Skip to main content

Advertisement

Log in

Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer’s disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson’s disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington’s disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

PD :

Parkinson’s disease

SLOS :

Smith-Lemli Opitz syndrome

NPC :

Niemann-Pick type C disease

HD :

Huntington’s disease

AD :

Alzheimer’s disease

DHEA :

Dehydroepiandrosterone

SSD :

Sterol-sensing domain

CNS :

Central nervous system

:

Amyloid β

BBB :

Blood-brain barrier

VLDLR :

Very low-density lipoprotein receptor

LRP :

LDLR-related protein

ER :

Endoplasmic reticulum

UC :

Unesterified cholesterol

EC :

Esterified cholesterol

NTD :

N-terminal domain (NTD)

SSD :

Sterol-sensing domain

IRS :

Insulin receptor substrate

NSE :

Neuron-specific enolase

MS :

Multiple sclerosis

ALS :

Amyotrophic lateral sclerosis

TC :

Total cholesterol

APPs :

Amyloid precursor proteins

EL :

Endosomal-lysosomal

PNS :

Peripheral nervous system

Cdk5 :

Cyclin-dependent kinase 5

DOTAP :

1,2-Dioleoyl-3-trimethylammoniumpropane

DOPE :

Dioleoylphosphatidylethanolamine

DOPC :

Dioleoyl-phosphocholine

LMP :

Lysosomal membrane permeabilization

SDS :

Sodium dodecyl sulfate

MPP + :

1-Methyl-4-phenylpyridinium

SREBP :

Sterol regulatory element-binding protein

LXRs :

Liver X receptors

ABCA1 :

ATP-binding cassette transporter A1

HMG-CoA :

3-Hydroxy-3-methyl-glutaryl coenzyme A

NFT :

Neurofibrillary tangles

FDA :

Food and Drug Administration

References

  1. Maxfield FR, van Meer G (2010) Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 22(4):422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo X et al (2022) Cholesterol metabolism and its implication in glioblastoma therapy. J Cancer 13(6):1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang BL (2022) Cholesterol synthesis inhibition or depletion in axon regeneration. Neural Regen Res 17(2):271

    Article  CAS  PubMed  Google Scholar 

  4. Haider A et al (2022) Assessment of cholesterol homeostasis in the living human brain. Sci Transl Med 14(665):eadc9967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hussain G et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):1–12

    Article  Google Scholar 

  6. Appelqvist H et al (2012) Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS one 7(11):e50262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saeedi Saravi SS et al (2017) The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab Brain Dis 32(4):949–965

    Article  CAS  PubMed  Google Scholar 

  8. Sarmah D et al (2023) Cardiolipin-mediated alleviation of mitochondrial dysfunction is a neuroprotective effect of statin in animal model of ischemic stroke. ACS Chem Neurosci 14(4):709–724

    Article  CAS  PubMed  Google Scholar 

  9. Susanto M et al (2023) The neuroprotective effect of statin in traumatic brain injury: a systematic review. World Neurosurg: X 100211. https://pubmed.ncbi.nlm.nih.gov/37251243/

  10. Bhat A et al (2021) Perspective insights of repurposing the pleiotropic efficacy of statins in neurodegenerative disorders: an expository appraisal. Curr Res Pharmacol Drug Discov 2:100012

    Article  PubMed  Google Scholar 

  11. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5(6):746–755

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfeffer SR (2019) NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes. J Biol Chem 294(5):1706–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang X et al (2015) Statins, plasma cholesterol, and risk of Parkinson’s disease: a prospective study. Mov Disord 30(4):552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Passero M, Zhai T, Huang Z (2023) Investigation of potential drug targets for cholesterol regulation to treat Alzheimer’s disease. Int J Environ Res Public Health 20(13):6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo Y et al (2022) Measurement of 7-dehydrocholesterol and cholesterol in hair can be used in the diagnosis of Smith-Lemli-Opitz syndrome. J Lipid Res 63(6). https://pubmed.ncbi.nlm.nih.gov/35577137/

  16. Salata C et al (2017) Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther 15(5):483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nawa M et al (2003) Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84(7):1737–1741

    Article  CAS  PubMed  Google Scholar 

  18. Lane TR, Ekins S (2021) Defending antiviral cationic amphiphilic drugs that may cause drug-induced phospholipidosis. J Chem Inf Model 61(9):4125–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morin-Dewaele M et al (2022) Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Sci Rep 12(1):1–12

