Skip to main content
Log in

Traversing the Vivid Pharmacological and Nanotechnological Facets of Genistein: Insights into the Past, Present and Future Trends

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The environment has endowed us with herbal remedies, which have a huge potential for alleviating human illnesses with minimal adverse effects. Genistein is one of isoflavones that possess a broad array of therapeutic roles to treat several medical disorders like postmenopausal vasomotor symptoms, antidiabetic, cardioprotective, antidepression, antianxiety, anticancer, antioxidant, antiobesity, and anti-osteoporosis effects. Genistein has the ability to control the cancer growth by transforming cell cycle and cell death signaling pathways, nuclear factor-B kinase signal transduction, and androgen-mediated and protein tyrosine kinase-mediated signaling. Genistein has the capability to augment cell proliferation and survival through the cyclic adenosine monophosphate and protein kinase pathway to produce antidiabetic activity. Genistein acts as an antioxidant by upregulating glutathione and nicotinamide adenine dinucleotide phosphate dehydrogenase. Its antihypertensive activity are produced by ERK1/2, phosphoinositide-3-kinase/Akt, and AMP/protein kinase-A signaling pathways which cause phosphorylation of nitric oxide synthases and enzyme activation. Genistein’s antidepressant effects are attributed to an increase in connexin-43 expression and a decrease in miR-221/222 expression. The physiochemical properties and pharmacokinetic profile of Genistein have been highlighted in the current review work. This article elucidates brief review of the pharmacological applications and molecular pathways of Genistein for the treatment of numerous clinical conditions, including postmenopausal vasomotor symptoms, antidiabetic, anticancer, antioxidant, antiobesity, cardioprotective, antidepression, antianxiety and antiosteoporosis. The current review article’s objective is to provide readers with an updated understanding of previously investigated nanotechnology-based approaches like nanostructured lipid carriers, micelles, solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, and liposomes to improve Genistein’s solubility and permeability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable

Abbreviations

GEN:

Genistein

5-HT:

5-Hydroxytryptamine

NADPH:

Nicotinamide adenine dinucleotide phosphate

IL-1β:

Interleukin-1 beta

NF-kB:

Nuclear factor kappa B

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

cAMP/PKA:

Cyclic adenosine monophosphate/protein kinase A

ERK:

Extracellular signal-related kinase

PPAR:

Peroxisome proliferator-activated receptors

TRAMP:

Transgenic adenocarcinoma of the mouse prostate

BCSCs:

Breast cancer stem-like cells

AMPK:

Activating adenosine monophosphate-activated protein kinase

PTEN:

Phosphatase and tensin homolog

WTLI:

Whole thorax lung irradiation

VEGF:

Vascular endothelial growth factor

BCL2:

β-cell lymphoma 2

ERK:

Extracellular signal-related kinase

NF-κB:

Nuclear factor kappa B

cAMP:

Cyclic adenosine monophosphate

PKA:

Protein kinase A

PEPCK:

Phosphoenolpyruvate carboxykinase

FAS:

Fatty acid synthase

CPT:

Carnitine palmitoyltransferase

TNF:

Tumor necrosis factor

5-HT3:

5-hydroxytryptamine 3 receptor

NPs:

Nanoparticles

PNPs:

Polymeric nanoparticles

SLNs:

Solid lipid nanoparticles

NLCs:

Nanostructured lipid carriers

TPGS:

d-tocopheryl polyethylene glycol succinate

Gen@AuNPs:

Genistein-gold nanoparticle conjugates

HLEC:

Human lens epithelial cell

Gen:

Genistein

β-CD:

Beta-cyclodextrin

BSAnp:

Bovine serum albumin nanoparticles

BSA:

Bovine serum albumin

DMPC:

Dimyristoyl Phosphatidylcholine

DOPC:

Dioleylphosphocholine

DSPC:

Distearoylphosphocholine

Gen@AuNPs:

Genistein gold nanoparticles

HA:

Hyaluronic acid

MPEG:

Methyl ether poly (ethylene glycol)

NE-DSPC:

Distearoylphosphocholine based Nanoemulsion

NE-DOPC:

Dioleylphosphocholine based Nanoemulsion

PEG-PLA:

Polyethylene glycol and Polylactic acid

PLGA:

Poly(D,L-lactide-co-glycolide)

PI3K/AKT3:

Phosphoinositide 3-kinase inhibitors/Threonine Kinase 3

ROS:

Reactive oxygen species

TPGS:

d-α-tocopheryl polyethylene glycol succinate

References

  1. Bungãu, S. G., & Popa, V.-C. (2015). Between religion and science some aspects concerning illness and healing in antiquity. Transylvanian Review, 24(3), 3–18.

    Google Scholar 

  2. Mathur, R., & Velpandian, T. (2009). Medicinal plant-based health products: Where is the medicinal constituent? Indian Journal of Pharmacology, 41(4), 205.

    Article  Google Scholar 

  3. Patwardhan, B., Warude, D., Pushpangadan, P., & Bhatt, N. (2005). Ayurveda and traditional Chinese medicine: a comparative overview. Evidence-Based Complementary and Alternative Medicine, 2(4), 465–473.

  4. Arora, A., Behl, T., Sehgal, A., Singh, S., Sharma, N., Abdellatif, A. A. H., … Aleya (2023). Elucidating the promising role of traditional Chinese medicine in neuroprotection against oxidative stress encompassing Alzheimer’s disease. Environmental Science and Pollution Research, 30(14), 39546–39557.

  5. Sharma, V., Gautam, D. N. S., Radu, A.-F., Behl, T., Bungau, S. G., & Vesa, C. M. (2022). Reviewing the traditional/modern uses, phytochemistry, essential oils/extracts and pharmacology of embelia ribes burm. Antioxidants, 11(7), 1359.

    Article  Google Scholar 

  6. Sharma, T., Sharma, P., Chandel, P., Singh, S., Sharma, N., Naved, T., Bhatia, S., Al-Harrasi, A., Bungau, S., & Behl, T. (2022). Circumstantial insights into the potential of traditional Chinese Medicinal Plants as a therapeutic approach in rheumatoid arthritis. Current Pharmaceutical Design, 28(26), 2140–2149.

  7. Nisar, B., Sultan, A., & Rubab, S. L. (2018). Comparison of medicinally important natural products versus synthetic drugs-a short commentary. Natural Products Chemistry & Research, 6(2), 308.

    Article  Google Scholar 

  8. Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311(5762), 815–819.

    Article  Google Scholar 

  9. Aqil, F., Munagala, R., Jeyabalan, J., & Vadhanam, M. V. (2013). Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Letters, 334(1), 133–141.

    Article  Google Scholar 

  10. Gorain, B., Pandey, M., Leng, N. H., Yan, C. W., Nie, K. W., Kaur, S. J., … Molugulu, N. (2022). Advanced drug delivery systems containing herbal components for wound healing. International Journal of Pharmaceutics, 617, 121617.

