Skip to main content
Log in

Overexpressing GmCHI1A increases the isoflavone content of transgenic soybean (Glycine max (L.) Merr.) seeds

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Isoflavones, which are secondary metabolites synthesised through the phenylpropanoid pathway, play important roles in many essential physiological processes of the soybean plant. Isoflavones are well-known for their antioxidant, antimicrobial, anti-inflammatory and anticancer activities; however, soybean plants contain very low amount of isoflavone. Therefore, increasing isoflavone content is one of major concerns in soybean research. An effective approach to enhance isoflavone content in soybean is by overexpression of the Glycine max chalcone isomerase 1A (GmCHI1A) gene. In this study, the GmCHI1A gene was transformed into soybean plants and the T2 generation was selected for high isoflavone content (daidzein, genistein) in transgenic soybean germs. GmCHI1A gene expression was enhanced in T1 transgenic lines, which led to an increase in recombinant CHI1A (rCHI1A) protein content. In soybean germs of the T2 transgenic lines, the content of daidzein and genistein increased from 166.46 to 187.23% and from 329.77 to 463.93%, respectively. Four T2 transgenic soybean lines (T2-1, T2-4, T2-21 and T2-24) with high daidzein and genistein content were selected for future progeny evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Carmignani LO, Pedro AO, Costa-Paiva LH, Pinto-Neto AM (2010) The effect of dietary soy supplementation compared to estrogen and placebo on menopausal symptoms: a randomized controlled trial. Maturitas 67:262–269

    Article  CAS  Google Scholar 

  • Cassidy A (1996) Physiological effects of phytoestrogens in relation to cancer and other human health risks. Proc Nutr Soc 55:399–417

    Article  CAS  Google Scholar 

  • Chen H, Zuo Y, Deng Y (2001) Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J Chromatogr A 913:387–395

    Article  CAS  Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  CAS  Google Scholar 

  • Dastmalchi M, Dhaubhadel S (2015) Soybean chalcone isomerase: evolution of the fold, and the differential expression and localization of the gene family. Planta 241:507–523

    Article  CAS  Google Scholar 

  • Fatemeh KA, Abdolreza B, Nasrin M (2016) Analysis of chalcone synthase and chalcone isomerase gene expression in pigment production pathway at different flower colors of Petunia Hybrida. J Cell Mol Res 8:8–14

    Google Scholar 

  • Forkmann G, Dangelmayr B (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem Genet 18:519–527

    Article  CAS  Google Scholar 

  • Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130:1695–1699

    Article  CAS  Google Scholar 

  • Kim HB, Bae JH, Lim JD, Yu CY, An CS (2007) Expression of a functional type-I chalcone isomerase gene is localized to the infected cells of root nodules of Elaeagnus umbellata. Mol Cell 23:405–409

    Google Scholar 

  • Kim S, Jones R, Yoo KS, Pike LM (2004) Gold color in onions (Allium cepa): a natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Mol Gen Genomics 272:411–419

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Li F, Jin Z, Qu W, Zhao D, Ma F (2006) Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol Biochem 44:455–461

    Article  CAS  Google Scholar 

  • Lim W, Li J (2016) Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. Plant Cell Tiss Org Cult 128:113–124

    Article  Google Scholar 

  • Lin Z, Yan W, Lei R, Qianqian S, Baoqiang Z, Kun M, Xin G (2014) Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco. Plant Cell Tiss Org 116:285–295

    Article  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric DVCH, Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

  • Olhoft PM, Bernal LM, Grist LB, Ozias-Akins P (2007) A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cell Dev Biol - Plant 43:536–549

  • Perabo FG, Von Löw EC, Ellinger J, Von Rücker A, Müller SC, Bastian PJ (2008) Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer Prostatic Dis 11:6–12

    Article  CAS  Google Scholar 

  • Prasad LN, Shah NP (2011) Conversion of isoflavone glycoside to aglycones in soy protein isolate (SPI) using crude enzyme extracted from Bifidobacterium animalis Bb12 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842. Int Food Res J 19:433–439

    Google Scholar 

  • Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dymnamics. Proc Natl Acad Sci U S A 81:8014–8018

    Article  CAS  Google Scholar 

  • Setchell KDR, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for the lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Amer J Clin Nut 76:447–453

    Article  CAS  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe SI (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy (iso) flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  • Sun HJ, Cui ML, Ma B, Ezura H (2006) Functional expression of the tastemodifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626

    Article  CAS  Google Scholar 

  • Tsukamoto C, Nawaz MA, Kurosaka A, Le B, Lee JD, Son E, Yang SH, Kurt C, Baloch FS, Chung G (2018) Isoflavone profile diversity in Korean wild soybeans (Glycine soja Sieb. & Zucc.). Turk J Agric For 42:248–261

    Article  CAS  Google Scholar 

  • Vu TNT, Le THT, Hoang PH, Sy DT, Vu THT, Chu HM (2018) Overexpression of the Glycine max chalcone isomerase (GmCHI) gene in transgenic Talinum paniculatum plants. Turk J Bot 42:551–558

    Article  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    Article  CAS  Google Scholar 

  • Zhang Y, Xia H, Yuan M, Zhao C, Aiqin Li A, Wang X (2012) Cloning and expression analysis of peanut (Arachis hypogaea L.) CHI gene. Electron J Biotechnol 15:1–8

    Article  Google Scholar 

  • Zhou Y, Huang J, Zhang X, Zhu L, Wang X, Guo N, Zhao J, Xin H (2018) Overexpression of chalcone isomerase (CHI) increases resistance against Phytophthora sojae in soybean. J Plant Biol 61:309

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.01-2018.27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Kim Lien Vu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Ming Cheng

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.Q., Le, T.H.T., Nguyen, T.N.L. et al. Overexpressing GmCHI1A increases the isoflavone content of transgenic soybean (Glycine max (L.) Merr.) seeds. In Vitro Cell.Dev.Biol.-Plant 56, 842–850 (2020). https://doi.org/10.1007/s11627-020-10076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10076-x

Keywords

Navigation