Skip to main content

Advertisement

Log in

The effect of lactoferrin on ULK1 and ATG13 genes expression in breast cancer cell line MCF7 and bioinformatics studies of protein interaction between lactoferrin and the autophagy initiation complex

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Recently, the study of autophagy and its mechanism on the cancer cell growth process has received much attention. lactoferrin (Lf) is a glycoprotein with various biological activities, including antibacterial, antiviral, anti-cancer, etc. In the present study, the effect of different concentrations of lactoferrin on the expression of ULK1 and ATG13 genes was evaluated in breast cancer cell line MCF7 using real-time PCR technique as well as the molecular mechanism of these two genes and their proteins in the autophagy pathway and the relationship between lactoferrin and these proteins were investigated by bioinformatics studies. The result showed that the expression of the ULK1 gene at a concentration of 500 μg/ml of lactoferrin was significantly (P < 0.007) increased compared to the control and two other concentrations. Also, the expression of the ATG13 gene at all three concentrations was not significantly different from each other and compared to the control (P = 0.635). In the immunoblot of ULK1 protein at a concentration of 500 µg, more protein expression was observed. The binding mode of lactoferrin with ULK1, ATG13, and ATG101 proteins was obtained using docking. According to docking results, the N-lobe region of lactoferrin interacts with the PS domain of the ULK1 protein, and the N-lobe region of lactoferrin interacts with the horma domain of the ATG 13 and ATG101 proteins. The results show that lactoferrin, in addition to acting on the gene, interacts with ULK1, ATG13, and ATG101 proteins. Since all three proteins are components of the autophagy initiation complex, lactoferrin can induce autophagy in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Russo, M., & Russo, G. L. M. (2018). Autophagy inducers in cancer. Biochem Pharmaco, 1(153), 51–61.

    Article  Google Scholar 

  2. Martina, J. A., Chen, Y., Gucek, M., & Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 8, 903–914. https://doi.org/10.4161/auto.19653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sridharan S, Jain K. Basu A, Regulation of autophagy by kinases. Cancers 3, 2630–2654. https://doi.org/10.3390/cancers3022630

  4. Aizawa, S., Hoki, M., & Yamamuro, Y. (2017). Lactoferrin promotes autophagy via AMP-activated protein kinase activation through low-density lipoprotein receptor-related protein 1. Biochem Biophys Res Commun, 493(1), 509–513.

    Article  CAS  PubMed  Google Scholar 

  5. Mukhopadhyay, S., Sinha, N., Das, D. N., Panda, P. K., Naik, P. P., & Bhutia, S. K. (2016). Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit Rev Clin Lab Sci. 53(4), 228–252.

  6. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2017). Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol., 17.2, 97–111.

    Article  Google Scholar 

  7. Santana-Codina N, Mancias J, Kimmelman AC, The role of autophagy in cancer. Annu Rev Cancer Biol. 1, 19–39.

  8. Galluzzi, L., Pietrocola, F., Bravo‐San Pedro, J. M., Amaravadi, R. K., Baehrecke, E. H., Cecconi, F., & Kroemer, G. (2015). Autophagy in malignant transformation and cancer progression. The EMBO J., 34.7, 856–880.

    Article  Google Scholar 

  9. Wilde, L., Tanson, K., Curry, J., & Martinez-Outschoorn, U. (2018). Autophagy in cancer: a complex relationship. Biochem J., 475.11, 1939–1954.

    Article  Google Scholar 

  10. Wu, C. P., & Ambudkar, S. V. (2014). The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy. Acta Pharm Sin B., 4.2, 105–111.

    Article  Google Scholar 

  11. Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 45. 6, 487–498.

    Article  Google Scholar 

  12. Zhao, Y. G., Codogno, P., & Zhang, H. (2021). Machinery regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol, 22, 733–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hara, T., Takamura, A., Kishi, C., Iemura, S. I., Natsume, T., Guan, J. L., & Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol., 181.3, 497–510.

    Article  Google Scholar 

  14. Randhawa, R., Sehgal, M., Singh, T. R., Duseja, A., & Changotra, H. (2015). Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene, 562.1, 40–49.

    Article  Google Scholar 

  15. Li, F., Chung, T., & Vierstra, R. D. (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy-and senescence-induced mitophagy in Arabidopsi. The Plant Cell, 26.2, 788–807.

    Article  Google Scholar 

  16. Hara, T., & Mizushima, N. (2009). Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17. Autophagy, 5.1, 85–87.

    Article  Google Scholar 

  17. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., & Mizushima, N. (2009). Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell., 20.7, 1981–1991.

    Article  Google Scholar 

  18. Ganley, I. G., Lam, D. H., Wang, J., Ding, X., Chen, S., & Jiang, X. (2009). ULK1· ATG13· FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biolo Chem, 284.18, 12297–12305.

    Article  Google Scholar 

  19. Mercer, C. A., Kaliappan, A., & Dennis, P. B. (2009). A novel human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5.5, 649–662.

    Article  Google Scholar 

  20. Dong, Z., Wang, Y., Liu, W. Z., Shu, Q. S., Cai, J., & Tang, Y. C. (2020). AMPK/mTOR signaling in autophagy regulation during cisplatin-induced acute kidney injury. Front Physiol, 11, 1679.