    Article  Google Scholar 

  20. Lu F et al (2015) Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection. Elife 4. https://pubmed.ncbi.nlm.nih.gov/26646182/

  21. Liscum L, Faust JR (1989) The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-β-[2-(diethylamino) ethoxy] androst-5-en-17-one. J Biol Chem 264(20):11796–11806

    Article  CAS  PubMed  Google Scholar 

  22. Assefi M et al (2023) Potential use of the cholesterol transfer inhibitor U18666A as an antiviral drug for research on various viral infections. Microb Pathog 106096. https://pubmed.ncbi.nlm.nih.gov/37011734/

  23. Wojtanik KM, Liscum L (2003) The transport of low density lipoprotein-derived cholesterol to the plasma membrane is defective in NPC1 cells. J Biol Chem 278(17):14850–14856

    Article  CAS  PubMed  Google Scholar 

  24. Winer N et al (1966) Myotonic response induced by inhibitors of cholesterol biosynthesis. Science 153(3733):312–313

    Article  CAS  PubMed  Google Scholar 

  25. Koh CHV, Cheung NS (2006) Cellular mechanism of U18666A-mediated apoptosis in cultured murine cortical neurons: bridging Niemann-Pick disease type C and Alzheimer’s disease. Cell Signal 18(11):1844–1853

    Article  CAS  PubMed  Google Scholar 

  26. Croce C et al (2022) Efficient cholesterol transport in dendritic cells defines optimal exogenous antigen presentation and toxoplasma gondii proliferation. Front Cell Dev Biol 10. https://pubmed.ncbi.nlm.nih.gov/35309938/

  27. Volpe JJ, Obert KA (1982) Interrelationships of ubiquinone and sterol syntheses in cultured cells of neural origin. J Neurochem 38(4):931–938

    Article  CAS  PubMed  Google Scholar 

  28. Harned TC et al (2023) Acute ACAT1/SOAT1 blockade increases MAM Cholesterol and strengthens ER-mitochondria connectivity. Int J Mol Sci 24(6):5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong X et al (2016) Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165(6):1467–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lajoie P et al (2005) The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. J Cell Sci 118(9):1991–2003

    Article  CAS  PubMed  Google Scholar 

  31. Elgner F et al (2016) The intracellular cholesterol transport inhibitor U18666A inhibits the exosome-dependent release of mature hepatitis C virus. J Virol 90(24):11181–11196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cenedella RJ (2009) Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 44(6):477–487

    Article  CAS  PubMed  Google Scholar 

  33. Panini SR, Sexton R, Rudney H (1984) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by oxysterol by-products of cholesterol biosynthesis. Possible mediators of low density lipoprotein action. J Biol Chem 259(12):7767–7771

    Article  CAS  PubMed  Google Scholar 

  34. Liscum L, Ruggiero RM, Faust JR (1989) The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts. J Cell Biol 108(5):1625–1636

    Article  CAS  PubMed  Google Scholar 

  35. Peake KB et al (2007) Inflammation in the Niemann‐Pick type‐C brain. Wiley Online Library. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902432/

  36. Peruzzu D et al (2022) Inhibition of cholesterol transport impairs Cav‐1 trafficking and small extracellular vesicles secretion, promoting amphisome formation in melanoma cells. Traffic. https://pubmed.ncbi.nlm.nih.gov/36519961/

  37. Battista M-C et al (2009) 24-dehydrocholesterol reductase/seladin-1: a key protein differentially involved in adrenocorticotropin effects observed in human and rat adrenal cortex. Endocrinology 150(9):4180–4190

    Article  CAS  PubMed  Google Scholar 

  38. Yao K et al (2016) Protective effect of DHT on apoptosis induced by U18666A via PI3K/Akt signaling pathway in C6 glial cell lines. Cell Mol Neurobiol 36(5):801–809

    Article  CAS  PubMed  Google Scholar 

  39. Lu F et al (2015) Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection. Elife 4:e12177

    Article  PubMed  PubMed Central  Google Scholar 

  40. Head SA et al (2017) Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis. ACS Chem Biol 12(1):174–182

    Article  CAS  PubMed  Google Scholar 

  41. Eid W et al (2017) mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci 114(30):7999–8004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao X et al (2021) Selective Aster inhibitors distinguish vesicular and nonvesicular sterol transport mechanisms. Proc Natl Acad Sci 118(2):e2024149118

    Article  CAS  PubMed  Google Scholar 

  43. Moebius FF et al (1998) Pharmacological analysis of sterol Δ8-Δ7 isomerase proteins with [3H] ifenprodil. Mol Pharmacol 54(3):591–598

    Article  CAS  PubMed  Google Scholar 

  44. Bae S-H, Paik Y-K (1997) Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol Δ24-reductase. Biochem J 326(2):609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allam M et al (2020) COVID-19 diagnostics, tools, and prevention. Diagnostics 10(6):409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue-Shan Z et al (2016) Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin Chim Acta 456:107–114

    Article  PubMed  Google Scholar 

  47. Pang K et al (2022) An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res 32(2):157–175

    Article  CAS  PubMed  Google Scholar 

  48. Chung J et al (2018) Endosomal-lysosomal cholesterol sequestration by U18666A differentially regulates amyloid precursor protein (APP) metabolism in normal and APP-overexpressing cells. Mol Cell Biol 38(11):e00529-e617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y et al (2021) Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. Iscience 24(5). https://pubmed.ncbi.nlm.nih.gov/34013171/

  50. Wong C-O (2020) Endosomal-lysosomal processing of neurodegeneration-associated proteins in astrocytes. Int J Mol Sci 21(14):5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cougnoux A et al (2023) Investigation of 2-hydroxypropyl-β-cyclodextrin treatment in a neuronal-like cell model of Niemann-Pick type C using quantitative proteomics. J Am Soc Mass Spectrom 34(4):668–675

    Article  CAS  PubMed  Google Scholar 

  52. Eriksson I et al (2017) Impact of high cholesterol in a Parkinson’s disease model: prevention of lysosomal leakage versus stimulation of α-synuclein aggregation. Eur J Cell Biol 96(2):99–109

    Article  CAS  PubMed  Google Scholar 

  53. Koh CHV et al (2007) Neuronal apoptosis mediated by inhibition of intracellular cholesterol transport: microarray and proteomics analyses in cultured murine cortical neurons. J Cell Physiol 211(1):63–87

    Article  CAS  PubMed  Google Scholar 

  54. Runz H et al (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22(5):1679–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poh MK et al (2012) U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antiviral Res 93(1):191–198

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi T et al (2000) The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 11(5):1829–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kobayashi T et al (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1(2):113–118

    Article  CAS  PubMed  Google Scholar 

  58. Hall AM, Krishnamoorthy L, Orlow SJ (2003) Accumulation of tyrosinase in the endolysosomal compartment is induced by U18666A. Pigment Cell Res 16(2):149–158

    Article  CAS  PubMed  Google Scholar 

  59. Kuszak J, Khan A, Cenedella R (1988) An ultrastructural analysis of plasma membrane in the U18666A cataract. Invest Ophthalmol Vis Sci 29(2):261–267

    CAS  PubMed  Google Scholar 

  60. Boogaard A, Griffioen M, Cohen LH (1987) Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in human hepatoma cell line Hep G2. Effects of inhibitors of cholesterol synthesis on enzyme activity. Biochem J 241(2):345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Müller C et al (2022) Dehydrocholesterol reductase 24 (DHCR24): medicinal chemistry, pharmacology and novel therapeutic options. Curr Med Chem. https://pubmed.ncbi.nlm.nih.gov/34781860/

  62. Peng H-Y et al (2022) PrPC promotes endometriosis progression by reprogramming cholesterol metabolism and estrogen biosynthesis of endometrial stromal cells through PPARα pathway. Int J Biol Sci 18(4):1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iftakhar EKI et al (2009) Novel mechanism of U18666A-induced tumour necrosis factor-alpha production in RAW 264.7 macrophage cells. Clin Exp Immunol 155(3):552–8

    Article  Google Scholar 

  64. Cheung NS et al (2004) Chronic exposure to U18666A induces apoptosis in cultured murine cortical neurons. Biochem Biophys Res Commun 315(2):408–417

    Article  CAS  PubMed  Google Scholar 

  65. Koh CHV et al (2006) Chronic exposure to U18666A is associated with oxidative stress in cultured murine cortical neurons. J Neurochem 98(4):1278–1289

    Article  CAS  PubMed  Google Scholar 

  66. Alberts AW (1988) Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62(15):10j–15j

    Article  CAS  PubMed  Google Scholar 

  67. Mendoza-Oliva A et al (2015) Lovastatin differentially affects neuronal cholesterol and amyloid-β production in vivo and in vitro. CNS Neurosci Ther 21(8):631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang F et al (2018) Lovastatin promotes myelin formation in NPC1 mutant oligodendrocytes. J Neurol Sci 386:56–63