  11. Carmona, F., & Pereira, A. M. S. (2013). Herbal medicines: Old and new concepts, truths and misunderstandings. Revista Brasileira de Farmacognosia, 23(2), 379–385.

    Article  Google Scholar 

  12. Saxena, M., Saxena, J., Nema, R., Singh, D., & Gupta, A. (2013). Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry, 1(6), 168–182.

    Google Scholar 

  13. Sen, P., Sahu, P. K., Haldar, R., Sahu, K., Prasad, P., & Roy, A. (2016). Apigenin naturally occurring flavonoids: Occurrence and bioactivity. UK Journal of Pharmaceutical and Biosciences, 4(6), 56–68.

    Google Scholar 

  14. Sundar, R. D. V., Settu, S., Shankar, S., Segaran, G., & Sathiavelu, M. (2018). Potential medicinal plants to treat leprosy-a review. Research Journal of Pharmacy and Technology, 11(2), 813–821.

    Article  Google Scholar 

  15. Guven, H., Arici, A., & Simsek, O. (2019). Flavonoids in our foods: A short review. Journal of Basic and Clinical Health Sciences, 3(2), 96–106.

    Google Scholar 

  16. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47.

    Article  Google Scholar 

  17. Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531.

    Article  Google Scholar 

  18. Brodowska, K. M. (2017). Natural flavonoids: Classification, potential role, and application of flavonoid analogues. European Journal of Biological Research, 7(2), 108–123.

    Google Scholar 

  19. Ayaz, M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., et al. (2019). Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Frontiers in Aging Neuroscience, 11, 155.

    Article  Google Scholar 

  20. Ciumărnean, L., Milaciu, M. V., Runcan, O., Vesa, Ș. C., Răchișan, A. L., Negrean, V., et al. (2020). The effects of flavonoids in cardiovascular diseases. Molecules, 25(18), 4320.

    Article  Google Scholar 

  21. Fernández, J., Silván, B., Entrialgo-Cadierno, R., Villar, C. J., Capasso, R., Uranga, J. A., Lombo, F., & Abalo, R. (2021). Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomedicine & Pharmacotherapy, 143, 112241.

    Article  Google Scholar 

  22. Milenković, D., Marković, J. M. D., Dimić, D., Jeremić, S., Amić, D., Pirković, M. S., & Marković, Z. S. (2019). Structural characterization of kaempferol: A spectroscopic and computational study. Macedonian Journal of Chemistry and Chemical Engineering, 38(1), 49–62.

    Article  Google Scholar 

  23. Szwajgier, D. (2015). Anticholinesterase activity of selected phenolic acids and flavonoids-interaction testing in model solutions. Annals of Agricultural and Environmental Medicine, s22(4), 690–694.

    Article  Google Scholar 

  24. Kabel, A. M., Arab, H. H., & Abd Elmaaboud, M. A. (2021). Attenuation of diethyl nitrosamine-induced hepatocellular carcinoma by taxifolin and/or alogliptin: The interplay between toll-like receptor 4, transforming growth factor beta-1, and apoptosis. Human & Experimental Toxicology, 40(10), 1710–1720.

    Article  Google Scholar 

  25. Ali, G., & Neda, G. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plant Research, 5(31), 6697–6703.

    Google Scholar 

  26. Mondal, S., & Rahaman, S. T. (2020). Flavonoids: A vital resource in healthcare and medicine. Pharmacy & Pharmacology International Journal, 8(2), 91–104.

    Article  Google Scholar 

  27. Sharma, A., Shanker, C., Tyagi, L. K., Singh, M., & Rao, C. V. (2008). Herbal medicine for market potential in India: An overview. Academic Journal of Plant Sciences, 1(2), 26–36.

    Google Scholar 

  28. Sepehr, E., Cooke, G., Robertson, P., & Gilani, G. S. (2007). Bioavailability of soy isoflavones in rats part I: Application of accurate methodology for studying the effects of gender and source of isoflavones. Molecular Nutrition & Food Research, 51(7), 799–812.

    Article  Google Scholar 

  29. Suen, A. A., Kenan, A. C., & Williams, C. J. (2022). Developmental exposure to phytoestrogens found in soy: New findings and clinical implications. Biochemical Pharmacology, 195, 114848.

  30. Gupta, C., & Prakash, D. (2014). Phytonutrients as therapeutic agents. Journal of Complementary and Integrative Medicine, 11(3), 151–169.

    Article  Google Scholar 

  31. Villares, A., Rostagno, M. A., García-Lafuente, A., Guillamón, E., & Martínez, J. A. (2011). Content and profile of isoflavones in soy-based foods as a function of the production process. Food and Bioprocess Technology, 4(1), 27–38.

    Article  Google Scholar 

  32. Tuli, H. S., Tuorkey, M. J., Thakral, F., Sak, K., Kumar, M., Sharma, A. K., et al. (2019). Molecular mechanisms of action of genistein in cancer: Recent advances. Frontiers in Pharmacology, 10, 1336.

    Article  Google Scholar 

  33. Kim, I.-S. (2021). Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 10(7), 1064.

    Article  Google Scholar 

  34. Perabo, F. G. E., Von Löw, E. C., Ellinger, J., Von Rücker, A., Müller, S. C., & Bastian, P. J. (2008). Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer and Prostatic Diseases, 11(1), 6–12.

    Article  Google Scholar 

  35. Sacks, D., Baxter, B., Campbell, B. C. V., Carpenter, J. S., Cognard, C., Dippel, D., et al. (2018). Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. International Journal of Stroke, 13(6), 612–632.

    Google Scholar 

  36. Taylor, C. K., Levy, R. M., Elliott, J. C., & Burnett, B. P. (2009). The effect of genistein aglycone on cancer and cancer risk: A review of in vitro, preclinical, and clinical studies. Nutrition Reviews, 67(7), 398–415.

    Article  Google Scholar 

  37. Weng, L., Zhang, F., Wang, R., Ma, W., & Song, Y. (2019). A review on protective role of genistein against oxidative stress in diabetes and related complications. Chemico-Biological Interactions, 310, 108665.

    Article  Google Scholar 

  38. Albulescu, M., & Popovici, M. (2007). Isoflavones-biochemistry, pharmacology and therapeutic use. Revue Roumaine de Chimie, 52(6), 537–550.

    Google Scholar 

  39. Mazumder, M. A. R., & Hongsprabhas, P. (2016). Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomedicine & Pharmacotherapy, 82, 379–392.

    Article  Google Scholar 

  40. Motlekar, N., Khan, M. A., & Youan, B. C. (2006). Preparation and characterization of genistein containing poly (ethylene glycol) microparticles. Journal of Applied Polymer Science, 101(3), 2070–2078.

    Article  Google Scholar 

  41. Phan, V., Walters, J., Brownlow, B., & Elbayoumi, T. (2013). Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. Journal of Drug Targeting, 21(10), 1001–1011.

    Article  Google Scholar 

  42. Jaiswal, N., Akhtar, J., Singh, S. P., & Ahsan, F. (2019). An overview on genistein and its various formulations. Drug Research, 69(06), 305–313.

