ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Tumor-Targeted Delivery of 6-Diazo-5-oxo-l-norleucine (DON) Using Substituted Acetylated Lysine Prodrugs

  • Lukáš Tenora
    Lukáš Tenora
    Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 166 10, Czech Republic
    More by Lukáš Tenora
  • Jesse Alt
    Jesse Alt
    Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
    More by Jesse Alt
  • Ranjeet P. Dash
    Ranjeet P. Dash
    Johns Hopkins Drug Discovery  and  Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
    More by Ranjeet P. Dash
  • Alexandra J. Gadiano
    Alexandra J. Gadiano
    Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
  • Kateřina Novotná
    Kateřina Novotná
    Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 166 10, Czech Republic
  • Vijayabhaskar Veeravalli
    Vijayabhaskar Veeravalli
    Johns Hopkins Drug Discovery  and  Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
  • Jenny Lam
    Jenny Lam
    Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
    More by Jenny Lam
  • Quinn R. Kirkpatrick
    Quinn R. Kirkpatrick
    Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
  • Kathryn M. Lemberg
    Kathryn M. Lemberg
    Johns Hopkins Drug Discovery  and  Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
  • Pavel Majer*
    Pavel Majer
    Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 166 10, Czech Republic
    *E-mail: [email protected]. Tel: +420-220183125 (P.M.).
    More by Pavel Majer
  • Rana Rais*
    Rana Rais
    Johns Hopkins Drug Discovery  and  Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
    *E-mail: [email protected]. Tel: 410-502-0497. Fax: 410-614-0659 (R.R.).
    More by Rana Rais
  • , and 
  • Barbara S. Slusher*
    Barbara S. Slusher
    Johns Hopkins Drug Discovery,  Departments of Neurology,  Psychiatry and Behavioral Sciences,  Neuroscience,  Medicine  and  Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
    *E-mail: [email protected]. Tel: 410-614-0662. Fax: 410-614-0659 (B.S.S.).
Cite this: J. Med. Chem. 2019, 62, 7, 3524–3538
Publication Date (Web):March 20, 2019
https://doi.org/10.1021/acs.jmedchem.8b02009
Copyright © 2019 American Chemical Society

    Article Views

    3787

    Altmetric

    -

    Citations

    33
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist with robust anticancer efficacy; however, its therapeutic potential was hampered by its biodistribution and toxicity to normal tissues, specifically gastrointestinal (GI) tissues. To circumvent DON’s toxicity, we synthesized a series of tumor-targeted DON prodrugs designed to circulate inert in plasma and preferentially activate over DON in tumor. Our best prodrug 6 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate) showed stability in plasma, liver, and intestinal homogenates yet was readily cleaved to DON in P493B lymphoma cells, exhibiting a 55-fold enhanced tumor cell-to-plasma ratio versus that of DON and resulting in a dose-dependent inhibition of cell proliferation. Using carboxylesterase 1 knockout mice that were shown to mimic human prodrug metabolism, systemic administration of 6 delivered 11-fold higher DON exposure to tumor (target tissue; AUC0–t = 5.1 nmol h/g) versus GI tissues (toxicity tissue; AUC0–t = 0.45 nmol h/g). In summary, these studies describe the discovery of a glutamine antagonist prodrug that provides selective tumor exposure.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.8b02009.

    • Details of 1H and 13C NMR and HPLC analysis, 1H and 13C NMR spectra, HPLC chromatograms; table containing mass transitions for LC–MS analysis; figures showing molecular structures of internal standards, stability of 6 in human liver fractions, tumor cell/plasma partitioning in three different cell lines, HRMS chromatogram and spectra of 6 and its de-esterified product (PDF)

    • Molecular formula strings and associated biological data (CSV)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 33 publications.