    Google Scholar 

  21. González-Chávez, S. A., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2009). Lactoferrin: structure, function and applications. Int J Antimicrob Agents, 33.4, 301–e1.

    Google Scholar 

  22. Stevens, R. G., Jones, D. Y., Micozzi, M. S., & Taylor, P. R. (1988). Body iron stores and the risk of cancer. N Engl J Med., 319.16, 1047–1052.

    Article  Google Scholar 

  23. Grosso, R. A., Caldarone, P. V. S., Sánchez, M. C., Chiabrando, G. A., Colombo, M. I., & Fader, C. M. (2019). Hemin induces autophagy in a leukemic erythroblast cell line through the LRP1 receptor. Biosci Rep., 39, 1.

    Article  Google Scholar 

  24. Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., & Pan, H. (2013). Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis., 10, e838.

    Article  Google Scholar 

  25. Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27, 343–350.

    Article  CAS  PubMed  Google Scholar 

  26. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 35, W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Anderson, R. J., Weng, Z., Campbell, R. K., & Jiang, X. (2005). Main-chain conformational tendencies of amino acids. Proteins, 60.4, 679–89.

    Article  Google Scholar 

  28. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure, 28. 9, 1071–1081.

    Article  Google Scholar 

  29. Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12.2, 255–278.

    Article  Google Scholar 

  30. Zhou, S., Zhao, L., Kuang, M., Zhang, B., Liang, Z., Yi, T., & Zhao, X. (2012). Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde. Cancer Lett., 323.2, 115–127.

    Article  Google Scholar 

  31. Zhang, Y., Nicolau, A., Lima, C. F., & Rodrigues, L. R. (2014). Bovine lactoferrin induces cell cycle arrest and inhibits mTOR signaling in breast cancer cells. Nutr Cancer, 66.8, 1371–1385.

    Article  Google Scholar 

  32. Bononi, A., Agnoletto, C., De Marchi, E., Marchi, S., Patergnani, S., Bonora, M., & Pinton, P. (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme Res., 2011, 329098 https://doi.org/10.4061/2011/329098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol., 22. 2, 132–139.

    Article  Google Scholar 

  34. Tang, J., Deng, R., Luo, R. Z., Shen, G. P., Cai, M. Y., Du, Z. M., & Zhu, X. F. (2012). Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res Treat., 134. 2, 549–560.

    Article  Google Scholar 

  35. Khan, S. H., & Kumar, R. (2012). Role of an intrinsically disordered conformation in AMPK-mediated phosphorylation of ULK1 and regulation of autophagy. Mol Biosyst., 8.1, 91–96.

    Article  Google Scholar 

  36. Xue Y, Wang D, Peng D. (2021) Bioinformatics Technologies in Autophagy Research In. Autophagy: Biology and Diseases, Springer, Singapore, 387–453.

  37. Lee, J. W., Park, S., Takahashi, Y., & Wang, H. G. (2010). The association of AMPK with ULK1 regulates autophagy. PloS one, 5.11, e15394.

    Article  Google Scholar 

  38. Dwivedi, P., & Greis, K. D. (2017). Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol, 46, 9–20.

    Article  CAS  PubMed  Google Scholar 

  39. Dwivedi, P. (2021). ROS mediated apoptotic pathways in primary effusion lymphoma: comment on induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic pathways in primary effusion lymphoma. Transl Oncol., 14, 101061.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xiao, Y., Monitto, C. L., Minhas, K. M., & Sidransky, D. (2004). Lactoferrin down-regulates G1 cyclin dependent kinases during growth arrest of head and neck cancer cells. Clin Cancer Res., 10, 8683–8686.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu, Y. H., Chiu, I. J., Lin, Y. F., Chen, Y. J., Lee, Y. H., & Chiu, H. W. (2020). Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics, 12.5, 434.

    Article  Google Scholar 

  42. Dwivedi, P., Rodriguez, J., Ibe, N. U., & Weers, P. M. M. (2016). Deletion of the N- or C-terminal helix of apolipophorin III to create a four-helix bundle protein. Biochem, 5.55(26), 3607–3615.

    Article  Google Scholar 

  43. Behrends, C., Sowa, M. E., Gygi, S. P., & Harper, J. (2010). Network organization of the human autophagy system. Nature, 466.7302, 68–76.

    Article  Google Scholar 

  44. Denton, D., Nicolson, S., & Kumar, S. (2012). Cell death by autophagy: facts and apparent artefacts. Cell Death Differ, 19.1, 87–95.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the facility and assistance offered by the Cell and Molecular Biology Lab, Sari Agricultural Sciences and Natural Resources University.

Funding

The present paper was extracted from Fatemeh Moradian’s grant at Sari Agricultural Sciences and Natural Resources University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Moradian.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabi, Z., Moradian, F. & Kheirabadi, M. The effect of lactoferrin on ULK1 and ATG13 genes expression in breast cancer cell line MCF7 and bioinformatics studies of protein interaction between lactoferrin and the autophagy initiation complex. Cell Biochem Biophys 80, 795–806 (2022). https://doi.org/10.1007/s12013-022-01097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01097-x

Keywords

Navigation