    Article  Google Scholar 

  43. Yang, Z., Kulkarni, K., Zhu, W., & Hu, M. (2012). Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 12(10), 1264–1280.

    Google Scholar 

  44. Ganai, A. A., & Farooqi, H. (2015). Bioactivity of genistein: A review of in vitro and in vivo studies. Biomedicine & Pharmacotherapy, 76, 30–38.

    Article  Google Scholar 

  45. Mukund, V., Mukund, D., Sharma, V., Mannarapu, M., & Alam, A. (2017). Genistein: Its role in metabolic diseases and cancer. Critical Reviews in Oncology/Hematology, 119, 13–22.

    Article  Google Scholar 

  46. Yu, L., Rios, E., Castro, L., Liu, J., Yan, Y., & Dixon, D. (2021). Genistein: Dual role in women’s health. Nutrients, 13(9), 3048.

    Article  Google Scholar 

  47. Sarkar, F. H., Adsule, S., Padhye, S., Kulkarni, S., & Li, Y. (2006). The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Reviews in Medicinal Chemistry, 6(4), 401–407.

    Article  Google Scholar 

  48. Coldham, N. G., Zhang, A.-Q., Key, P., & Sauer, M. J. (2002). Absolute bioavailability of [14 C] genistein in the rat; plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity. European Journal of Drug Metabolism and Pharmacokinetics, 27, 249–258.

    Article  Google Scholar 

  49. Andrade, J. E., Twaddle, N. C., Helferich, W. G., & Doerge, D. R. (2010). Absolute bioavailability of isoflavones from soy protein isolate-containing food in female BALB/c mice. Journal of Agricultural and Food Chemistry, 58(7), 4529–4536.

    Article  Google Scholar 

  50. Rusin, A., Krawczyk, Z., Grynkiewicz, G., Gogler, A., Zawisza-Puchałka, J., & Szeja, W. (2010). Synthetic derivatives of genistein, their properties and possible applications. Acta Biochimica Polonica, 57(1), 23–34.

    Article  Google Scholar 

  51. Harris, D. M., Besselink, E., Henning, S. M., Go, V. L. W., & Heber, D. (2005). Phytoestrogens induce differential estrogen receptor alpha-or beta-mediated responses in transfected breast cancer cells. Experimental Biology and Medicine, 230(8), 558–568.

    Article  Google Scholar 

  52. Li, J., Gang, D., Yu, X., Hu, Y., Yue, Y., Cheng, W., et al. (2013). Genistein: the potential for efficacy in rheumatoid arthritis. Clinical Rheumatology, 32(5), 535–540.

    Article  Google Scholar 

  53. Yousefi, H., Karimi, P., Alihemmati, A., Alipour, M. R., Habibi, P., & Ahmadiasl, N. (2017). Therapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis. Iranian Journal of Basic Medical Sciences, 20(9), 1009.

    Google Scholar 

  54. El-Kordy, E. A., & Alshahrani, A. M. (2015). Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. Journal of Microscopy and Ultrastructure, 3(3), 108–119.

    Article  Google Scholar 

  55. Jackson, I. L., Zodda, A., Gurung, G., Pavlovic, R., Kaytor, M. D., Kuskowski, M. A., & Vujaskovic, Z. (2017). BIO 300, a nanosuspension of genistein, mitigates pneumonitis/fibrosis following high-dose radiation exposure in the C57L/J murine model. British Journal of Pharmacology, 174(24), 4738–4750.

    Article  Google Scholar 

  56. Landauer, M. R., Harvey, A. J., Kaytor, M. D., & Day, R. M. (2019). Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome. Journal of Radiation Research, 60(3), 308–317.

    Article  Google Scholar 

  57. Kim, S., Sohn, I., Lee, Y. S., & Lee, Y. S. (2005). Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. The Journal of Nutrition, 135(1), 33–41.

    Article  Google Scholar 

  58. Rockwood, S., Broderick, T. L., & Al-Nakkash, L. (2018). Feeding obese diabetic mice a genistein diet induces thermogenic and metabolic change. Journal of Medicinal Food, 21(4), 332–339.

    Article  Google Scholar 

  59. Zhou, C., Li, D., Ding, C., Yuan, Q., Yu, S., Du, D., et al. (2021). Involvement of SIRT1 in amelioration of schistosomiasis-induced hepatic fibrosis by genistein. Acta Tropica, 220, 105961.

    Article  Google Scholar 

  60. Carroll, C. C., Patel, S. H., Simmons, J., Gordon, B. D. H., Olson, J. F., Chemelewski, K., et al. (2020). The impact of genistein supplementation on tendon functional properties and gene expression in estrogen-deficient rats. Journal of Medicinal Food, 23(12), 1266–1274.

    Article  Google Scholar 

  61. Tian, H.-S., Zhou, G.-Q., & Zhu, Z.-Y. (2015). Evaluation of cardioprotective effects of genistein against diabetes-induced cardiac dysfunction in rats. Tropical Journal of Pharmaceutical Research, 14(11), 2015–2022.

    Article  Google Scholar 

  62. Poasakate, A., Maneesai, P., Rattanakanokchai, S., Bunbupha, S., Tong-Un, T., & Pakdeechote, P. (2021). Genistein prevents nitric oxide deficiency-induced cardiac dysfunction and remodeling in rats. Antioxidants, 10(2), 237.

    Article  Google Scholar 

  63. Hu, P., Ma, L., Wang, Y., Ye, F., Wang, C., Zhou, W.-H., & Zhao, X. (2017). Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: Involvement of serotonergic system. Neurochemistry International, 108, 426–435.

    Article  Google Scholar 

  64. Chang, M., Zhang, L., Dai, H., & Sun, L. (2021). Genistein acts as antidepressant agent against chronic mild stress-induced depression model of rats through augmentation of brain-derived neurotrophic factor. Brain and Behavior, 11(8), e2300.

    Article  Google Scholar 

  65. Amiri Gheshlaghi, S., Mohammad Jafari, R., Algazo, M., Rahimi, N., Alshaib, H., & Dehpour, A. R. (2017). Genistein modulation of seizure: Involvement of estrogen and serotonin receptors. Journal of Natural Medicines, 71(3), 537–544.

    Article  Google Scholar 

  66. Kim, S.-H., Kim, C.-W., Jeon, S.-Y., Go, R.-E., Hwang, K.-A., & Choi, K.-C. (2014). Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Laboratory Animal Research, 30(4), 143–150.

    Article  Google Scholar 

  67. Wang, J., Eltoum, I.-E., & Lamartiniere, C. A. (2007). Genistein chemoprevention of prostate cancer in TRAMP mice. Journal of Carcinogenesis, 6, 3.

    Article  Google Scholar 

  68. Chen, H.-H., Chen, S.-P., Zheng, Q.-L., Nie, S.-P., Li, W.-J., Hu, X.-J., & Xie, M.-Y. (2018). Genistein promotes proliferation of human cervical cancer cells through estrogen receptor-mediated PI3K/Akt-NF-κB pathway. Journal of Cancer, 9(2), 288.

