ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Combining Hit Identification Strategies: Fragment-Based and in Silico Approaches to Orally Active 2-Aminothieno[2,3-d]pyrimidine Inhibitors of the Hsp90 Molecular Chaperone

View Author Information
Vernalis Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K.
Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey SM2 5NG, U.K.
§ Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
*To whom correspondence should be addressed. Phone 44 (0)1223 895372. Fax: 44 (0)1223 895556. E-mail: [email protected]
Cite this: J. Med. Chem. 2009, 52, 15, 4794–4809
Publication Date (Web):July 17, 2009
https://doi.org/10.1021/jm900357y
Copyright © 2009 American Chemical Society

    Article Views

    5819

    Altmetric

    -

    Citations

    146
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50−100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Several examples (34a, 34d and 34i) caused tumor growth regression at well tolerated doses when administered orally in a human BT474 human breast cancer xenograft model.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Data relating to the PC3 human prostate cancer xenograft model for compound 34a; experimental procedures for the FP assay and synthesis of the FP assay probe and methods and parameters relating to X-ray crystallography and protein production; full chemistry experimental procedures and characterization data; methods for analytical and preparative HPLC; commercial sources for fragment and in silico screening hits; protocols relating to the 1D NMR screening of fragments; description of the process applied for the in silico screening campaign. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 146 publications.