    1. Kateřina Novotná, Lukáš Tenora, Eva Prchalová, James Paule, Jesse Alt, Vijay Veeravalli, Jenny Lam, Ying Wu, Ivan Šnajdr, Sadakatali Gori, Vijaya Saradhi Mettu, Takashi Tsukamoto, Pavel Majer, Barbara S. Slusher, Rana Rais. Discovery of tert-Butyl Ester Based 6-Diazo-5-oxo-l-norleucine Prodrugs for Enhanced Metabolic Stability and Tumor Delivery. Journal of Medicinal Chemistry 2023, 66 (22) , 15493-15510. https://doi.org/10.1021/acs.jmedchem.3c01681
    2. Arindom Pal, Sadakatali Gori, Seung-wan Yoo, Ajit G. Thomas, Ying Wu, Jacob Friedman, Lukáš Tenora, Harshit Bhasin, Jesse Alt, Norman Haughey, Barbara S. Slusher, Rana Rais. Discovery of Orally Bioavailable and Brain-Penetrable Prodrugs of the Potent nSMase2 Inhibitor DPTIP. Journal of Medicinal Chemistry 2022, 65 (16) , 11111-11125. https://doi.org/10.1021/acs.jmedchem.2c00562
    3. Gui Chen, Qing Xu, Zhenzhen Feng, Qinqin Xu, Xuhui Zhang, Yuanyuan Yang, Yuxuan Zhang, Xing-Jie Liang, Zhiqiang Yu, Meng Yu. Glutamine Antagonist Synergizes with Electrodynamic Therapy to Induce Tumor Regression and Systemic Antitumor Immunity. ACS Nano 2022, 16 (1) , 951-962. https://doi.org/10.1021/acsnano.1c08544
    4. Michal Šála, Kristen R. Hollinger, Ajit G. Thomas, Ranjeet P. Dash, Carolyn Tallon, Vijayabhaskar Veeravalli, Lyndah Lovell, Martin Kögler, Hubert Hřebabecký, Eliška Procházková, Ondřej Nešuta, Amanda Donoghue, Jenny Lam, Rana Rais, Camilo Rojas, Barbara S. Slusher, Radim Nencka. Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer’s Disease. Journal of Medicinal Chemistry 2020, 63 (11) , 6028-6056. https://doi.org/10.1021/acs.jmedchem.0c00278
    5. Yuxin Fan, Han Xue, Zhimin Li, Mingge Huo, Hongxia Gao, Xingang Guan. Exploiting the Achilles’ heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Frontiers in Pharmacology 2024, 15 https://doi.org/10.3389/fphar.2024.1345522
    6. David Moon, J. Spencer Hauck, Xue Jiang, Holly Quang, Lingfan Xu, Fan Zhang, Xia Gao, Robert Wild, Jeffrey I. Everitt, Everardo Macias, Yiping He, Jiaoti Huang. Targeting glutamine dependence with DRP‐104 inhibits proliferation and tumor growth of castration‐resistant prostate cancer. The Prostate 2024, 84 (4) , 349-357. https://doi.org/10.1002/pros.24654
    7. Wen Li, Jiali Huang, Chen Shen, Weiye Jiang, Xi Yang, Jingxuan Huang, Yueqing Gu, Zhiyu Li, Yi Ma, Jinlei Bian. Tumor-targeted metabolic inhibitor prodrug labelled with cyanine dyes enhances immunoprevention of lung cancer. Acta Pharmaceutica Sinica B 2024, 14 (2) , 751-764. https://doi.org/10.1016/j.apsb.2023.10.020
    8. Joel Encarnación-Rosado, Albert S. W. Sohn, Douglas E. Biancur, Elaine Y. Lin, Victoria Osorio-Vasquez, Tori Rodrick, Diana González-Baerga, Ende Zhao, Yumi Yokoyama, Diane M. Simeone, Drew R. Jones, Seth J. Parker, Robert Wild, Alec C. Kimmelman. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. Nature Cancer 2024, 5 (1) , 85-99. https://doi.org/10.1038/s43018-023-00647-3
    9. Maria Victoria Recouvreux, Shea F. Grenier, Yijuan Zhang, Edgar Esparza, Guillem Lambies, Cheska Marie Galapate, Swetha Maganti, Karen Duong-Polk, Deepika Bhullar, Razia Naeem, David A. Scott, Andrew M. Lowy, Hervé Tiriac, Cosimo Commisso. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. Nature Cancer 2024, 5 (1) , 100-113. https://doi.org/10.1038/s43018-023-00649-1