    Article  Google Scholar 

  69. Li, Q.-S., Li, C.-Y., Li, Z.-L., & Zhu, H.-L. (2012). Genistein and its synthetic analogs as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry, 12(3), 271–281.

    Article  MathSciNet  Google Scholar 

  70. Nagaraju, G. P., Zafar, S. F., & El-Rayes, B. F. (2013). Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutrition Reviews, 71(8), 562–572.

    Article  Google Scholar 

  71. Miao, Q., Li, J.-G., Miao, S., Hu, N., Zhang, J., Zhang, S., et al. (2011). The bone-protective effect of genistein in the animal model of bilateral ovariectomy: roles of phytoestrogens and PTH/PTHR1 against post-menopausal osteoporosis. International Journal of Molecular Sciences, 13(1), 56–70.

    Article  Google Scholar 

  72. Albertazzi, P. (2002). Purified phytoestrogens in postmenopausal bone health: Is there a role for genistein? Climacteric, 5(2), 190–196.

    Article  Google Scholar 

  73. Sureda, A., Silva, A. S., Sánchez-Machado, D. I., López-Cervantes, J., Daglia, M., Nabavi, S. F., & Nabavi, S. M. (2017). Hypotensive effects of genistein: From chemistry to medicine. Chemico-Biological Interactions, 268, 37–46.

    Article  Google Scholar 

  74. Shen, F., Huang, W., Xing, B., Fang, X., Feng, M., & Jiang, C. (2018). Genistein improves the major depression through suppressing the expression of miR-221/222 by targeting connexin 43. Psychiatry Investigation, 15(10), 919.

    Article  Google Scholar 

  75. Gilbert, E. R., & Liu, D. (2013). Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food & Function, 4(2), 200–212.

    Article  Google Scholar 

  76. Zhou, H.-B., Chen, J.-M., Cai, J.-T., Du, Q., & Wu, C.-N. (2008). Anticancer activity of genistein on implanted tumor of human SG7901 cells in nude mice. World Journal of Gastroenterology: WJG, 14(4), 627.

    Article  Google Scholar 

  77. Singh, V. K., Fatanmi, O. O., Wise, S. Y., Carpenter, A., Nakamura-Peek, S., Serebrenik, A. A., & Kaytor, M. D. (2022). A novel oral formulation of BIO 300 confers prophylactic radioprotection from acute radiation syndrome in mice. International Journal of Radiation Biology, 98(5), 958–967.

    Article  Google Scholar 

  78. Zhang, L., Zhang, J., Gong, Y., & Lv, L. (2020). Systematic and experimental investigations of the anti-colorectal cancer mediated by genistein. Biofactors, 46(6), 974–982.

    Article  Google Scholar 

  79. Yousefi, H., Alihemmati, A., Karimi, P., Alipour, M. R., Habibi, P., & Ahmadiasl, N. (2017). Effect of genistein on expression of pancreatic SIRT1, inflammatory cytokines and histological changes in ovariectomized diabetic rat. Iranian Journal of Basic Medical Sciences, 20(4), 423.

    Google Scholar 

  80. Rauter, A. P., Martins, A., Borges, C., Mota-Filipe, H., Pinto, R., Sepodes, B., & Justino, J. (2010). Antihyperglycaemic and protective effects of flavonoids on streptozotocin–induced diabetic rats. Phytotherapy Research, 24(S2), S133–S138.

    Article  Google Scholar 

  81. Li, R., Ding, X.-W., Geetha, T., Al-Nakkash, L., Broderick, T. L., & Babu, J. R. (2020). Beneficial effect of genistein on diabetes-induced brain damage in the ob/ob mouse model. Drug Design, Development and Therapy, 14, 3325.

    Article  Google Scholar 

  82. Babu, P. V. A., Si, H., Fu, Z., Zhen, W., & Liu, D. (2012). Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. The Journal of Nutrition, 142(4), 724–730.

    Article  Google Scholar 

  83. Park, S. A., Choi, M.-S., Cho, S.-Y., Seo, J.-S., Jung, U. J., Kim, M.-J., et al. (2006). Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sciences, 79(12), 1207–1213.

    Article  Google Scholar 

  84. Shen, H.-H., Huang, S.-Y., Kung, C.-W., Chen, S.-Y., Chen, Y.-F., Cheng, P.-Y., et al. (2019). Genistein ameliorated obesity accompanied with adipose tissue browning and attenuation of hepatic lipogenesis in ovariectomized rats with high-fat diet. The Journal of Nutritional Biochemistry, 67, 111–122.

    Article  Google Scholar 

  85. Jia, Z., Babu, P. V. A., Si, H., Nallasamy, P., Zhu, H., Zhen, W., et al. (2013). Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. International Journal of Cardiology, 168(3), 2637–2645.

    Article  Google Scholar 

  86. Duan, W., Kuo, I. C., Selvarajan, S., Chua, K. Y., Bay, B. H., & Wong, W. S. F. (2003). Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. American Journal of Respiratory and Critical Care Medicine, 167(2), 185–192.

    Article  Google Scholar 

  87. Ji, G., Yang, Q., Hao, J., Guo, L., Chen, X., Hu, J., et al. (2011). Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. International Immunopharmacology, 11(6), 762–768.

    Article  Google Scholar 

  88. Kageyama, A., Sakakibara, H., Zhou, W., Yoshioka, M., Ohsumi, M., Shimoi, K., & Yokogoshi, H. (2010). Genistein regulated serotonergic activity in the hippocampus of ovariectomized rats under forced swimming stress. Bioscience, Biotechnology, and Biochemistry, 74(10), 2005–2010.

    Article  Google Scholar 

  89. Qin, W., Du, N., Zhang, L., Wu, X., Hu, Y., Li, X., et al. (2015). Genistein alleviates pressure overload-induced cardiac dysfunction and interstitial fibrosis in mice. British Journal of Pharmacology, 172(23), 5559–5572.

    Article  Google Scholar 

  90. Gilbert, E. R., & Liu, D. (2013). Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food & Function, 4(2), 200–212.

    Article  Google Scholar 

  91. Konya, J., Sathyapalan, T., Kilpatrick, E. S., & Atkin, S. L. (2019). The effects of soy protein and cocoa with or without isoflavones on glycemic control in type 2 diabetes. A double-blind, randomized, placebo-controlled study. Frontiers in Endocrinology, 10, 296.

    Article  Google Scholar 

  92. Elmarakby, A. A., Ibrahim, A. S., Faulkner, J., Mozaffari, M. S., Liou, G. I., & Abdelsayed, R. (2011). Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascular Pharmacology, 55(5–6), 149–156.

    Article  Google Scholar 

  93. Kalaiselvan, V., Kalaivani, M., Vijayakumar, A., Sureshkumar, K., & Venkateskumar, K. (2010). Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacognosy Reviews, 4(8), 111.

    Article  Google Scholar 

  94. Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., et al. (2007). Genetic progression and the waiting time to cancer. PLoS Computational Biology, 3(11), e225.