    1. Enrico Luchinat, Letizia Barbieri, Ben Davis, Paul A. Brough, Matteo Pennestri, Lucia Banci. Ligand-Based Competition Binding by Real-Time 19F NMR in Human Cells. Journal of Medicinal Chemistry 2024, 67 (2) , 1115-1126. https://doi.org/10.1021/acs.jmedchem.3c01600
    2. Stephanie Wills, Ruben Sanchez-Garcia, Tim Dudgeon, Stephen D. Roughley, Andy Merritt, Roderick E. Hubbard, James Davidson, Frank von Delft, Charlotte M. Deane. Fragment Merging Using a Graph Database Samples Different Catalogue Space than Similarity Search. Journal of Chemical Information and Modeling 2023, 63 (11) , 3423-3437. https://doi.org/10.1021/acs.jcim.3c00276
    3. Renzheng Zhang, Xian Guo, Chunnian Liang, Jie Pei, Pengjia Bao, Mancai Yin, Fude Wu, Min Chu, Ping Yan. Identification and Validation of Yak (Bos grunniens) Frozen–Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. Journal of Proteome Research 2022, 21 (11) , 2754-2770. https://doi.org/10.1021/acs.jproteome.2c00528
    4. Timothy R. Stachowski, Marcus Fischer. Large-Scale Ligand Perturbations of the Protein Conformational Landscape Reveal State-Specific Interaction Hotspots. Journal of Medicinal Chemistry 2022, 65 (20) , 13692-13704. https://doi.org/10.1021/acs.jmedchem.2c00708
    5. Walter Fiedler, Fabian Freisleben, Jasmin Wellbrock, Karl N. Kirschner. Mebendazole’s Conformational Space and Its Predicted Binding to Human Heat-Shock Protein 90. Journal of Chemical Information and Modeling 2022, 62 (15) , 3604-3617. https://doi.org/10.1021/acs.jcim.2c00290
    6. Richard D. Smith, Heather A. Carlson. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics. Journal of Chemical Information and Modeling 2021, 61 (3) , 1287-1299. https://doi.org/10.1021/acs.jcim.0c01002
    7. Li Li, Lei Wang, Qi-Dong You, Xiao-Li Xu. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. Journal of Medicinal Chemistry 2020, 63 (5) , 1798-1822. https://doi.org/10.1021/acs.jmedchem.9b00940
    8. James B. Murray, James Davidson, Ijen Chen, Ben Davis, Pawel Dokurno, Christopher J. Graham, Richard Harris, Allan Jordan, Natalia Matassova, Christopher Pedder, Stuart Ray, Stephen D. Roughley, Julia Smith, Claire Walmsley, Yikang Wang, Neil Whitehead, Douglas S. Williamson, Patrick Casara, Thierry Le Diguarher, John Hickman, Jerome Stark, András Kotschy, Olivier Geneste, Roderick E. Hubbard. Establishing Drug Discovery and Identification of Hit Series for the Anti-apoptotic Proteins, Bcl-2 and Mcl-1. ACS Omega 2019, 4 (5) , 8892-8906. https://doi.org/10.1021/acsomega.9b00611
    9. Doris A. Schuetz, Thomas Seidel, Arthur Garon, Riccardo Martini, Markus Körbel, Gerhard F. Ecker, Thierry Langer. GRAIL: GRids of phArmacophore Interaction fieLds. Journal of Chemical Theory and Computation 2018, 14 (9) , 4958-4970. https://doi.org/10.1021/acs.jctc.8b00495
    10. Jeffrey R. Wagner, Jesper Sørensen, Nathan Hensley, Celia Wong, Clare Zhu, Taylor Perison, and Rommie E. Amaro . POVME 3.0: Software for Mapping Binding Pocket Flexibility. Journal of Chemical Theory and Computation 2017, 13 (9) , 4584-4592. https://doi.org/10.1021/acs.jctc.7b00500
    11. Paul A. Brough, Lisa Baker, Simon Bedford, Kirsten Brown, Seema Chavda, Victoria Chell, Jalanie D’Alessandro, Nicholas G. M. Davies, Ben Davis, Loic Le Strat, Alba T. Macias, Daniel Maddox, Patrick C. Mahon, Andrew J. Massey, Natalia Matassova, Sean McKenna, Johannes W. G. Meissner, Jonathan D. Moore, James B. Murray, Christopher J. Northfield, Charles Parry, Rachel Parsons, Stephen D. Roughley, Terry Shaw, Heather Simmonite, Stephen Stokes, Allan Surgenor, Emma Stefaniak, Alan Robertson, Yikang Wang, Paul Webb, Neil Whitehead, and Mike Wood . Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase. Journal of Medicinal Chemistry 2017, 60 (6) , 2271-2286. https://doi.org/10.1021/acs.jmedchem.6b01478
    12. Ido Y. Ben-Shalom, Stefania Pfeiffer-Marek, Karl-Heinz Baringhaus, and Holger Gohlke . Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. Journal of Chemical Information and Modeling 2017, 57 (2) , 170-189. https://doi.org/10.1021/acs.jcim.6b00373
    13. Shipra Malhotra and John Karanicolas . When Does Chemical Elaboration Induce a Ligand To Change Its Binding Mode?. Journal of Medicinal Chemistry 2017, 60 (1) , 128-145. https://doi.org/10.1021/acs.jmedchem.6b00725
    14. Bernard Pirard and Peter Ertl . Evaluation of a Semi-Automated Workflow for Fragment Growing. Journal of Chemical Information and Modeling 2015, 55 (1) , 180-193. https://doi.org/10.1021/ci5006355
