Skip to main content
Log in

The “Janus-Faced Role” of Autophagy in Neuronal Sickness: Focus on Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mature brain is a highly dynamic organ that constantly changes its organization by destroying and forming new connections. Collectively, these changes are referred to as brain plasticity and are associated with functional changes, such as memory, addiction, and recovery of function after brain damage. Neuronal plasticity is sustained by the fine regulation of protein synthesis and organelle biogenesis and their degradation to ensure efficient turnover. Thus, autophagy, as quality control mechanism of proteins and organelles in neurons, is essential to their physiology and pathology. Here, we review recent several findings proving that defects in autophagy affect neuronal function and impair functional recovery after brain insults, contributing to neurodegeneration, in chronic and acute neurological disorders. Thus, an understanding of the molecular mechanisms by which the autophagy machinery is finely regulated might accelerate the development of therapeutic interventions in many neurological disorders for which no cure is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  PubMed  CAS  Google Scholar 

  2. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  PubMed  CAS  Google Scholar 

  3. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  4. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A et al (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134:258–277

    Article  PubMed  Google Scholar 

  5. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  6. Inoue Y, Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21:664–670

    Article  PubMed  CAS  Google Scholar 

  7. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  PubMed  CAS  Google Scholar 

  8. Chang YY, Neufeld TP (2009) An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 20:2004–2014

    Article  PubMed  CAS  Google Scholar 

  9. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139

    Article  PubMed  CAS  Google Scholar 

  10. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  PubMed  CAS  Google Scholar 

  11. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  PubMed  CAS  Google Scholar 

  12. Liang C, Lee JS, Inn KS, Gack MU, Li Q et al (2008) Beclin-1 binding to UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787

    Article  PubMed  CAS  Google Scholar 

  13. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125

    PubMed  CAS  Google Scholar 

  14. Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G et al (2010) The dynamic interaction of Ambra1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168

    Article  PubMed  Google Scholar 

  15. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146:303–317

    Article  PubMed  CAS  Google Scholar 

  16. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273:33889–33892

    Article  PubMed  CAS  Google Scholar 

  17. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J Cell Sci 116:1679–1688

    Article  PubMed  CAS  Google Scholar 

  18. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  PubMed  CAS  Google Scholar 

  19. Luzio J, Pryor P, Bright N (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  PubMed  CAS  Google Scholar 

  20. Furuta N, Fujita N, Noda T, Yoshimori T, Amano A (2010) Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 21:1001–1010

    Article  PubMed  CAS  Google Scholar 

  21. Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33

    Article  PubMed  CAS  Google Scholar 

  22. Kaminskyy V, Zhivotovsky B (2012) Proteases in autophagy. Biochim Biophys Acta 1824:44–50

    Article  PubMed  CAS  Google Scholar 

  23. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  Google Scholar 

  24. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    PubMed  Google Scholar 

  25. Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30:14946–14954

    Article  PubMed  CAS  Google Scholar 

  26. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiol Dis 43:38–45

    Article  PubMed  CAS  Google Scholar 

  27. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    PubMed  CAS  Google Scholar 

  28. Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B et al (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51:703–714

    Article  PubMed  CAS  Google Scholar 

  29. Tellez-Nagel I, Johnson AB, Terry RD (1974) Studies on brain biopsies of patients with Huntington's chorea. J Neuropathol Exp Neurol 33:308–332

    Article  PubMed  CAS  Google Scholar 

  30. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  PubMed  CAS  Google Scholar 

  31. Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79:1889–1892

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42

    Article  PubMed  CAS  Google Scholar 

  33. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652

    Article  PubMed  CAS  Google Scholar 

  34. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N et al (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485

    Article  PubMed  CAS  Google Scholar 

  35. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M et al (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28:256–263

    Article  PubMed  CAS  Google Scholar 

  36. Thomas B (2009) Parkinson's disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11:2077–2082

    Article  PubMed  CAS  Google Scholar 

  37. Lesage S, Brice A (2009) Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59

    Article  PubMed  CAS  Google Scholar 

  38. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  PubMed  CAS  Google Scholar 

  39. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  CAS  Google Scholar 

  40. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  Google Scholar 

  41. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  PubMed  CAS  Google Scholar 

  42. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  Google Scholar 

  43. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S et al (2003) alpha-Synuclein locus triplication causes Parkinson's disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  44. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE et al (2010) alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190:1023–1037

    Article  PubMed  CAS  Google Scholar 

  45. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  PubMed  CAS  Google Scholar 

  46. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788

    PubMed  CAS  Google Scholar 

  47. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG (2012) Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist 18(3):224–236