    10. Kateřina Novotná, Lukáš Tenora, Barbara S. Slusher, Rana Rais. Therapeutic resurgence of 6-diazo-5-oxo-l-norleucine (DON) through tissue-targeted prodrugs. 2024https://doi.org/10.1016/bs.apha.2024.04.003
    11. Sadiya Parveen, Jessica Shen, Shichun Lun, Liang Zhao, Jesse Alt, Benjamin Koleske, Robert D. Leone, Rana Rais, Jonathan D. Powell, John R. Murphy, Barbara S. Slusher, William R. Bishai. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43304-0
    12. Mengmeng Wang, Kunyu Qu, Peipei Zhao, Xin Yin, Yiwei Meng, Piet Herdewijn, Chao Liu, Lixin Zhang, Xuekui Xia. Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Medicinal Chemistry 2023, 14 (8) , 1572-1580. https://doi.org/10.1039/D3MD00190C
    13. Xianjun Li, Tianchuan Zhu, Ronghao Wang, Jian Chen, Lantian Tang, Wenwen Huo, Xi Huang, Qingdong Cao. Genetically Programmable Vesicles for Enhancing CAR‐T Therapy against Solid Tumors. Advanced Materials 2023, 35 (19) https://doi.org/10.1002/adma.202211138
    14. Zainab Fatima, Abdulrahman Abonofal, Bettzy Stephen. Targeting Cancer Metabolism to Improve Outcomes with Immune Checkpoint Inhibitors. Journal of Immunotherapy and Precision Oncology 2023, 6 (2) , 91-102. https://doi.org/10.36401/JIPO-22-27
    15. Yangyang Chen, Lun Tan, Jing Gao, Congcong Lin, Fengbo Wu, Yang Li, Jifa Zhang. Targeting glutaminase 1 (GLS1) by small molecules for anticancer therapeutics. European Journal of Medicinal Chemistry 2023, 252 , 115306. https://doi.org/10.1016/j.ejmech.2023.115306
    16. Mengyao Wang, Ailin Zhao, Meng Li, Ting Niu. Amino acids in hematologic malignancies: Current status and future perspective. Frontiers in Nutrition 2023, 10 https://doi.org/10.3389/fnut.2023.1113228
    17. Ting-Wan Kao, Yao-Chen Chuang, Hsin-Lun Lee, Chia-Chun Kuo, Yao-An Shen. Therapeutic Targeting of Glutaminolysis as a Novel Strategy to Combat Cancer Stem Cells. International Journal of Molecular Sciences 2022, 23 (23) , 15296. https://doi.org/10.3390/ijms232315296
    18. Xiaojing Yang, Zhen Li, Hanru Ren, Xue Peng, Jie Fu. New progress of glutamine metabolism in the occurrence, development, and treatment of ovarian cancer from mechanism to clinic. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.1018642
    19. Rana Rais, Kathryn M. Lemberg, Lukáš Tenora, Matthew L. Arwood, Arindom Pal, Jesse Alt, Ying Wu, Jenny Lam, Joanna Marie H. Aguilar, Liang Zhao, Diane E. Peters, Carolyn Tallon, Rajeev Pandey, Ajit G. Thomas, Ranjeet P. Dash, Tanguy Seiwert, Pavel Majer, Robert D. Leone, Jonathan D. Powell, Barbara S. Slusher. Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. Science Advances 2022, 8 (46) https://doi.org/10.1126/sciadv.abq5925
    20. Mofei Huang, Donghai Xiong, Jing Pan, Qi Zhang, Shizuko Sei, Robert H. Shoemaker, Ronald A. Lubet, Luis M. Montuenga, Yian Wang, Barbara S. Slusher, Ming You. Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR‐Driven Lung Cancer. Advanced Science 2022, 9 (26) https://doi.org/10.1002/advs.202105885
    21. Shang Wang, Yi Yan, Wei-Jie Xu, Su-Gang Gong, Xiu-Jun Zhong, Qin-Yan An, Ya-Lin Zhao, Jin-Ming Liu, Lan Wang, Ping Yuan, Rong Jiang. The Role of Glutamine and Glutaminase in Pulmonary Hypertension. Frontiers in Cardiovascular Medicine 2022, 9 https://doi.org/10.3389/fcvm.2022.838657