    Article  MathSciNet  Google Scholar 

  95. Bi, Y., Min, M., Shen, W., & Liu, Y. (2018). Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine, 39, 10–16.

    Article  Google Scholar 

  96. Park, C. E., Yun, H., Lee, E.-B., Min, B.-I., Bae, H., Choe, W., et al. (2010). The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. Journal of Medicinal Food, 13(4), 815–820.

    Article  Google Scholar 

  97. Moreira, A. C., Silva, A. M., Santos, M. S., & Sardao, V. A. (2014). Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. The Journal of Steroid Biochemistry and Molecular Biology, 143, 61–71.

    Article  Google Scholar 

  98. Ma, Y., Sullivan, J. C., & Schreihofer, D. A. (2010). Dietary genistein and equol (4′, 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 299(3), R871–R877.

    Article  Google Scholar 

  99. Romier, B., Van De Walle, J., During, A., Larondelle, Y., & Schneider, Y.-J. (2008). Modulation of signalling nuclear factor-κB activation pathway by polyphenols in human intestinal Caco-2 cells. British Journal of Nutrition, 100(3), 542–551.

    Article  Google Scholar 

  100. Cho, H.-Y., Noh, K.-H., Cho, M.-K., Jang, J.-H., Lee, M.-O., Kim, S.-H., & Song, Y.-S. (2008). Anti-oxidative and anti-inflammatory effects of genistein in BALB/c mice injected with LPS. Journal of the Korean Society of Food Science and Nutrition, 37(9), 1126–1135.

    Article  Google Scholar 

  101. Wang, L., Yang, F., Zhao, X., & Li, Y. (2019). Effects of nitro-and amino-group on the antioxidant activity of genistein: A theoretical study. Food Chemistry, 275, 339–345.

    Article  Google Scholar 

  102. Seol, N. G., Kim, M.-J., Yi, B., & Lee, J. (2014). Riboflavin photo-transformation of genistein and changes in radical scavenging activities of photo-transformed genistein derivatives. Food Science and Biotechnology, 23, 1055–1059.

    Article  Google Scholar 

  103. Monteleone, P., Mascagni, G., Giannini, A., Genazzani, A. R., & Simoncini, T. (2018). Symptoms of menopause—global prevalence, physiology and implications. Nature Reviews Endocrinology, 14(4), 199–215.

    Article  Google Scholar 

  104. Pachman, D. R., Jones, J. M., & Loprinzi, C. L. (2010). Management of menopause-associated vasomotor symptoms: Current treatment options, challenges and future directions. International Journal of Women's Health, 2, 123.

    Google Scholar 

  105. Thangavel, P., Puga-Olguín, A., Rodríguez-Landa, J. F., & Zepeda, R. C. (2019). Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules, 24(21), 3892.

    Article  Google Scholar 

  106. Ali, A. M., Ahmed, A. H., & Smail, L. (2020). Psychological climacteric symptoms and attitudes toward menopause among Emirati women. International Journal of Environmental Research and Public Health, 17(14), 5028.

    Article  Google Scholar 

  107. Rapkin, A. J., & Winer, S. A. (2009). Premenstrual syndrome and premenstrual dysphoric disorder: Quality of life and burden of illness. Expert Review of Pharmacoeconomics & Outcomes Research, 9(2), 157–170.

    Article  Google Scholar 

  108. Battaglia, C., Cianciosi, A., Mancini, F., Fabbri, R., Busacchi, P., Nappi, R. E., & Venturoli, S. (2009). Genistein supplements might not induce clitoral modifications in postmenopausal women: A prospective, pilot study. The Journal of Sexual Medicine, 6(11), 3132–3138.

    Article  Google Scholar 

  109. Dang, Z. C. (2009). Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action. Obesity Reviews, 10(3), 342–349.

    Article  Google Scholar 

  110. Duan, W., Kuo, I. C., Selvarajan, S., Chua, K. Y., Bay, B. H., & Wong, W. S. F. (2003). Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. American Journal of Respiratory and Critical Care Medicine, 167(2), 185–192.

    Article  Google Scholar 

  111. Odle, B., Dennison, N., Al-Nakkash, L., Broderick, T. L., & Plochocki, J. H. (2017). Genistein treatment improves fracture resistance in obese diabetic mice. BMC Endocrine Disorders, 17(1), 1–8.

    Article  Google Scholar 

  112. Sehmisch, S., Hammer, F., Christoffel, J., Seidlova-Wuttke, D., Tezval, M., Wuttke, W., et al. (2008). Comparison of the phytohormones genistein, resveratrol and 8-prenylnaringenin as agents for preventing osteoporosis. Planta Medica, 74(08), 794–801.

    Article  Google Scholar 

  113. Gupta, S. K., Dongare, S., Mathur, R., Mohanty, I. R., Srivastava, S., Mathur, S., & Nag, T. C. (2015). Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Molecular and Cellular Biochemistry, 408(1), 63–72.

    Article  Google Scholar 

  114. De Jong, W. H., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.

    Article  Google Scholar 

  115. Sharma, N., Zahoor, I., Sachdeva, M., Subramaniyan, V., Fuloria, S., Fuloria, N. K., et al. (2021). Deciphering the role of nanoparticles for management of bacterial meningitis: An update on recent studies. Environmental Science and Pollution Research, 28(43), 60459–60476.

    Article  Google Scholar 

  116. Singh, S., Behl, T., Sharma, N., Zahoor, I., Chigurupati, S., Yadav, S., et al. (2022). Targeting therapeutic approaches and highlighting the potential role of nanotechnology in atopic dermatitis. Environmental Science and Pollution Research, 29(22), 32605–32630.

    Article  Google Scholar 

  117. Khan, A., Qadir, A., Ali, F., & Aqil, M. (2021). Phytoconstituents based nanomedicines for the management of psoriasis. Journal of Drug Delivery Science and Technology, 64, 102663.

    Article  Google Scholar 

  118. Singh, S., Sharma, N., Zahoor, I., Behl, T., Antil, A., Gupta, S., et al. (2023). Decrypting the potential of nanotechnology-based approaches as cutting-edge for management of hyperpigmentation disorder. Molecules, 28(1), 220.

    Article  Google Scholar 

  119. Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In Green synthesis, characterization and applications of nanoparticles (pp. 303–319). Elsevier.

    Chapter  Google Scholar 

  120. Fathi, M., & Barar, J. (2017). Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. BioImpacts: BI, 7(1), 49.

    Article  Google Scholar 

  121. Najahi-Missaoui, W., Arnold, R. D., & Cummings, B. S. (2020). Safe nanoparticles: Are we there yet? International Journal of Molecular Sciences, 22(1), 385.

    Article  Google Scholar 

  122. Tyagi, N., Song, Y. H., & De, R. (2019). Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy. Journal of Drug Targeting, 27(4), 394–407.

    Article  Google Scholar 

  123. Yadav, N., Khatak, S., & Sara, U. V. S. (2013). Solid lipid nanoparticles-a review. International Journal of Applied Pharmaceutics, 5(2), 8–18.