    Article  PubMed  CAS  Google Scholar 

  48. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353

    PubMed  Google Scholar 

  49. McAllister TW (2011) Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci 13:287–300

    PubMed  Google Scholar 

  50. Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML et al (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550

    Article  PubMed  CAS  Google Scholar 

  51. Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28:674–683

    Article  PubMed  CAS  Google Scholar 

  52. Sadasivan S, Dunn WA, Hayes RL, Wang KK (2008) Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun 373:478–481

    Article  PubMed  CAS  Google Scholar 

  53. Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC (2008) Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 4:88–90

    PubMed  CAS  Google Scholar 

  54. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86–93

    Article  PubMed  CAS  Google Scholar 

  55. Luo CL, Li BX, Li QQ, Chen XP, Sun YX et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  PubMed  CAS  Google Scholar 

  56. Viscomi MT, Florenzano F, Latini L, Molinari M (2009) Remote cell death in the cerebellar system. Cerebellum 8:184–191

    Article  PubMed  CAS  Google Scholar 

  57. Binkofski F, Seitz RJ, Arnold S, Classen J, Benecke R, Freund HJ (1996) Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann Neurol 39:460–470

    Article  PubMed  CAS  Google Scholar 

  58. Viscomi MT, D'Amelio M, Cavallucci V, Latini L, Bisicchia E et al (2012) Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 8:222–235

    Article  PubMed  CAS  Google Scholar 

  59. Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009) Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 33:143–148

    Article  PubMed  CAS  Google Scholar 

  60. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E (2011) Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine (Phila Pa 1976) 36:E1427–E1434

    Article  Google Scholar 

  61. Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E (2012) Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma 29:946–956

    Article  PubMed  Google Scholar 

  62. Adhami F, Schloemer A, Kuan CY (2007) The roles of autophagy in cerebral ischemia. Autophagy 3:42–44

    PubMed  CAS  Google Scholar 

  63. Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 4:404–408

    PubMed  CAS  Google Scholar 

  64. Xu M, Zhang HL (2011) Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin 32:1089–1099

    Article  PubMed  CAS  Google Scholar 

  65. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ et al (2006) Cerebral ischemia–hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169:566–583

    Article  PubMed  CAS  Google Scholar 

  66. Wen YD, Sheng R, Zhang LS, Han R, Zhang X et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    PubMed  CAS  Google Scholar 

  67. Rami A (2008) Upregulation of Beclin 1 in the ischemic penumbra. Autophagy 4:227–229

    PubMed  CAS  Google Scholar 

  68. Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29:132–141

    Article  PubMed  CAS  Google Scholar 

  69. Puyal J, Clarke PG (2009) Targeting autophagy to prevent neonatal stroke damage. Autophagy 5:1060–1061

    Article  PubMed  Google Scholar 

  70. Zhu C, Wang X, Xu F, Bahr BA, Shibata M et al (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia–ischemia. Cell Death Differ 12:162–176

    Article  PubMed  CAS  Google Scholar 

  71. Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y et al (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia–ischaemia. J Neurochem 96:1016–1027

    Article  PubMed  CAS  Google Scholar 

  72. Ginet V, Puyal J, Clarke PG, Truttmann AC (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia–ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 175:1962–1974

    Article  PubMed  CAS  Google Scholar 

  73. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiol Dis 32:329–339

    Article  PubMed  CAS  Google Scholar 

  74. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia–ischemia. Autophagy 6:366–377

    Article  PubMed  CAS  Google Scholar 

  75. Carloni S, Buonocore G, Longini M, Proietti F, Balduini W (2012) Inhibition of rapamycin-induced autophagy causes necrotic cell death associated with Bax/Bad mitochondrial translocation. Neuroscience 203:160–169

    Article  PubMed  CAS  Google Scholar 

  76. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic–ischemic injury. Am J Pathol 172:454–469

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wings for Life Spinal Cord Research Foundation (WFL1-2011) (M.T.V.), by Projects for Research of National Interest (PRIN 2009), and by grant from the Alzheimer's Association (NIRG-11-204588) (M.DA). We thank Prof. M. Molinari and Prof. G. Bernardi for their continuous support and encouragement. The professional editorial work of Blue Pencil Science is also acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Teresa Viscomi or Marcello D’Amelio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viscomi, M.T., D’Amelio, M. The “Janus-Faced Role” of Autophagy in Neuronal Sickness: Focus on Neurodegeneration. Mol Neurobiol 46, 513–521 (2012). https://doi.org/10.1007/s12035-012-8296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8296-3

Keywords

Navigation