Skip to main content
Log in

Synthesis and characterization of curcumin segmented polyurethane with induced antiplatelet activity

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The main goal of this study is the synthesis of hemocompatible polyurethane elastomer containing curcumin by the reaction of poly(ξ-caprolactone) (PCL), and 1,6-hexamethylene diisocyanate (HDI), which was chain extended with varying molar ratios of 1,4-butandiol (BDO), and curcumin. Molecular structure of the synthesized polyurethane was confirmed using FT-IR and 1HNMR spectroscopy techniques. The effect of curcumin on characteristics of the synthesized polymers was analyzed by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), tensile testing, and also water contact angle measurement (WCA). The influence of curcumin on antiplatelet behavior of the curcumin extended elastomer was confirmed by static platelet adhesion (SPA) test and the number of the adhered platelets was determined using the lactate dehydrogenase (LDH) assay, in comparison with the polymer extended solely with BDO. Thermal and mechanical properties as well as hydrophobicity are enhanced through increasing curcumin content. Overall, improvement in mentioned properties led to enhanced antiplatelet behavior of curcumin containing segmented PU elastomers (PUcs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rueda-Larraz L, D’Arlas BF, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Eur Polym J 45:2096–2109

    Article  CAS  Google Scholar 

  2. Gunatillake PA, Martin DJ, Meijs GF, McCarthy SJ, Adhikari R (2003) Aust J Chem 56:545–557

    Article  CAS  Google Scholar 

  3. Čulin J, Andreis M, Šmit I, Veksli Z, Anžlovar A, Žigon M (2004) Eur Polym J 40:1857–1866

    Article  Google Scholar 

  4. Augustine R, Malik H, Singhal D, Mukherjee A, Malakar D, Kalarikkal N, et al. (2014) J Polym Res 21:347

    Article  Google Scholar 

  5. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, et al. (2007) Biomaterials 28:5407–5417

    Article  CAS  Google Scholar 

  6. Zia KM, Barikani M, Zuber M, Bhatti IA, Sheikh MA (2008) Carbohydr Polym 74:149–158

    Article  CAS  Google Scholar 

  7. Sun X, Gao H, Wu G, Wang Y, Fan Y, Ma J (2011) Int J Pharm 412:52–58

    Article  CAS  Google Scholar 

  8. Pan CJ, Tang JJ, Weng YJ, Wang J, Huang N (2006) J Control Release 116:42–49

    Article  CAS  Google Scholar 

  9. Waksman R (2002) Cardiovasc Radiat Med 3:226–241

    Article  Google Scholar 

  10. Regar E, Sianos G, Serruys PW (2001) Br Med Bull 59:227–248

    Article  CAS  Google Scholar 

  11. Andrade JD, Hlady V (1986) Biopolymers/Non-exclusion HPLC. Springer Berlin Heidelberg Publishers, Berlin

    Google Scholar 

  12. Pazokian H, Barzin J, Mollabashi M, Jelvani S, Abolhosseini S (2012) Laser Phys 22:922–929

    Article  CAS  Google Scholar 

  13. Pazokian H, Jelvani S, Mollabashi M, Barzin J, Azizabadi Farahani G (2011) Appl Surf Sci 257:6186–6190

    Article  CAS  Google Scholar 

  14. Thanawala S, Khan SP, Palyvoda O, Georgiev DG, AlHomoudi IA, Newaz G, et al. (2005) Mater Res Soc 872:359–364

    CAS  Google Scholar 

  15. Bauerle D, Pedarnig JD, Vrejoiu I, Peruzzi M, Matei DG, Brodoceanu D (2005) Rom Rep Phys 57:935–952

    Google Scholar 

  16. Saito N, Nojiri C, Kuroda S, Sakai K (1997) Biomaterials 18:1195–1197

    Article  CAS  Google Scholar 

  17. Albanese A, Barbucci R, Belleville J, Bowry S, Eloy R, Lemke HD, et al. (1994) Biomaterials 15:129–136

    Article  CAS  Google Scholar 

  18. Park KD, Okano T, Nojiri C, Kim SW (1988) J Biomed Mater Res 22:977–992

    Article  CAS  Google Scholar 

  19. Wilson JE (1986) Polym-Plast Technol Eng 25:233–294

    Article  CAS  Google Scholar 

  20. Aldenhoff YB, Koole LH (1995) J Biomed Mater Res 29:917–928

    Article  CAS  Google Scholar 

  21. Phaneuf MD, Szycher M, Berceli SA, Dempsey DJ, Quist WC, LoGerfo FW (1998) Artif Organs 22:657–665

    Article  CAS  Google Scholar 

  22. Kjellander R, Florin E (1981) J Chem Soc 77:2053–2077

    CAS  Google Scholar 

  23. Bailey FE, Koleske JV (1987) Configuration and hydrodynamic properties of the polyoxyethylene chain in solution. Marcel Dekker publisher, New york