    Google Scholar 

  124. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7), 887–913.

    Article  Google Scholar 

  125. Rassu, G., Porcu, E. P., Fancello, S., Obinu, A., Senes, N., Galleri, G., et al. (2018). Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics, 11(1), 8.

    Article  Google Scholar 

  126. Ghasemi Goorbandi, R., Mohammadi, M. R., & Malekzadeh, K. (2020). Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomaterials Research, 24(1), 1–13.

    Article  Google Scholar 

  127. Fan, W., Zhang, S., Wu, Y., Lu, T., Liu, J., Cao, X., et al. (2021). Genistein-derived ROS-responsive nanoparticles relieve colitis by regulating mucosal homeostasis. ACS Applied Materials & Interfaces, 13(34), 40249–40266.

    Article  Google Scholar 

  128. Ferrado, J. B., Perez, A. A., Baravalle, M. E., Renna, M. S., Ortega, H. H., & Santiago, L. G. (2021). Genistein loaded in self-assembled bovine serum albumin nanovehicles and their effects on mouse mammary adenocarcinoma cells. Colloids and Surfaces B: Biointerfaces, 204, 111777.

    Article  Google Scholar 

  129. Vodnik, V. V., Mojić, M., Stamenović, U., Otoničar, M., Ajdžanović, V., Maksimović-Ivanić, D., et al. (2021). Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Materials Science and Engineering: C, 124, 112078.

    Article  Google Scholar 

  130. Xiao, Y., Ho, C.-T., Chen, Y., Wang, Y., Wei, Z., Dong, M., & Huang, Q. (2020). Synthesis, characterization, and evaluation of genistein-loaded zein/carboxymethyl chitosan nanoparticles with improved water dispersibility, enhanced antioxidant activity, and controlled release property. Foods, 9(11), 1604.

    Article  Google Scholar 

  131. Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z., & Wu, L. (2011). Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. International Journal of Nanomedicine, 6, 2429.

    Google Scholar 

  132. Wu, B., Liang, Y., Tan, Y., Xie, C., Shen, J., Zhang, M., et al. (2016). Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer. Materials Science and Engineering: C, 59, 792–800.

    Article  Google Scholar 

  133. Stolarczyk, E. U., Stolarczyk, K., Łaszcz, M., Kubiszewski, M., Maruszak, W., Olejarz, W., & Bryk, D. (2017). Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. European Journal of Pharmaceutical Sciences, 96, 176–185.

    Article  Google Scholar 

  134. Zhang, H., Liu, G., Zeng, X., Wu, Y., Yang, C., Mei, L., et al. (2015). Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. International Journal of Nanomedicine, 10, 2461.

    Google Scholar 

  135. Si, H.-Y., Li, D.-P., Wang, T.-M., Zhang, H.-L., Ren, F.-Y., Xu, Z.-G., & Zhao, Y.-Y. (2010). Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. Journal of Nanoscience and Nanotechnology, 10(4), 2325–2331.

    Article  Google Scholar 

  136. Pool, H., Campos-Vega, R., Herrera-Hernández, M. G., García-Solis, P., García-Gasca, T., Sánchez, I. C., et al. (2018). Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. American Journal of Translational Research, 10(8), 2306.

    Google Scholar 

  137. Dev, A., Sardoiwala, M. N., Kushwaha, A. C., Karmakar, S., & Choudhury, S. R. (2021). Genistein nanoformulation promotes selective apoptosis in oral squamous cell carcinoma through repression of 3PK-EZH2 signalling pathway. Phytomedicine, 80, 153386.

    Article  Google Scholar 

  138. NR, R., Tiyaboonchai, W., & Madhusudhan, B. (2013). Fabrication and characterization of genistein encapsulated poly (D, L) lactic acid nanoparticles for pharmaceutical application. Current Nanoscience, 9(2), 293–302.

    Article  Google Scholar 

  139. Soleimanpour, M., Tamaddon, A. M., Kadivar, M., Abolmaali, S. S., & Shekarchizadeh, H. (2020). Fabrication of nanostructured mesoporous starch encapsulating soy-derived phytoestrogen (genistein) by well-tuned solvent exchange method. International Journal of Biological Macromolecules, 159, 1031–1047.

    Article  Google Scholar 

  140. Obinu, A., Burrai, G. P., Cavalli, R., Galleri, G., Migheli, R., Antuofermo, E., et al. (2021). Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics, 13(2), 267.

    Article  Google Scholar 

  141. Andrade, L. M., de Fátima Reis, C., Maione-Silva, L., Anjos, J. L. V., Alonso, A., Serpa, R. C., et al. (2014). Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 40–47.

    Article  Google Scholar 

  142. Zhang, W., Li, X., Ye, T., Chen, F., Sun, X., Kong, J., et al. (2013). Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. International Journal of Pharmaceutics, 454(1), 354–366.

    Article  Google Scholar 

  143. Liu, J.-L., Zhang, W.-J., Li, X.-D., Yang, N., Pan, W.-S., Kong, J., & Zhang, J.-S. (2016). Sustained-release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. International Journal of Ophthalmology, 9(5), 643.

    Article  Google Scholar 

  144. Mittal, P., Vrdhan, H., Ajmal, G., Bonde, G., Kapoor, R., & Mishra, B. (2019). Formulation and characterization of genistein-loaded nanostructured lipid carriers: pharmacokinetic, biodistribution and in vitro cytotoxicity studies. Current Drug Delivery, 16(3), 215–225.

    Article  Google Scholar 

  145. Zhang, W., Li, X., Ye, T., Chen, F., Yu, S., Chen, J., et al. (2014). Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. International Journal of Nanomedicine, 9, 4305.

    Google Scholar 

  146. de Azambuja, C. R. L., dos Santos, L. G., Rodrigues, M. R., Rodrigues, R. F. M., da Silveira, E. F., Azambuja, J. H., et al. (2015). Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chemistry and Physics of Lipids, 193, 24–35.

    Article  Google Scholar 

  147. de Azambuja Borges, C. R. L., Silva, N. O., Rodrigues, M. R., Marinho, M. A. G., de Oliveira, F. S., Cassiana, M., et al. (2019). Dimiristoylphosphatidylcholine/genistein molecular interactions: A physico-chemical approach to anti-glioma drug delivery systems. Chemistry and Physics of Lipids, 225, 104828.

    Article  Google Scholar 

  148. Song, Y., Yuan, Y., Shi, X., & Che, Y. (2020). Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids and Surfaces B: Biointerfaces, 190, 110966.

    Article  Google Scholar 

  149. Tian, J., Guo, F., Chen, Y., Li, Y., Yu, B., & Li, Y. (2019). Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Letters, 448, 1–10.

    Article  Google Scholar 

  150. de Vargas, B. A., Bidone, J., Oliveira, L. K., Koester, L. S., Bassani, V. L., & Teixeira, H. F. (2012). Development of topical hydrogels containing genistein-loaded nanoemulsions. Journal of Biomedical Nanotechnology, 8(2), 330–336.