    Article  CAS  PubMed  Google Scholar 

  69. Carroll CB, Webb D, Stevens KN (2019) Simvastatin as a neuroprotective treatment for Parkinson's disease (PD STAT): protocol for a double-blind, randomised, placebo-controlled futility study. 9(10):e029740. https://pubmed.ncbi.nlm.nih.gov/31594876/

  70. Serrano-Pozo A et al (2010) Effects of simvastatin on cholesterol metabolism and Alzheimer disease biomarkers. Alzheimer Dis Assoc Disord 24(3):220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun Y-X et al (2003) Pravastatin inhibits pro-inflammatory effects of Alzheimer’s peptide Aβ1–42 in glioma cell culture in vitro. Pharmacol Res 47(2):119–126

    Article  CAS  PubMed  Google Scholar 

  72. Tramontina AC et al (2011) The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer’s disease in rats. J Neural Transm 118:1641–1649

    Article  CAS  PubMed  Google Scholar 

  73. Feldman H et al (2010) Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 74(12):956–964

    Article  CAS  PubMed  Google Scholar 

  74. Lea AP, McTavish D (1997) Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs 53:828–847

    Article  CAS  PubMed  Google Scholar 

  75. Peng Y et al (2022) A molecular dynamic approach to a hypothesis on the dynamical behavior of Rosuvastatin on Alzheimer’s disease amyloid beta-peptide interactions in the atomic structures. Eng Anal Boundary Elem 144:1–7

    Article  Google Scholar 

  76. Kang SY et al (2017) Autophagic modulation by rosuvastatin prevents rotenone-induced neurotoxicity in an in vitro model of Parkinson’s disease. Neurosci Lett 642:20–26

    Article  CAS  PubMed  Google Scholar 

  77. Yao D et al (2018) Amyloidogenesis induced by diet cholesterol and copper in a model mouse for Alzheimer’s disease and protection effects of zinc and fluvastatin. Brain Res Bull 143:1–8

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J, Liu Q (2015) Cholesterol metabolism and homeostasis in the brain. Protein Cell 6(4):254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pfrieger FW (2021) Neurodegenerative diseases and cholesterol: seeing the field through the players. Front Aging Neurosci 13:766587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. In Semin Cell Dev Biol. Elsevier. https://pubmed.ncbi.nlm.nih.gov/15797830/

  81. Jin U, Park SJ, Park SM (2019) Cholesterol metabolism in the brain and its association with Parkinson’s disease. Exp Neurobiol 28(5):554

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dai L et al (2021) Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol 58:2183–2201

    Article  CAS  PubMed  Google Scholar 

  83. Mahley RW (2016) Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol 36(7):1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheon SY (2023) Impaired cholesterol metabolism, neurons, and neuropsychiatric disorders. Exp Neurobiol 32(2):57

    Article  PubMed  PubMed Central  Google Scholar 

  85. Moutinho M et al (2016) Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk. Sci Rep 6(1):30928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koudinov AR, Koudinova NV (2001) Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 15(10):1858–1860

    Article  CAS  PubMed  Google Scholar 

  87. Koudinov AR, Koudinova NV (2005) Cholesterol homeostasis failure as a unifying cause of synaptic degeneration. J Neurol Sci 229:233–240

    Article  PubMed  Google Scholar 

  88. Koudinov AR, Koudinova NV (2003) Cholesterol, synaptic function and Alzheimer’s disease. Pharmacopsychiatry 36(S 2):107–112

    Google Scholar 

  89. Bruno F et al (2023) The antifungal antibiotic filipin as a diagnostic tool of cholesterol alterations in lysosomal storage diseases and neurodegenerative disorders. Antibiotics 12(1):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cherry P et al (2023) Loss of small GTPase Rab7 activation in prion infection negatively affects a feedback loop regulating neuronal cholesterol metabolism. J Biol Chem 102883. https://pubmed.ncbi.nlm.nih.gov/36623732/

  91. Raulin A-C, Liu C-C, Bu G (2023) An assay to evaluate the capacity of cholesterol acceptors using BODIPY-cholesterol in cells. STAR Protoc 4(1):101976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karasinska JM, Hayden MR (2011) Cholesterol metabolism in Huntington disease. Nat Rev Neurol 7(10):561–572

    Article  CAS  PubMed  Google Scholar 

  93. Dietschy JM (2009) Central nervous system: cholesterol turnover, brain development and neurodegeneration. https://pubmed.ncbi.nlm.nih.gov/19166320/

