Skip to main content

Advertisement

Log in

Nicotinamide N-methyltransferase in Non-small Cell Lung Cancer: Promising Results for Targeted Anti-cancer Therapy

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lung cancer, predominantly non-small cell lung cancer (NSCLC), is currently the most common cause of malignancy-related death in the world. Despite advances in both detection and treatment, its incidence rate is still increasing. Therefore, effective strategies for early detection as well as molecular therapeutic targets are urgently needed. We focused on the enzyme nicotinamide N-methyltransferase (NNMT). NNMT expression levels were investigated in tumor, tumor-adjacent, and surrounding tissue samples of 25 patients with NSCLC by Real-Time PCR, Western blot analysis, and catalytic activity assay. NNMT enzyme activity in NSCLC was then correlated with clinicopathological characteristics. Results obtained showed NNMT upregulation (mRNA and protein) in tumor compared with both tumor-adjacent and surrounding tissue. Moreover, NSCLC displayed significantly higher activity levels than those determined in both tumor-adjacent and surrounding tissue. Interestingly, both tumor-adjacent and surrounding tissue samples of unfavorable cases (N+) seem to display higher activity levels than those of favorable NSCLCs (N0). The present work shows a marked increase of NNMT enzyme activity in NSCLC and suggests that normal-looking tissue of unfavorable cases seems to change toward cancer. Further studies may establish whether NNMT could represent a target for an effective anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feng, J., Zhang, X., Zhu, H., Wang, X., Ni, S., & Huang, J. (2012). FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of EMT. PLoS One, 7, e39937.

    Article  PubMed  CAS  Google Scholar 

  2. Wiśniewski, A., Jankowska, R., Passowicz-Muszyńska, E., Wiśniewska, E., Majorczyk, E., Nowak, I., et al. (2012). KIR2DL2/S2 and HLA-C C1C1 genotype is associated with better response to treatment and prolonged survival of patients with non-small cell lung cancer in a Polish Caucasian population. Human Immunology, 73, 927–931.

    Article  PubMed  Google Scholar 

  3. Jang, I., Jeon, B. T., Jeong, E. A., Kim, E. J., Kang, D., Lee, J. S., et al. (2012). Pak1/LIMK1/Cofilin Pathway Contributes to Tumor Migration and Invasion in Human Non-Small Cell Lung Carcinomas and Cell Lines. Korean Journal of Physiology and Pharmacology, 16, 159–165.

    Article  PubMed  CAS  Google Scholar 

  4. Raghavan, P., Tumati, V., Yu, L., Chan, N., Tomimatsu, N., Burma, S., et al. (2012). AZD5438, an inhibitor of Cdk1, 2, and 9, enhances the radiosensitivity of non-small cell lung carcinoma cells. International Journal of Radiation Oncology Biology Physics, 84, e507–e514.

    Article  CAS  Google Scholar 

  5. Lokk, K., Vooder, T., Kolde, R., Välk, K., Võsa, U., Roosipuu, R., et al. (2012). Methylation markers of early-stage non-small cell lung cancer. PLoS One, 7, e39813.

    Article  PubMed  CAS  Google Scholar 

  6. Aksoy, S., Szumlanski, C. L., & Weinshilboum, R. M. (1994). Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. Journal of Biological Chemistry, 269, 14835–14840.

    PubMed  CAS  Google Scholar 

  7. Peng, Y., Sartini, D., Pozzi, V., Wilk, D., Emanuelli, M., & Yee, V. C. (2011). Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry, 50, 7800–7808.

    Article  PubMed  CAS  Google Scholar 

  8. Sartini, D., Muzzonigro, G., Milanese, G., Pierella, F., Rossi, V., & Emanuelli, M. (2006). Identification of nicotinamide N-methyltransferase as a novel tumor marker for renal clear cell carcinoma. Journal of Urology, 176, 2248–2254.

    Article  PubMed  CAS  Google Scholar 

  9. Sartini, D., Santarelli, A., Rossi, V., Goteri, G., Rubini, C., Ciavarella, D., et al. (2007). Nicotinamide N-methyltransferase upregulation inversely correlates with lymph node metastasis in oral squamous cell carcinoma. Molecular Medicine, 13, 415–421.

    Article  PubMed  CAS  Google Scholar 

  10. Sartini, D., Muzzonigro, G., Milanese, G., Pozzi, V., Vici, A., Morganti, S., et al. (2012). Upregulation of tissue and urinary nicotinamide N-methyltransferase in bladder cancer: Potential for the development of a urine-based diagnostic test. Cell Biochemistry and Biophysics, 65, 473–483.