    Article  Google Scholar 

  151. Argenta, D. F., Bidone, J., Misturini, F. D., Koester, L. S., Bassani, V. L., Simoes, C. M. O., & Teixeira, H. F. (2016). In vitro evaluation of mucosa permeation/retention and antiherpes activity of genistein from cationic nanoemulsions. Journal of Nanoscience and Nanotechnology, 16(2), 1282–1290.

    Article  Google Scholar 

  152. Gavin, A., Pham, J. T. H., Wang, D., Brownlow, B., & Elbayoumi, T. A. (2015). Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. International Journal of Nanomedicine, 10, 1569.

    Google Scholar 

  153. Kwon, S. H., Kim, S. Y., Ha, K. W., Kang, M. J., Huh, J. S., Im Jong, T., et al. (2007). Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Archives of Pharmacal Research, 30(9), 1138–1143.

    Article  Google Scholar 

  154. Zhang, T., Wang, H., Ye, Y., Zhang, X., & Wu, B. (2015). Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: A comparative study with micelles. International Journal of Nanomedicine, 10, 6175.

    Google Scholar 

  155. Ding, P., Chen, Y., Cao, G., Shen, H., Ju, J., & Li, W. (2019). Solutol® HS15+ pluronicF127 and Solutol® HS15+ pluronicL61 mixed micelle systems for oral delivery of genistein. Drug Design, Development and Therapy, 13, 1947.

    Article  Google Scholar 

  156. Yan, C. (2018). Genistein-loaded poloxamer 403/407 mixed micelles: Preparation and pharmacokinetic study in rats. Journal of Chinese Pharmaceutical Sciences, 27, 342–351.

    Article  Google Scholar 

  157. Li, C., Chen, R., Xu, M., Qiao, J., Yan, L., & Guo, X. D. (2018). Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Delivery, 25(1), 1258–1265.

    Article  Google Scholar 

  158. Cheng, Q., Qin, W., Yu, Y., Li, G., Wu, J., & Zhuo, L. (2020). Preparation and characterization of PEG-PLA genistein micelles preparation and characterization of PEG-PLA genistein micelles using modified emulsion-evaporation method. Journal of Nanomaterials, 2020, 3278098.

    Article  Google Scholar 

  159. Li, Q., Cai, T., Huang, Y., Xia, X., Cole, S. P. C., & Cai, Y. (2017). A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials, 7(6), 122.

    Article  Google Scholar 

  160. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7), 887–913.

    Article  Google Scholar 

  161. Sur, S., Rathore, A., Dave, V., Reddy, K. R., Chouhan, R. S., & Sadhu, V. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-structures & Nano-objects, 20, 100397.

    Article  Google Scholar 

  162. Nagavarma, B. V. N., Yadav, H. K. S., Ayaz, A., Vasudha, L. S., & Shivakumar, H. G. (2012). Different techniques for preparation of polymeric nanoparticles-a review. Asian Journal of Pharmaceutical and Clinical Research, 5(3), 16–23.

    Google Scholar 

  163. Dilnawaz, F. (2017). Polymeric biomaterial and lipid based nanoparticles for oral drug delivery. Current Medicinal Chemistry, 24(22), 2423–2438.

    Article  Google Scholar 

  164. Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 80, 771–784.

    Article  Google Scholar 

  165. de Azambuja, C. R. L., dos Santos, L. G., Rodrigues, M. R., Rodrigues, R. F. M., da Silveira, E. F., Azambuja, J. H., Flores, A. F., Horn, A. P., Dora, C. L., Muccillo-Baisch, A. L., & Braganhol, E. (2015). Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chemistry and Physics of Lipids, 193, 24–35.

    Article  Google Scholar 

  166. Neves, A. R., Lúcio, M., Martins, S., Lima, J. L. C., & Reis, S. (2013). Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. International Journal of Nanomedicine, 8, 177.

    Google Scholar 

  167. de Azambuja Borges, C. R. L., Silva, N. O., Rodrigues, M. R., Marinho, M. A. G., de Oliveira, F. S., Cassiana, M., Horn, A. P., Parize, A. L., Flores, D. C., Clementin, R. M., & de Lima, V. R. (2019). Dimiristoylphosphatidylcholine/genistein molecular interactions: A physico-chemical approach to anti-glioma drug delivery systems. Chemistry and Physics of Lipids, 225, 104828.

    Article  Google Scholar 

  168. Chantaburanan, T., Teeranachaideekul, V., Chantasart, D., Jintapattanakit, A., & Junyaprasert, V. B. (2017). Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. Journal of Colloid and Interface Science, 504, 247–256.

    Article  Google Scholar 

  169. Harde, H., Das, M., & Jain, S. (2011). Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opinion on Drug Delivery, 8(11), 1407–1424.

    Article  Google Scholar 

  170. Garud, A., Singh, D., & Garud, N. (2012). Solid lipid nanoparticles (SLN): Method, characterization and applications. International Current Pharmaceutical Journal, 1, 384–393.

    Article  Google Scholar 

  171. Shidhaye, S. S., Vaidya, R., Sutar, S., Patwardhan, A., & Kadam, V. J. (2008). Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Current Drug Delivery, 5(4), 324–331.

    Article  Google Scholar 

  172. Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies, 19, 29–43.

    Article  Google Scholar 

  173. Czajkowska-Kośnik, A., Szekalska, M., & Winnicka, K. (2019). Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharmacological Reports, 71(1), 156–166.

    Article  Google Scholar 

  174. Salvi, V. R., & Pawar, P. (2019). Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. Journal of Drug Delivery Science and Technology, 51, 255–267.

    Article  Google Scholar 

  175. Weber, S., Zimmer, A., & Pardeike, J. (2014). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 86(1), 7–22.

    Article  Google Scholar 

  176. Eroğlu, İ., & İbrahim, M. (2020). Liposome–ligand conjugates: A review on the current state of art. Journal of Drug Targeting, 28(3), 225–244.

    Article  Google Scholar 

  177. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 1–9.

    Article  Google Scholar 

  178. Guimarães, D., Cavaco-Paulo, A., & Nogueira, E. (2021). Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics, 601, 120571.

    Article  Google Scholar 

  179. Cheng, Q., Qin, W., Yu, Y., Li, G., Wu, J., & Zhuo, L. (2020). Preparation and Characterization of PEG-PLA Genistein Micelles Preparation and Characterization of PEG-PLA Genistein Micelles using modified emulsion-evaporation method. J. Nanomater, 2020, 3278098.

    Article  Google Scholar 

  180. Banasaz, S., Morozova, K., Ferrentino, G., & Scampicchio, M. (2020). Encapsulation of lipid-soluble bioactives by nanoemulsions. Molecules, 25(17), 3966.

    Article  Google Scholar 

  181. Choi, S. J., & McClements, D. J. (2020). Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology, 29, 149–168.

    Article  Google Scholar 

  182. Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., & Nicoli, S. (2021). Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332, 312–336.