    Google Scholar 

  24. Himesh S, Sharan PS, Mishra K, Nayak G, AK S (2011) Int Res J Pharm 2:180–184

    Google Scholar 

  25. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Biochem Pharmacol 75:787–809

    Article  CAS  Google Scholar 

  26. Upadhyaya L, Singh J, Agarwal V, Pandey AC, Verman SP, Das P, et al. (2014) J Polym Res 21:550

    Article  Google Scholar 

  27. Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, et al. (2010) Biomaterials 31:7139–7149

    Article  CAS  Google Scholar 

  28. Nagarajan S, Kubra IR, Rao LJ (2010) J Food Sci 75:158–162

    Article  Google Scholar 

  29. Thangaraju E, Rajiv S, Natarajan TS (2015) J Polym Res 22:24

    Article  Google Scholar 

  30. Hu P, Huang P, Chen MW (2013) Arch Oral Biol 58:1343–1348

    Article  CAS  Google Scholar 

  31. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. (2013) Phytomedicine 20:714–718

    Article  CAS  Google Scholar 

  32. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Mol Pharm 4:807–818

    Article  CAS  Google Scholar 

  33. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. (2008) Clin Cancer Res 14:4491–4499

    Article  CAS  Google Scholar 

  34. Sun XZ, Williams GR, Hou XX, Zhu LM (2013) Carbohydr Polym 94:147–153

    Article  CAS  Google Scholar 

  35. Nguyen TTT, Ghosh C, Hwang SG, Tran LD, Park JS (2013) J Mater Sci 48:7125–7133

    Article  CAS  Google Scholar 

  36. Das RK, Kasoju N, Bora U (2010) Nanomedicine 6:153–160

    Article  CAS  Google Scholar 

  37. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. (2010) Biochem Pharmacol 79:330–338

    Article  CAS  Google Scholar 

  38. Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Int J Cancer 125:1–8

    Article  CAS  Google Scholar 

  39. Chen C, Johnston TD, Jeon H, Gedaly R, McHugh PP, Burke TG, et al. (2009) Int J Pharm 366:133–139

    Article  CAS  Google Scholar 

  40. Nguyen KT, Su S–H, Sheng A, Wawro D, Schwade ND, Brouse CF, Greilich PE, et al. (2003) Biomaterials 24:5191–5201

    Article  CAS  Google Scholar 

  41. Bansal S, Kausar H, Vadhanam M, Ravoori S, Gupta R (2012) Eur J Pharm Biopharm 80:571–5201

    Article  CAS  Google Scholar 

  42. Huang M, Lysz T, Ferraro T, Abidi T, Laskin J, Allan C (1991) Cancer Res 51:813–819

    CAS  Google Scholar 

  43. Manikandan P, Sumitra M, Aishwarya S, Manohar B, Lokanadam B, Puvanakrishnan R (2004) Int J Biochem Cell Biol 36:1967–1980

    Article  CAS  Google Scholar 

  44. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA (2006) Biomaterials 27:4315–4324

    Article  CAS  Google Scholar 

  45. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M (2005) Int J Quantum Chem 102:1069–1079

    Article  CAS  Google Scholar 

  46. Kricheldorf HR, Rost S (2005) Macromolecules 38:8220–8226

    Article  CAS  Google Scholar 

  47. Wang A, Gao H, Sun Y, Sun Y, Yang YW, Wu G, et al. (2013) Int J Pharm 441:30–39

    Article  CAS  Google Scholar 

  48. Tabatabaei-Yazdi Z, Mehdipour-Ataei S (2014) Colloid Polym Sci 292:2145–2156

    Article  CAS  Google Scholar 

  49. Waletzko R, Korley L, Pate B (2009) Macromolecules 1:2041–2053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mojgan Zandi or Morteza Ehsani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, M.F., Zandi, M., Shokrollahi, P. et al. Synthesis and characterization of curcumin segmented polyurethane with induced antiplatelet activity. J Polym Res 22, 179 (2015). https://doi.org/10.1007/s10965-015-0824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0824-1

Keywords

Navigation