    Google Scholar 

  11. Emanuelli, M., Santarelli, A., Sartini, D., Ciavarella, D., Rossi, V., Pozzi, V., et al. (2010). Nicotinamide N-Methyltransferase upregulation correlates with tumour differentiation in oral squamous cell carcinoma. Histology and Histopathology, 25, 15–20.

    PubMed  CAS  Google Scholar 

  12. Pozzi, V., Mazzotta, M., Lo Muzio, L., Sartini, D., Santarelli, A., Renzi, E., et al. (2011). Inhibiting proliferation in KB cancer cells by RNA interference-mediated knockdown of nicotinamide N-methyltransferase expression. International Journal of Immunopathology & Pharmacology, 24, 69–77.

    CAS  Google Scholar 

  13. Sartini, D., Pozzi, V., Renzi, E., Morganti, S., Rocchetti, R., Rubini, C., et al. (2012). Analysis of tissue and salivary nicotinamide N-methyltransferase in oral squamous cell carcinoma: basis for the development of a noninvasive diagnostic test for early-stage disease. Biological Chemistry, 393, 505–511.

    Article  PubMed  CAS  Google Scholar 

  14. Balducci, E., Orsomando, G., Polzonetti, V., Vita, A., Emanuelli, M., Raffaelli, N., et al. (1995). NMN adenylyltransferase from bull testis: purification and properties. Biochemical Journal, 310, 395–400.

    PubMed  CAS  Google Scholar 

  15. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  16. Santarelli, L., Strafella, E., Staffolani, S., Amati, M., Emanuelli, M., Sartini, D., et al. (2011). Association of MiR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma. PLoS One, 6, e18232.

    Article  PubMed  CAS  Google Scholar 

  17. Thomas, A., Rajan, A., Lopez-Chavez, A., Wang, Y., & Giaccone, G. (2012). From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Annals of Oncology, 24, 577–585.

    Article  PubMed  Google Scholar 

  18. Chin, L. P., Soo, R. A., Soong, R., & Ou, S. H. (2012). Targeting ROS1 with anaplastic lymphoma kinase inhibitors: A promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. Journal of Thoracic Oncology, 7, 1625–1630.

    Article  PubMed  CAS  Google Scholar 

  19. Okamoto, H., Ishikawa, A., Yoshitake, Y., Kodama, N., Nishimuta, M., Fukuwatari, T., et al. (2003). Diurnal variations in human urinary excretion of nicotinamide catabolites: effects of stress on the metabolism of nicotinamide. American Journal of Clinical Nutrition, 77, 406–410.

    PubMed  CAS  Google Scholar 

  20. Yao, M., Tabuchi, H., Nagashima, Y., Baba, M., Nakaigawa, N., Ishiguro, H., et al. (2005). Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. Journal of Pathology, 205, 377–387.

    Article  PubMed  CAS  Google Scholar 

  21. Markert, J. M., Fuller, C. M., Gillespie, G. Y., Bubien, J. K., McLean, L. A., Hong, R. L., et al. (2001). Differential gene expression profiling in human brain tumors. Physiological Genomics, 5, 21–33.

    PubMed  CAS  Google Scholar 

  22. Jang, J. S., Cho, H. Y., Lee, Y. J., Ha, W. S., & Kim, H. W. (2004). The differential proteome profile of stomach cancer: Identification of the biomarker candidates. Oncology Research, 14, 491–499.

    PubMed  CAS  Google Scholar 

  23. Xu, J., Moatamed, F., Caldwell, J. S., Walker, J. R., Kraiem, Z., Taki, K., et al. (2003). Enhanced expression of nicotinamide N-methyltransferase in human papillary thyroid carcinoma cells. Journal of Clinical Endocrinology and Metabolism, 88, 4990–4996.

    Article  PubMed  CAS  Google Scholar 

  24. Roessler, M., Rollinger, W., Palme, S., Hagmann, M. L., Berndt, P., Engel, A. M., et al. (2005). Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clinical Cancer Research, 11, 6550–6557.

    Article  PubMed  CAS  Google Scholar 

  25. Rogers, C. D., Fukushima, N., Sato, N., Shi, C., Prasad, N., Hustinx, S. R., et al. (2006). Differentiating pancreatic lesions by microarray and QPCR analysis of pancreatic juice RNAs. Cancer Biology & Therapy, 5, 1383–1389.

    Article  CAS  Google Scholar 

  26. Debigaré, R., Maltais, F., Côté, C. H., Michaud, A., Caron, M. A., Mofarrahi, M., et al. (2008). Profiling of mRNA expression in quadriceps of patients with COPD and muscle wasting. Chronic Obstructive Pulmonary Disease, 5, 75–84.