    22. Ray Pillai, Makiko Hayashi, Anastasia-Maria Zavitsanou, Thales Papagiannakopoulos. NRF2: KEAPing Tumors Protected. Cancer Discovery 2022, 12 (3) , 625-643. https://doi.org/10.1158/2159-8290.CD-21-0922
    23. Zachary E. Stine, Zachary T. Schug, Joseph M. Salvino, Chi V. Dang. Targeting cancer metabolism in the era of precision oncology. Nature Reviews Drug Discovery 2022, 21 (2) , 141-162. https://doi.org/10.1038/s41573-021-00339-6
    24. Anna Halama, Karsten Suhre. Advancing Cancer Treatment by Targeting Glutamine Metabolism—A Roadmap. Cancers 2022, 14 (3) , 553. https://doi.org/10.3390/cancers14030553
    25. Kathryn M. Lemberg, Sadakatali S. Gori, Takashi Tsukamoto, Rana Rais, Barbara S. Slusher. Clinical development of metabolic inhibitors for oncology. Journal of Clinical Investigation 2022, 132 (1) https://doi.org/10.1172/JCI148550
    26. Run-Duo Gao, Niyada Hin, Eva Prchalová, Arindom Pal, Jenny Lam, Rana Rais, Barbara S. Slusher, Takashi Tsukamoto. Model studies towards prodrugs of the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) containing a diazo precursor. Bioorganic & Medicinal Chemistry Letters 2021, 50 , 128321. https://doi.org/10.1016/j.bmcl.2021.128321
    27. Lin Xiao, Harrison Yeung, Michelle Haber, Murray D. Norris, Klaartje Somers. Immunometabolism: A ‘Hot’ Switch for ‘Cold’ Pediatric Solid Tumors. Trends in Cancer 2021, 7 (8) , 751-777. https://doi.org/10.1016/j.trecan.2021.05.002
    28. Yao-An Shen, Chi-Long Chen, Yi-Hsuan Huang, Emily Elizabeth Evans, Chun-Chia Cheng, Ya-Jie Chuang, Cissy Zhang, Anne Le. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Current Opinion in Chemical Biology 2021, 62 , 64-81. https://doi.org/10.1016/j.cbpa.2021.01.006
    29. Khoa Pham, Micah J Maxwell, Heather Sweeney, Jesse Alt, Rana Rais, Charles G Eberhart, Barbara S Slusher, Eric H Raabe. Novel Glutamine Antagonist JHU395 Suppresses MYC-Driven Medulloblastoma Growth and Induces Apoptosis. Journal of Neuropathology & Experimental Neurology 2021, 80 (4) , 336-344. https://doi.org/10.1093/jnen/nlab018
    30. Andrés Méndez-Lucas, Wei Lin, Paul C. Driscoll, Nathalie Legrave, Laura Novellasdemunt, Chencheng Xie, Mark Charles, Zena Wilson, Neil P. Jones, Stephen Rayport, Manuel Rodríguez-Justo, Vivian Li, James I. MacRae, Nissim Hay, Xin Chen, Mariia Yuneva. Identifying strategies to target the metabolic flexibility of tumours. Nature Metabolism 2020, 2 (4) , 335-350. https://doi.org/10.1038/s42255-020-0195-8
    31. Kathryn M. Lemberg, Liang Zhao, Ying Wu, Vijayabhaskar Veeravalli, Jesse Alt, Joanna Marie H. Aguilar, Ranjeet P. Dash, Jenny Lam, Lukáš Tenora, Chabely Rodriguez, Michael T. Nedelcovych, Cory Brayton, Pavel Majer, Jaishri O. Blakeley, Rana Rais, Barbara S. Slusher. The Novel Glutamine Antagonist Prodrug JHU395 Has Antitumor Activity in Malignant Peripheral Nerve Sheath Tumor. Molecular Cancer Therapeutics 2020, 19 (2) , 397-408. https://doi.org/10.1158/1535-7163.MCT-19-0319
    32. William P Katt, Richard A Cerione. Inhibition of cancer metabolism: a patent landscape. Pharmaceutical Patent Analyst 2019, 8 (4) , 117-138. https://doi.org/10.4155/ppa-2019-0012
    33. Alex Bott, Sara Maimouni, Wei-Xing Zong. The Pleiotropic Effects of Glutamine Metabolism in Cancer. Cancers 2019, 11 (6) , 770. https://doi.org/10.3390/cancers11060770

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect