Skip to main content

Advertisement

Log in

Molecular biology of malignant gliomas

  • Educational Series
  • Blue Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gliomas are the most common primary brain tumours. In keeping with the degree of aggressiveness, gliomas are divided into four grades, with different biological behaviour. Furthermore, as different gliomas share a predominant histological appearance, the final classification includes both, histological features and degree of malignancy. For example, gliomas of astrocytic origin (astrocytomas) are classified into pilocytic astrocytoma (grade I), astrocytoma (grade II), anaplastic astrocytoma (grade III) and glioblastoma multiforme (GMB) (grade IV). Tumors derived from oligodendrocytes include grade II (oligodendrogliomas) and grade III neoplasms (oligoastrocytoma).

Each subtype has a specific prognosis that dictates the clinical management. In this regard, a patient diagnosed with an oligodendroglioma totally removed has 10–15 years of potential survival. On the opposite site, patients carrying a glioblastoma multiforme usually die within the first year after the diagnosis is made (table 1). Therefore, different approaches are needed in each case.

Obviously, prognosis and biological behaviour of malignant gliomas are closely related and supported by the different molecular background that possesses each type of glioma. Furthermore, the ability that allows several low-grade gliomas to progress into more aggressive tumors has allowed cancer researchers to elucidate several pathways implicated in molecular biology of these devastating tumors.

In this review, we describe classical pathways involved in human malignant gliomas with special focus with recent advances, such as glioma stem-like cells and expression patterns from microarray studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burns KL, Ueki K, Jhung SL, Koh J, Louis DN. Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J Neuropathol Exp Neurol. 1998;57:122–30.

    Article  PubMed  CAS  Google Scholar 

  2. Cam H, Dynlacht BD. Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell. 2003;3:311–6.

    Article  PubMed  CAS  Google Scholar 

  3. He J, Allen JR, Collins VP, et al. CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res. 1994;54: 5804–7.

    PubMed  CAS  Google Scholar 

  4. Nishikawa R, Furnari FB, Lin H, et al. Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res. 1995;55: 1941–5.

    PubMed  CAS  Google Scholar 

  5. Fridman JS, Lowe SW. Control of apoptosis by p55. Oncogene. 2005;22:9030–40.

    Article  CAS  Google Scholar 

  6. Louis DN. p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol. 1994;53:11–21.

    Article  PubMed  CAS  Google Scholar 

  7. He J, Reifenberger G, Liu L, Collins VP, James CD. Analysis of glioma cell lines for amplification and overexpression of MDM2. Genes Chromosomes and Cancer. 1994;11:91–6.

    Article  PubMed  CAS  Google Scholar 

  8. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.

    Article  PubMed  CAS  Google Scholar 

  9. Labuhn M, Jones G, Speel EJ, et al. Quantitative real-time PCR does not show selective targeting of p14(ARF) but concomitant inactivation of both p16(INK4A) and p14(ARF) in 105 human primary gliomas. Oncogene. 2001;20:1103–9.

    Article  PubMed  CAS  Google Scholar 

  10. Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene. 2004;25:4594–602.

    Article  CAS  Google Scholar 

  11. Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–77.

    Article  PubMed  CAS  Google Scholar 

  12. Holland EC, Hively WP, Gallo V, Varmus HE. Modelling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev. 1998;12:5644–9.

    Google Scholar 

  13. Yamada N, Kato M, Yamashita H, et al. Enhanced expression of transforming growth factor-beta and its type-1 and type-II receptors in human glioblastoma. Int J Cancer. 1995;62:386–92.

    Article  PubMed  CAS  Google Scholar 

  14. Jennings MT, Pietenpol JA. The role of transforming growth factor beta in glioma progression. J Neurooncol. 1998;36:123–40.

    Article  PubMed  CAS  Google Scholar 

  15. Seoane J, Le HV, Shen L, Anderson SA, Massague J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004;117:211–25.

    Article  PubMed  CAS  Google Scholar 

  16. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. P13K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;50:193–204.

    Article  CAS  Google Scholar 

  17. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 1997;57:4183–6.

    PubMed  CAS  Google Scholar 

  18. Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001;61:6674–8.

    PubMed  CAS  Google Scholar 

  19. Tews B, Felsberg J, Hartmann C, et al. Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p56 and 19q13 using microarray-based expression profiling. Int J Cancer. 2006;119:792–800.

    Article  PubMed  CAS  Google Scholar 

  20. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI. High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res. 2005;65:4088–96.

    Article  PubMed  CAS  Google Scholar 

  21. Mulholland PJ, Fiegler H, Mazzanti C, et al. Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle. 2006;5:783–91.

    PubMed  CAS  Google Scholar 

  22. Kim S, Dougherty ER, Shmulevich I, et al. Identification of combination gene sets for glioma classification. Mol Cancer Ther. 2002;1:1229–36.

    PubMed  CAS  Google Scholar 

  23. Markert JM, Fuller CM, Gillespie GY, et al. Differential gene expression profiling in human brain tumors. Physiol Genomics. 2001;5:21–33.

    PubMed  CAS  Google Scholar 

  24. Sallinen SL, Sallinen PK, Haapasalo HK, et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 2000;60:6617–22.

    PubMed  CAS  Google Scholar 

  25. Rickman DS, Bobek MP, Misek DE, et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 2001;61:6885–91.

    PubMed  CAS  Google Scholar 

  26. van den Boom J, Wolter M, Kuick R, et al. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol. 2003;163:1033–43.

    PubMed  Google Scholar 

  27. Hoelzinger DB, Mariani L, Weis J, et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005; 7:7–16.

    Article  PubMed  CAS  Google Scholar 

  28. Raza SM, Fuller GN, Rhee CH, et al. Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res. 2004;10:212–21.

    Article  PubMed  CAS  Google Scholar 

  29. Nutt CL, Mani DR, Betensky RA, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2005;63:1602–7.

    Google Scholar 

  30. Rich JN, Hans C, Jones B, et al. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 2005; 65:4051–8.

    Article  PubMed  CAS  Google Scholar 

  31. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9: 157–73.

    Article  PubMed  CAS  Google Scholar 

  32. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.

    Article  PubMed  CAS  Google Scholar 

  33. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markersin vitro. Glia. 2002;39:193–206.

    Article  PubMed  Google Scholar 

  34. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63: 5821–8.

    PubMed  CAS  Google Scholar 

  35. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004; 64:7011–21.

    Article  PubMed  CAS  Google Scholar 

  36. Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of micro-RNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334:1351–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristóbal Belda-Iniesta or Rosario Perona.

Additional information

Supported by an unrestricted educational grant by Bristol-Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belda-Iniesta, C., de Castro Carpeño, J., Sáenz, E.C. et al. Molecular biology of malignant gliomas. Clin Transl Oncol 8, 635–641 (2006). https://doi.org/10.1007/s12094-006-0033-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0033-9

Key words

Navigation