol. 2003;202(1–2):37–45.

    Article  CAS  PubMed  Google Scholar 

  41. Rainey WH, Sawetawan C, Shay JW, Michael MD, Mathis JM, Kutteh W, et al. Transformation of human granulosa cells with the E6 and E7 regions of human papillomavirus. J Clin Endocrinol Metab. 1994;78(3):705–10. doi:10.1210/jcem.78.3.8126145.

    CAS  PubMed  Google Scholar 

  42. Zhang H, Vollmer M, De Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, et al. Characterization of an immortalized human granulosa cell line (COV434). Mol Hum Reprod. 2000;6(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) Method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  44. Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15(6):707–24. doi:10.1210/edrv-15-6-707.

    CAS  PubMed  Google Scholar 

  45. Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30(10):1255–61. doi:10.1007/s10815-013-0068-0.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Gannon AM, Stampfli MR, Foster WG. Cigarette smoke exposure leads to follicle loss via an alternative ovarian cell death pathway in a mouse model. Toxicol Sci. 2012;125(1):274–84. doi:10.1093/toxsci/kfr279.

    Article  CAS  PubMed  Google Scholar 

  47. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52. doi:10.1038/nrm2239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Erika Konradowski and Nathalie Lefin for their excellent technical assistance. The authors also thank Dr. S. Ormenese and R. Stephan from the GIGA-Imaging and Flow Cytometry facility for their support with FACS analyzes.

M.F. is Televie granted PhD students (F.R.S.-FNRS, Belgium). C.M. is Research Associate from the F.R.S.-FNRS (Belgium). This work was supported by grants from the Fonds de la Recherche Scientifique Médicale, the Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS, Belgium), the Foundation against Cancer (foundation of public interest, Belgium), the Fonds spéciaux de la Recherche (University of Liège), the Centre Anticancéreux près l’Université de Liège, the Fonds Léon Fredericq (University of Liège), the Direction Générale Opérationnelle de l’Economie, de l’Emploi et de la Recherche from the S.P.W. (Région Wallonne, Belgium), and the Plan National Cancer (Service Public Fédéral).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Munaut.

Additional information

Capsule

Granulosa cell lines are resistant to low oxygen concentration (1 % O2) and the caspase inhibitor Z-VAD-FMK could ensure follicular maintenance after ovarian tissue auto-transplantation.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Doxorubicin and etoposide dose–response curves in granulosa cells. The metabolic activity of GC1a (a) and HGL5 (b) cells treated with the indicated dose of doxorubicin or etoposide for 24 hours. Similar levels of cell death were obtained for identical concentrations of etoposide within the two cell lines. Etoposide at 50 μg/ml induced slightly less than 50 % cell death. (PPTX 111 kb).

Fig. S2

Time- and dose–response curves for anti-apoptotic drugs in granulosa cells. The metabolic activity, measured using the WST-1 method, of GC1a (a) and HGL5 (b) cells treated with the indicated dose of imatinib, nilotinib, sphingosine-1-phosphate and Z-VAD-FMK for 24 and 48 hours. At low (10 μM) and high (50 μM) concentrations, Z-VAD-FMK did not decrease the metabolic activity of the granulosa cells. (PPTX 125 kb).

Fig. S3

Time-response curve of granulosa cell metabolic activity after treatment with etoposide and anti-apoptotic drugs. In combination with etoposide, Z-VAD-FMK preserved a greater percentage of the metabolic activity of GC1a (a) and HGL5 (b) cells. (PPTX 124 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fransolet, M., Henry, L., Labied, S. et al. In vitro evaluation of the anti-apoptotic drug Z-VAD-FMK on human ovarian granulosa cell lines for further use in ovarian tissue transplantation. J Assist Reprod Genet 32, 1551–1559 (2015). https://doi.org/10.1007/s10815-015-0536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0536-9

Keywords

Navigation