  94. Dietschy JM, Turley SD (2004) Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45(8):1375–1397

    Article  CAS  PubMed  Google Scholar 

  95. Dai L et al (2021) Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol 58(5):2183–2201

    Article  CAS  PubMed  Google Scholar 

  96. Martinek R et al (2021) Advanced bioelectrical signal processing methods: past, present, and future approach—part III: other biosignals. Sensors 21(18):6064

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fester L et al (2009) Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 19(8):692–705

    Article  CAS  PubMed  Google Scholar 

  98. Pfrieger FW (2003) Role of cholesterol in synapse formation and function. Biochim Biophys Acta (BBA)-Biomembr 1610(2):271–280

    Article  CAS  Google Scholar 

  99. Duan Y et al (2022) Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 7(1):1–29

    CAS  Google Scholar 

  100. Luo J, Yang H, Song B-L (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21(4):225–245

    Article  CAS  PubMed  Google Scholar 

  101. Mouzat K et al (2019) Regulation of brain cholesterol: what role do liver X receptors play in neurodegenerative diseases? Int J Mol Sci 20(16):3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hayashi H et al (2004) Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem 279(14):14009–14015

    Article  CAS  PubMed  Google Scholar 

  103. Karten B et al (2005) Generation and function of astroglial lipoproteins from Niemann-Pick type C1-deficient mice. Biochem J 387(3):779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhan N et al (2023) Identification of side chain oxidized sterols as novel liver X receptor agonists with therapeutic potential in the treatment of cardiovascular and neurodegenerative diseases. Int J Mol Sci 24(2):1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang S et al (2016) Is beta-amyloid accumulation a cause or consequence of Alzheimer's disease? J Alzheimers Parkinsonism Dement 1(2). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555607/

  106. Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6(4):345–351

    Article  CAS  PubMed  Google Scholar 

  107. Wood WG et al (2014) Cholesterol as a causative factor in Alzheimer’s disease: a debatable hypothesis. J Neurochem 129(4):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eckert G, Wood W, Muller W (2010) Lipid membranes and β-amyloid: a harmful connection. Curr Protein Pept Sci 11(5):319–325

    Article  CAS  PubMed  Google Scholar 

  109. Williamson R, Sutherland C (2011) Neuronal membranes are key to the pathogenesis of Alzheimer’s disease: the role of both raft and non-raft membrane domains. Curr Alzheimer Res 8(2):213–221

    Article  CAS  PubMed  Google Scholar 

  110. Gamba P et al (2012) The link between altered cholesterol metabolism and Alzheimer’s disease. Ann N Y Acad Sci 1259(1):54–64

    Article  CAS  PubMed  Google Scholar 

  111. Maulik M et al (2013) Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol 47:37–63

    Article  CAS  PubMed  Google Scholar 

  112. Halford RW, Russell DW (2009) Reduction of cholesterol synthesis in the mouse brain does not affect amyloid formation in Alzheimer’s disease, but does extend lifespan. Proc Natl Acad Sci 106(9):3502–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Martins IJ et al (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111(6):1275–1308

    Article  CAS  PubMed  Google Scholar 

  114. Koelsch G (2017) BACE1 function and inhibition: implications of intervention in the amyloid pathway of Alzheimer's disease pathology. Molecules 22(10). https://pubmed.ncbi.nlm.nih.gov/29027981/

  115. Shobab LA, Hsiung G-YR, Feldman HH (2005) Cholesterol in Alzheimer’s disease. Lancet Neurol 4(12):841–852

    Article  CAS  PubMed  Google Scholar 

  116. Refolo LM et al (2001) A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8(5):890–899

    Article  CAS  PubMed  Google Scholar 

  117. Burns MP et al (2006) The effects of ABCA1 on cholesterol efflux and Aβ levels in vitro and in vivo. J Neurochem 98(3):792–800

    Article  CAS  PubMed  Google Scholar 

  118. Ya L, Lu Z (2017) Differences in ABCA1 R219K polymorphisms and serum indexes in Alzheimer and Parkinson Diseases in Northern China. Med Sci Monit: Int Med J Exp Clin Res 23:4591

    Article  Google Scholar 

  119. Pals P et al (2004) α-Synuclein promoter confers susceptibility to Parkinson’s disease. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 56(4):591–595

    Article  CAS  Google Scholar 

  120. Koldamova RP et al (2003) 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid β secretion. J Biol Chem 278(15):13244–13256

    Article  CAS  PubMed  Google Scholar 

  121. Cui X et al (2015) Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood–brain barrier and white matter damage after stroke. Stroke 46(3):827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wolozin B (2004) Cholesterol and the biology of Alzheimer’s disease. Neuron 41(1):7–10

    Article  CAS  PubMed  Google Scholar 

  123. Yamada Y et al (2022) Fine-tuned cholesterol solubilizer, mono-6-O-α-D-maltosyl-γ-cyclodextrin, ameliorates experimental Niemann-Pick disease type C without hearing loss. Biomed Pharmacother 155:113698

    Article  CAS  PubMed  Google Scholar 

  124. Liedtke M et al (2022) Impact of organelle transport deficits on mitophagy and autophagy in niemann-pick disease type c. Cells 11(3):507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mitroi DN et al (2019) NPC 1 enables cholesterol mobilization during long-term potentiation that can be restored in Niemann-Pick disease type C by CYP 46A1 activation. EMBO Rep 20(11):e48143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. The Lancet 397(10291):2284–2303

    Article  CAS  Google Scholar 

  127. Chopade P et al (2023) Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med 8(1):e10367

    Article  CAS  PubMed  Google Scholar 

  128. Pierzchlińska A, Droździk M, Białecka M (2021) A possible role for HMG-CoA reductase inhibitors and its association with HMGCR genetic variation in Parkinson’s disease. Int J Mol Sci 22(22):12198

    Article  PubMed  PubMed Central  Google Scholar 

  129. De Lau LM et al (2006) Serum cholesterol levels and the risk of Parkinson’s disease. Am J Epidemiol 164(10):998–1002

    Article  PubMed  Google Scholar 

  130. Huang X et al (2019) Brain cholesterol metabolism and Parkinson’s disease. Mov Disord 34(3):386–395

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bates GP et al (2015) Huntington disease. Nat Rev Dis Primers 1(1):1–21

    Article  Google Scholar 

  132. Leoni V, Caccia C (2015) The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1851(8):1095–1105

    CAS  Google Scholar 

  133. Abdel-Khalik J et al (2017) Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res 58(1):267–278

    Article  CAS  PubMed  Google Scholar 

  134. Dorst J et al (2011) Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol 258:613–617

    Article  CAS  PubMed  Google Scholar 

  135. Hartmann H et al (2022) Cholesterol dyshomeostasis in amyotrophic lateral sclerosis: cause, consequence, or epiphenomenon? FEBS J 289(24):7688–7709

    Article  CAS  PubMed  Google Scholar 

  136. Cutler RG et al (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress–induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 52(4):448–457

    Article  CAS  Google Scholar 

  137. Popugaeva E, Pchitskaya E, Bezprozvanny I (2018) Dysregulation of intracellular calcium signaling in Alzheimer’s disease. Antioxid Redox Signal 29(12):1176–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kodis EJ et al (2018) N-methyl-D-aspartate receptor–mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement 14(10):1302–1312

    Article  PubMed  PubMed Central  Google Scholar 

  139. Oveisgharan S et al (2018) APOE ε2ε4 genotype, incident AD and MCI, cognitive decline, and AD pathology in older adults. Neurology 90(24):e2127–e2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cenedella RJ (1980) Concentration-dependent effects of AY-9944 and U18666A on sterol synthesis in brain: Variable sensitivities of metabolic steps. Biochem Pharmacol 29(20):2751–2754

    Article  CAS  PubMed  Google Scholar 

  141. Das S et al (2023) Distinct transcriptomic responses to A beta plaques, neurofibrillary tangles, and APOE in Alzheimer's disease. bioRxiv p. 2023.03. 20.533303. https://www.biorxiv.org/content/10.1101/2023.03.20.533303v1

  142. Otero-Garcia M et al (2022) Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110(18):2929-2948. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Batra S et al (2023) A review on cyclin-dependent kinase 5: an emerging drug target for neurodegenerative diseases. Int J Biol Macromol 123259. https://pubmed.ncbi.nlm.nih.gov/36641018/

  144. Hirokawa T et al (2021) Roscovitine, a cyclin-dependent kinase-5 inhibitor, decreases phosphorylated Tau formation and death of retinal ganglion cells of rats after optic nerve crush. Int J Mol Sci 22(15):8096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Koh CHV et al (2006) U18666A-mediated apoptosis in cultured murine cortical neurons: role of caspases, calpains and kinases. Cell Signal 18(10):1572–1583

    Article  CAS  PubMed  Google Scholar 

  146. Saito T et al (2003) Developmental regulation of the proteolysis of the p35 cyclin-dependent kinase 5 activator by phosphorylation. J Neurosci 23(4):1189–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ferrer I, Barrachina M, Puig B (2002) Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 104:583–591

    Article  CAS  PubMed  Google Scholar 

  148. Hanger DP et al (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry. J Neurochem 71(6):2465–2476

    Article  CAS  PubMed  Google Scholar 

  149. Phiel CJ et al (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423(6938):435–439

    Article  CAS  PubMed  Google Scholar 

  150. Hashimoto R et al (2002) Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 80(4):589–597

    Article  CAS  PubMed  Google Scholar 

  151. Sparrow SM et al (1999) U18666A inhibits intracellular cholesterol transport and neurotransmitter release in human neuroblastoma cells. Neurochem Res 24(1):69–78

    Article  CAS  PubMed  Google Scholar 

  152. Liu T et al (2021) Suppression of neuronal cholesterol biosynthesis impairs brain functions through insulin-like growth factor I-Akt signaling. Int J Biol Sci 17(14):3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wu Q et al (2021) Implications of exosomes derived from cholesterol-accumulated astrocytes in Alzheimer’s disease pathology. Dis Models Mech 14(10):dmm048929

    Article  CAS  Google Scholar 

  154. Bernardo A et al (2021) Myelin Defects in Niemann-Pick Type C Disease: Mechanisms and Possible Therapeutic Perspectives. Int J Mol Sci 22(16):8858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Coppi E et al (2013) Adenosine A2A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures. Neuropharmacology 73:301–310

    Article  CAS  PubMed  Google Scholar 

  156. De Nuccio C et al (2019) Adenosine A2A receptor stimulation restores cell functions and differentiation in Niemann-Pick type C-like oligodendrocytes. Sci Rep 9(1):9782

    Article  PubMed  PubMed Central  Google Scholar 

  157. García-Sanz P, Aerts JMFG, Moratalla R (2021) The role of cholesterol in α-synuclein and Lewy body pathology in GBA1 Parkinson’s disease. Mov Disord 36(5):1070–1085

    Article  PubMed  Google Scholar 

  158. Desai R et al (2017) ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain 140(6):1595–1610

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jin L-W et al (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-β precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164(3):975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee CD et al (2012) Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 287(3):2032–2044

    Article  CAS  PubMed  Google Scholar 

  161. Finan GM et al (2016) Bioactive compound screen for pharmacological enhancers of apolipoprotein E in primary human astrocytes. Cell Chem Biol 23(12):1526–1538

    Article  CAS  PubMed  Google Scholar 

  162. Yang H, Wang Y, Kar S (2017) Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia 65(11):1728–1743

    Article  PubMed  Google Scholar 

  163. Muirhead G, Dev KK (2014) The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels. J Mol Neurosci 53(1):125–134

    Article  CAS  PubMed  Google Scholar 

  164. Ługowska A (2022) Niemann-Pick type C disease (NPC). Cholesterol. Elsevier, pp 525–551

    Chapter  Google Scholar 

  165. Kennedy BE et al (2013) Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain. PLoS one 8(12):e82685

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yu T, Lieberman AP (2013) Npc1 acting in neurons and glia is essential for the formation and maintenance of CNS myelin. PLoS Genet 9(4):e1003462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Karten B, Peake KB, Vance JE (2009) Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1791(7):659–670

    CAS  Google Scholar 

  168. Copetti-Santos D et al (2015) U18666a treatment results in cholesterol accumulation, reduced Na+, K+-ATPase activity, and increased oxidative stress in rat cortical astrocytes. Lipids 50(10):937–944

    Article  CAS  PubMed  Google Scholar 

  169. Ishibashi S, Yamazaki T, Okamoto K (2009) Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells. J Clin Neurosci 16(7):954–959

    Article  CAS  PubMed  Google Scholar 

  170. Marques AR et al (2016) Gpnmb is a potential marker for the visceral pathology in Niemann-Pick type C disease. PLoS One 11(1):e0147208

    Article  PubMed  PubMed Central  Google Scholar 

  171. Fukaura M et al (2021) Intracerebroventricular treatment with 2-hydroxypropyl-β-cyclodextrin decreased cerebellar and hepatic glycoprotein nonmetastatic melanoma protein B (GPNMB) expression in Niemann-Pick disease type C model mice. Int J Mol Sci 22(1):452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. De Nuccio C et al (2019) Adenosine A2A receptor stimulation restores cell functions and differentiation in Niemann-Pick type C-like oligodendrocytes. Sci Rep 9(1):1–10