    Article  Google Scholar 

  27. Mateuszuk, Ł., Khomich, T. I., Słomińska, E., Gajda, M., Wójcik, L., Łomnicka, M., et al. (2009). Activation of nicotinamide N-methyltrasferase and increased formation of 1-methylnicotinamide (MNA) in atherosclerosis. Pharmacological Report, 61, 76–85.

    CAS  Google Scholar 

  28. Williams, A. C., & Ramsden, D. B. (2005). Autotoxicity, methylation and a road to the prevention of Parkinson’s disease. Journal of Clinical Neuroscience, 12, 6–11.

    Article  PubMed  CAS  Google Scholar 

  29. Wu, Y., Siadaty, M. S., Berens, M. E., Hampton, G. M., & Theodorescu, D. (2008). Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene, 27, 6679–6689.

    Article  PubMed  CAS  Google Scholar 

  30. Parsons, R. B., Aravindan, S., Kadampeswaran, A., Evans, E. A., Sandhu, K. K., Levy, E. R., et al. (2011). The expression of nicotinamide N-methyltransferase increases ATP synthesis and protects SH-SY5Y neuroblastoma cells against the toxicity of Complex I inhibitors. Biochemical Journal, 436, 145–155.

    Article  PubMed  CAS  Google Scholar 

  31. Tang, S. W., Yang, T. C., Lin, W. C., Chang, W. H., Wang, C. C., Lai, M. K., et al. (2011). Nicotinamide N-methyltransferase induces cellular invasion through activating matrix metalloproteinase-2 expression in clear cell renal cell carcinoma cells. Carcinogenesis, 32, 138–145.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, J. (2003). Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? BioEssays, 25, 808–814.

    Article  PubMed  CAS  Google Scholar 

  33. Kassem, H Sh, Sangar, V., Cowan, R., Clarke, N., & Margison, G. P. (2002). A potential role of heat shock proteins and nicotinamide N-methyl transferase in predicting response to radiation in bladder cancer. International Journal of Cancer, 101, 454–460.

    Article  CAS  Google Scholar 

  34. D’Andrea, F. P., Safwat, A., Kassem, M., Gautier, L., Overgaard, J., & Horsman, M. R. (2011). Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance. Radiotherapy and Oncology, 99, 373–378.

    Article  PubMed  Google Scholar 

  35. Audrito, V., Vaisitti, T., Rossi, D., Gottardi, D., D’Arena, G., Laurenti, L., et al. (2011). Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Research, 71, 4473–4483.

    Article  PubMed  CAS  Google Scholar 

  36. Bryniarski, K., Biedron, R., Jakubowski, A., Chlopicki, S., & Marcinkiewicz, J. (2008). Anti-inflammatory effect of 1-methylnicotinamide in contact hypersensitivity to oxazolone in mice; involvement of prostacyclin. European Journal of Pharmacology, 578, 332–338.

    Article  PubMed  CAS  Google Scholar 

  37. Chlopicki, S., Swies, J., Mogielnicki, A., Buczko, W., Bartus, M., Lomnicka, M., et al. (2007). 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. British Journal of Pharmacology, 152, 230–239.

    Article  PubMed  CAS  Google Scholar 

  38. Bartuś, M., Łomnicka, M., Kostogrys, R. B., Kaźmierczak, P., Watała, C., Słominska, E. M., et al. (2008). 1-Methylnicotinamide (MNA) prevents endothelial dysfunction in hypertriglyceridemic and diabetic rats. Pharmacological Report, 60, 127–138.

    Google Scholar 

  39. Brzozowski, T., Konturek, P. C., Chlopicki, S., Sliwowski, Z., Pawlik, M., Ptak-Belowska, A., et al. (2008). Therapeutic potential of 1-methylnicotinamide against acute gastric lesions induced by stress: role of endogenous prostacyclin and sensory nerves. Journal of Pharmacology and Experimental Therapeutics, 326, 105–116.

    Article  PubMed  CAS  Google Scholar 

  40. Tomida, M., Mikami, I., Takeuchi, S., Nishimura, H., & Akiyama, H. (2009). Serum levels of nicotinamide N-methyltransferase in patients with lung cancer. Journal of Cancer Research and Clinical Oncology, 135, 1223–1229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Sartini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartini, D., Morganti, S., Guidi, E. et al. Nicotinamide N-methyltransferase in Non-small Cell Lung Cancer: Promising Results for Targeted Anti-cancer Therapy. Cell Biochem Biophys 67, 865–873 (2013). https://doi.org/10.1007/s12013-013-9574-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9574-z

Keywords

Navigation