Skip to main content

Advertisement

Log in

MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

The mechanism underlying the development of human ovarian cancer is poorly understood. The liver kinase protein, LKB1, is hypothesized to play a pivotal role in tumor cell proliferation and invasion capacity through regulation of p53 and p21/WAF1 expression. Previous studies suggest LKB1 may, in turn, be regulated by microRNA-17. Here, we examined the role of miR-17 in the expression of LKB1 and the downstream effects on proliferation and invasion capacity of normal ovarian cancer cells (OCCs) and ovarian stem cells. In this study, both the mRNA and protein expression levels of LKB1, p53, and p21 decreased in OCCs following transfection with a miR-17 expression plasmid. MiR-17 expression affected cell cycle regulation and stimulated the proliferation and invasion capacity of OCCs in vitro. ChIP assays indicated that the binding efficiency of p53 to the p21/WAF1 gene promoter was much lower in miR-17 transfected OCCs than in OCCs transfected with a mutated miR-17. Co-immunoprecipitation and western blotting showed significantly lower levels of p53 and p53 Ser15-pho in the miR-17 transfected OCCs as compared to the mutant miR-17 transfected OCCs. Xenograft experiments confirmed that suppression of tumor growth in vivo occurred in the absence of functional miR-17. These findings suggest that mature miR-17 expression may have an important role in the pathogenesis of human ovarian tumors through its interference with the LKB1-p53-p21/WAF1 pathway expression by epigenetic modification. These findings are of potential importance in the identification of novel therapeutic targets in human ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu T, Cheng W, Lai D, Huang Y, Guo L. Characterization of primary ovarian cancer cells in different culture systems. Oncol Rep. 2010;23:1277–84.

    Article  CAS  PubMed  Google Scholar 

  2. Qin W, Ren Q, Liu T, Huang Y, Wang J. MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets CLDN1. Febs Lett. 2013;587:1434–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279:2047–59.

    Article  CAS  PubMed  Google Scholar 

  4. Ollila S, Makela TP. The tumor suppressor kinase LKB1: lessons from mouse models. J Mol Cell Biol. 2011;3:330–40.

    Article  CAS  PubMed  Google Scholar 

  5. Krock B, Skuli N, Simon MC. The tumor suppressor LKB1 emerges as a critical factor in hematopoietic stem cell biology. Cell Metab. 2011;13:8–10.

    Article  CAS  PubMed  Google Scholar 

  6. Veeranki S, Hwang SH, Sun T, Kim B, Kim L. LKB1 regulates development and the stress response in Dictyostelium. Dev Biol. 2011;360:351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng PY, Berger SL. LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 2006;66:10701–8.

    Article  CAS  PubMed  Google Scholar 

  8. Liang X, Wang P, Gao Q, Xiang T, Tao X. Endogenous LKB1 knockdown accelerates G(1)/S transition through p53 and p16 pathways. Cancer Biol Ther. 2010;9:156–60.

    Article  CAS  PubMed  Google Scholar 

  9. Lutzner N, Kalbacher H, Krones-Herzig A, Rosl F. FOXO3 is a glucocorticoid receptor target and regulates LKB1 and its own expression based on cellular AMP levels via a positive autoregulatory loop. PLoS One. 2012;7:e42166.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lutzner N, De-Castro AJ, Rosl F. Gene expression of the tumour suppressor LKB1 is mediated by Sp1, NF-Y and FOXO transcription factors. PLoS One. 2012;7:e32590.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Denison FC, Smith LB, Muckett PJ, O’Hara L, Carling D, Woods A. LKB1 is an essential regulator of spermatozoa release during spermiation in the mammalian testis. PLoS One. 2011;6:e28306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao Y, Li H, Liu H, Zhang M, Hua Z, Ji H, et al. LKB1 regulates TCR-mediated PLCgamma1 activation and thymocyte positive selection. Embo J. 2011;30:2083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei C, Bhattaram VK, Igwe JC, Fleming E, Tirnauer JS. The LKB1 tumor suppressor controls spindle orientation and localization of activated AMPK in mitotic epithelial cells. PLoS One. 2012;7:e41118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468:701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468:653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Udd L, Makela TP. LKB1 signaling in advancing cell differentiation. Fam Cancer. 2011;10:425–35.

    Article  CAS  PubMed  Google Scholar 

  18. Vaahtomeri K, Makela TP. Molecular mechanisms of tumor suppression by LKB1. Febs Lett. 2011;585:944–51.

    Article  CAS  PubMed  Google Scholar 

  19. Liu W, Monahan KB, Pfefferle AD, Shimamura T, Sorrentino J, Chan KT, et al. LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Cancer Cell. 2012;21:751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown KA, McInnes KJ, Takagi K, Ono K, Hunger NI, Wang L, et al. LKB1 expression is inhibited by estradiol-17beta in MCF-7 cells. J Steroid Biochem Mol Biol. 2011;127:439–43.

    Article  CAS  PubMed  Google Scholar 

  21. Lee CG, Kim YW, Kim EH, Meng Z, Huang W, Hwang SJ, et al. Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1. Gastroenterology. 2012;142:1206–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen H, Untiveros GM, McKee LA, Perez J, Li J, Antin PB, et al. Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One. 2012;7:e41574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang L, Li H, Wang L, Hu J, Jin T, Wang J, et al. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget. 2014;5:2974–87.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu SY, Lin KC, Chiou JF, Jeng SC, Cheng WH, Chang CI, et al. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells. Strahlenther Onkol. 2013;189:675–83.

    Article  PubMed  Google Scholar 

  25. Shen Y, Lu L, Xu J, Meng W, Qing Y, Liu Y, et al. Bortezomib induces apoptosis of endometrial cancer cells through microRNA-17-5p by targeting p21. Cell Biol Int. 2013;37:1114–21.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, et al. MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A. 2010;107:8231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA, et al. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene. 2012;31:1034–44.

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Chen Q, Huang Y, Huang Q, Jiang L, Guo L. Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression. Acta Biochim Biophys Sin (Shanghai). 2012;44:197–206.

    Article  CAS  Google Scholar 

  29. Shen DZ, Xin SL, Chen C, Liu T. Effect of atorvastatin on expression of TLR4 and NF-kappaB p65 in atherosclerotic rabbits. Asian Pac J Trop Med. 2013;6:493–6.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersson E, Villabona L, Bergfeldt K, Carlson JW, Ferrone S, Kiessling R, et al. Correlation of HLA-A02* genotype and HLA class I antigen down-regulation with the prognosis of epithelial ovarian cancer. Cancer Immunol Immunother. 2012;61:1243–53.

    Article  CAS  PubMed  Google Scholar 

  32. Rubatt JM, Darcy KM, Tian C, Muggia F, Dhir R, Armstrong DK, et al. Pre-treatment tumor expression of ERCC1 in women with advanced stage epithelial ovarian cancer is not predictive of clinical outcomes: a Gynecologic Oncology Group study. Gynecol Oncol. 2012;125:421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 81202811) and project funded by the China Postdoctoral Science Foundation (No. 2014 M550250) and Shanghai Municipal Health Bureau Fund (No. 20124320) to Te Liu.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Liu.

Additional information

Te Liu and Wenxing Qin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOC 585 kb)

Figure S2

(DOC 342 kb)

Table S1

(DOC 27 kb)

Table S2

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Qin, W., Hou, L. et al. MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway. Tumor Biol. 36, 1881–1893 (2015). https://doi.org/10.1007/s13277-014-2790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2790-3

Keywords

Navigation