    Article  Google Scholar 

  173. Shin Y (2013) Donepezil enhances Purkinje cell survival and improves motor dysfunction by inhibiting cholesterol synthesis in a murine model of Niemann Pick type C disease. https://pubmed.ncbi.nlm.nih.gov/24487798/

  174. Schmitt M et al (2017) U18666A, an activator of sterol regulatory element binding protein pathway, modulates presynaptic dopaminergic phenotype of SH-SY5Y neuroblastoma cells. Synapse 71(9):e21980

    Article  Google Scholar 

  175. Kodachi T et al (2017) Severe demyelination in a patient with a late infantile form of Niemann-Pick disease type C. Neuropathology 37(5):426–430

    Article  CAS  PubMed  Google Scholar 

  176. Torres S et al (2017) Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biol 11:60–72

    Article  CAS  PubMed  Google Scholar 

  177. Takikita S et al (2004) Perturbed myelination process of premyelinating oligodendrocyte in niemann-picktype C mouse. J Neuropathol Exp Neurol 63(6):660–673

    Article  PubMed  Google Scholar 

  178. Martire A et al (2007) Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington’s disease versus wild-type mice. Neurosci Lett 417(1):78–83

    Article  CAS  PubMed  Google Scholar 

  179. Sedighi S et al (2023) Comprehensive Investigations relationship between viral infections and multiple sclerosis pathogenesis. Curr Microbiol 80(1):15

    Article  CAS  Google Scholar 

  180. Phillips WA, Avigan J (1963) Inhibition of cholesterol biosynthesis in the rat by 3 β-(2-diethylaminoethoxy) androst-5-en-17-one, hydrochloride. Proc Soc Exp Biol Med 112(1):233–236

    Article  CAS  PubMed  Google Scholar 

  181. Bierkamper GG, Cenedella RJ (1978) Induction of chronic epileptiform activity in the rat by an inhibitor of cholesterol synthesis, U18666A. Brain Res 150(2):343–351

    Article  CAS  PubMed  Google Scholar 

  182. Cenedella RJ, Sarkar CP, Towns L (1982) Studies on the mechanism of the epileptiform activity induced by U18666A. II. Concentration, half-life and distribution of radiolabeled U18666A in the brain. Epilepsia 23(3):257–68

    Article  CAS  PubMed  Google Scholar 

  183. Sun Y, Ma X, Hu H (2021) Application of nano-drug delivery system based on cascade technology in cancer treatment. Int J Mol Sci 22(11):5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Amaral M, Pereiro AB (2021) Recent advances in ionic liquids and nanotechnology for drug delivery. 16(1):63-80. https://pubmed.ncbi.nlm.nih.gov/33356551/

  185. Jhaveri J, Raichura Z, Khan T (2021) Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. 26(2). https://pubmed.ncbi.nlm.nih.gov/33430478/

  186. Yasamineh S et al (2022) An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology 20(1):440

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yasamineh S et al (2022) A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm p. 121878. https://pubmed.ncbi.nlm.nih.gov/35636629/

  188. Gholizadeh O et al (2022) Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 19(1):1–22

    Article  Google Scholar 

  189. Bae Y-U et al (2016) Enhancement of liposome mediated gene transfer by adding cholesterol and cholesterol modulating drugs. Biochim Biophys Acta (BBA)-Biomembr 1858(12):3017–3023

    Article  CAS  Google Scholar 

  190. Nakhaei P et al (2021) Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol 9:705886

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kim B-K et al (2015) DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim Biophys Acta (BBA)-Biomembr 1848(10):1996–2001

    Article  CAS  Google Scholar 

  192. Yanes RE et al (2013) Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of drug delivery effect by exocytosis inhibition. Small 9(5):697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank all the researchers who are working to increase people’s awareness.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.: validation, investigation, writing original draft–review and editing, resources, visualization, software, formal analysis, conceptualization. M.H.: writing-review and editing, investigation. F.J.M., E.D., R.D.C.P., A.M.K.F., and S.S.: writing-review and editing, investigation. O.G.: corresponding author, writing original draft-review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Omid Gholizadeh.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

The authors guarantee that, once their material has been accepted for publication by the journal, they will not submit the same material or portions thereof to another journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasamineh, S., Mehrabani, F.J., Derafsh, E. et al. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03798-7

Keywords

Navigation