    Article  Google Scholar 

  183. Toscanini, M. A., Limeres, M. J., Garrido, A. V., Cagel, M., Bernabeu, E., Moretton, M. A., et al. (2021). Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. Journal of Drug Delivery Science and Technology, 66, 102927.

    Article  Google Scholar 

  184. Tian, J., Guo, F., Chen, Y., Li, Y., Yu, B., & Li, Y. (2019). Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Letters, 448, 1–10.

    Article  Google Scholar 

  185. Movassaghian, S., Merkel, O. M., & Torchilin, V. P. (2015). Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(5), 691–707.

    Google Scholar 

  186. Yuuki, H., & Kensuke, T. (2023). Red yeast rice and composition containing specific components. WO: Kobayashi Pharmaceutical Co Ltd, WO2023276496. Retrieved from https://lens.org/051-696-086-590-281. Accessed 01.08.2023.

  187. A, S. A., D, K. M., C, D. J., & J, Z. R. (2023). Genistein treatment of inflammatory pulmonary injury. EP: Humanetics Corp, EP4132499. Retrieved from https://lens.org/053-767-954-140-909. Accessed 01.08.2023.

  188. Ivana, G., Sanja, S., Ivan, R., Snežana, I.-S., Branka, P., Aleksandra, N., … Ljubiša, N. (2022). Formulations of electrospun polylactide nanofibers with phytoestrogens for prolonged release. rs: univerzitet u nisu tehnoloski fakultet, RS20220130. Retrieved from https://lens.org/173-990-721-536-403. Accessed 01.08.2023.

  189. Yang, L. I., Lijia, L. I., Changling, W. U., Mingyu, H. E., & Xumei, F. (2021). Preparation method of soybean protein isolate-genistein nano-emulsion. CN: Univ Northeast Agricultural, CN113678938. Retrieved from https://lens.org/049-197-527-382-35X. Accessed 01.08.2023.

  190. Wenzhong, Z., Xiaonan, Z., Hongwei, Z. H. U., & Zhiru, L. I. (2020). Method for preparing dual-function genistein-high polymer nanometer composite bodies by ion crosslinking method and application. CN: Univ Northeast Agricultural, CN111297807. Retrieved from https://lens.org/103-376-879-640-228. Accessed 01.08.2023.

  191. Qiuchen, C., Wen, Q. I. N., Zeyong, L., & Lang, Z. (2019). Application of genistein nano freeze-dried powder in inhibition of skin scar formation and skin fibrosis. CN: Cheng Qiuchen, CN110200928. Retrieved from https://lens.org/091-875-221-099-60X. Accessed 01.08.2023.

  192. Joseph, E. J. R. E., Joseph, S. M., Joseph, T. R., & L, Z. J. (2019). Nanoparticle isoflavone compositions & methods of making and using the same. US: Humanetics Corp, US20190160038. Retrieved from https://lens.org/034-865-268-139-756. Accessed 01.08.2023.

  193. Lang, Z., Wen, Q. I. N., & Qiuchen, C. (2017). Preparation method and application of genistein nanometer copolymer micelle freeze-dried powder. CN: Guangxi Botanical Garden Medicinal Plants, CN107496367. Retrieved from https://lens.org/055-603-873-357-796. Accessed 01.08.2023.

  194. Lan, T., Longfei, L. Y. U., Weiguang, S., & Zhenhai, Z. (2017). Preparation method of nano-micelle composed of genistein, vitamin E succinate and d-alpha-tocopheryl polyethylene glycol 1000 succinate. CN: Univ Zhejiang Technology, CN107233308. Retrieved from https://lens.org/011-260-906-437-269. Accessed 01.08.2023.

  195. Ki, H. W., & Myung, K. I. M. D. (2016). Genistein methyl ether-containing nanoliposome, preparation method therefor, and cosmetic composition comprising same. WO: Korea Kolmar Co Ltd, WO2016186240. Retrieved from https://lens.org/072-018-561-107-148. Accessed 01.08.2023.

  196. Toktay, E., Selli, J., Gurbuz, M. A., Tastan, T. B., Ugan, R. A., Un, H., & Halici, Z. (2020). Effects of soy isoflavonoids (genistein and daidzein) on endometrial receptivity. Iranian Journal of Basic Medical Sciences, 23(12), 1603.

    Google Scholar 

  197. Liu, X., Li, F., Xie, J., Huang, D., & Xie, M. (2020). Fetal and neonatal genistein exposure aggravates to interfere with ovarian follicle development of obese female mice induced by high-fat diet. Food and Chemical Toxicology, 135, 110982.

    Article  Google Scholar 

  198. Azgomi, R. N. D., Jazani, A. M., Karimi, A., & Pourreza, S. (2022). Potential roles of genistein in polycystic ovary syndrome: A comprehensive systematic review. European Journal of Pharmacology, 175275.

  199. Chang, H. C., & Doerge, D. R. (2000). Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicology and Applied Pharmacology, 168(3), 244–252.

    Article  Google Scholar 

  200. Doerge, D. R., & Sheehan, D. M. (2002). Goitrogenic and estrogenic activity of soy isoflavones. Environmental Health Perspectives, 110(suppl 3), 349–353.

    Article  Google Scholar 

  201. Messina, M., & Redmond, G. (2006). Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: A review of the relevant literature. Thyroid, 16(3), 249–258.

    Article  Google Scholar 

  202. Hüser, S., Guth, S., Joost, H. G., Soukup, S. T., Köhrle, J., Kreienbrock, L., et al. (2018). Effects of isoflavones on breast tissue and the thyroid hormone system in humans: A comprehensive safety evaluation. Archives of Toxicology, 92, 2703–2748.

    Article  Google Scholar 

  203. Travis, R. C., & Key, T. J. (2003). Oestrogen exposure and breast cancer risk. Breast Cancer Research, 5, 1–9.

    Article  Google Scholar 

  204. Messina, M. (2016). Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 8(12), 754.

    Article  Google Scholar 

  205. Rietjens, I. M. C. M., Louisse, J., & Beekmann, K. (2017). The potential health effects of dietary phytoestrogens. British Journal of Pharmacology, 174(11), 1263–1280.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (deemed to be University), Mullana-Ambala, Haryana, India 133207 and the School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India for providing the facilities for the completion of this review.

Funding

The current article did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS, TB and NT: Conceived the study and wrote the manuscript; NS, TB, SS : Lietrature review and editing; SG and MKA: Figure Work; CVDLC and SY: Revision; TB , SGB and SS: Proof Read

Corresponding authors

Correspondence to Tapan Behl or Sukhbir Singh.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Conflict of Interest

The authors declare no competing interests.

dsa

Research Involving Humans and Animals

Not applicable

Informed Consent

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Tiwary, N., Behl, T. et al. Traversing the Vivid Pharmacological and Nanotechnological Facets of Genistein: Insights into the Past, Present and Future Trends. BioNanoSci. 13, 1470–1500 (2023). https://doi.org/10.1007/s12668-023-01201-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01201-2

Keywords

Navigation