    15. Sarah Barelier, Jennifer A. Cummings, Alissa M. Rauwerdink, Daniel S. Hitchcock, Jeremiah D. Farelli, Steven C. Almo, Frank M. Raushel, Karen N. Allen, and Brian K. Shoichet . Substrate Deconstruction and the Nonadditivity of Enzyme Recognition. Journal of the American Chemical Society 2014, 136 (20) , 7374-7382. https://doi.org/10.1021/ja501354q
    16. James B. Murray, Stephen D. Roughley, Natalia Matassova, and Paul A. Brough . Off-Rate Screening (ORS) By Surface Plasmon Resonance. An Efficient Method to Kinetically Sample Hit to Lead Chemical Space from Unpurified Reaction Products. Journal of Medicinal Chemistry 2014, 57 (7) , 2845-2850. https://doi.org/10.1021/jm401848a
    17. Diane Joseph-McCarthy, Arthur J. Campbell, Gunther Kern, and Demetri Moustakas . Fragment-Based Lead Discovery and Design. Journal of Chemical Information and Modeling 2014, 54 (3) , 693-704. https://doi.org/10.1021/ci400731w
    18. Jad Rouhana, Francois Hoh, Sébastien Estaran, Corinne Henriquet, Yvan Boublik, Aziz Kerkour, Romain Trouillard, Jean Martinez, Martine Pugnière, André Padilla, and Alain Chavanieu . Fragment-Based Identification of a Locus in the Sec7 Domain of Arno for the Design of Protein–Protein Interaction Inhibitors. Journal of Medicinal Chemistry 2013, 56 (21) , 8497-8511. https://doi.org/10.1021/jm4009357
    19. Tony Taldone, Pallav D. Patel, Maulik Patel, Hardik J. Patel, Christopher E. Evans, Anna Rodina, Stefan Ochiana, Smit K. Shah, Mohammad Uddin, Daniel Gewirth, and Gabriela Chiosis . Experimental and Structural Testing Module to Analyze Paralogue-Specificity and Affinity in the Hsp90 Inhibitors Series. Journal of Medicinal Chemistry 2013, 56 (17) , 6803-6818. https://doi.org/10.1021/jm400619b
    20. Elinor Meiby, Heather Simmonite, Loic le Strat, Ben Davis, Natalia Matassova, Jonathan D. Moore, Michael Mrosek, James Murray, Roderick E. Hubbard, and Sten Ohlson . Fragment Screening by Weak Affinity Chromatography: Comparison with Established Techniques for Screening against HSP90. Analytical Chemistry 2013, 85 (14) , 6756-6766. https://doi.org/10.1021/ac400715t
    21. Vladimir Chupakhin, Gilles Marcou, Igor Baskin, Alexandre Varnek, and Didier Rognan . Predicting Ligand Binding Modes from Neural Networks Trained on Protein–Ligand Interaction Fingerprints. Journal of Chemical Information and Modeling 2013, 53 (4) , 763-772. https://doi.org/10.1021/ci300200r
    22. Paul J. Barrett, Jiang Chen, Min-Kyu Cho, Ji-Hun Kim, Zhenwei Lu, Sijo Mathew, Dungeng Peng, Yuanli Song, Wade D. Van Horn, Tiandi Zhuang, Frank D. Sönnichsen, and Charles R. Sanders . The Quiet Renaissance of Protein Nuclear Magnetic Resonance. Biochemistry 2013, 52 (8) , 1303-1320. https://doi.org/10.1021/bi4000436
    23. Dipen M. Shah, Eiso AB, Tammo Diercks, Mathias A. S. Hass, Nico A. J. van Nuland, and Gregg Siegal . Rapid Protein–Ligand Costructures from Sparse NOE Data. Journal of Medicinal Chemistry 2012, 55 (23) , 10786-10790. https://doi.org/10.1021/jm301396d
    24. Duncan E. Scott, Anthony G. Coyne, Sean A. Hudson, and Chris Abell . Fragment-Based Approaches in Drug Discovery and Chemical Biology. Biochemistry 2012, 51 (25) , 4990-5003. https://doi.org/10.1021/bi3005126
    25. Richard A. Ward, Claire Brassington, Alexander L. Breeze, Alessandro Caputo, Susan Critchlow, Gareth Davies, Louise Goodwin, Giles Hassall, Ryan Greenwood, Geoffrey A. Holdgate, Michael Mrosek, Richard A. Norman, Stuart Pearson, Jonathan Tart, Julie A. Tucker, Martin Vogtherr, David Whittaker, Jonathan Wingfield, Jon Winter, and Kevin Hudson . Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-Based Lead Generation. Journal of Medicinal Chemistry 2012, 55 (7) , 3285-3306. https://doi.org/10.1021/jm201734r
    26. Riccardo Baruchello, Daniele Simoni, Giuseppina Grisolia, Giuseppina Barbato, Paolo Marchetti, Riccardo Rondanin, Stefania Mangiola, Giuseppe Giannini, Tiziana Brunetti, Domenico Alloatti, Grazia Gallo, Andrea Ciacci, Loredana Vesci, Massimo Castorina, Ferdinando M. Milazzo, Maria L. Cervoni, Mario B. Guglielmi, Marcella Barbarino, Rosanna Foderà, Claudio Pisano, and Walter Cabri . Novel 3,4-Isoxazolediamides as Potent Inhibitors of Chaperone Heat Shock Protein 90. Journal of Medicinal Chemistry 2011, 54 (24) , 8592-8604. https://doi.org/10.1021/jm201155e
    27. Roman A. Laskowski and Mark B. Swindells . LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling 2011, 51 (10) , 2778-2786. https://doi.org/10.1021/ci200227u
    28. Stephen D. Roughley and Roderick E. Hubbard . How Well Can Fragments Explore Accessed Chemical Space? A Case Study from Heat Shock Protein 90. Journal of Medicinal Chemistry 2011, 54 (12) , 3989-4005. https://doi.org/10.1021/jm200350g
    29. Muhammad K. Haider, Hugues-Olivier Bertrand, and Roderick E. Hubbard . Predicting Fragment Binding Poses Using a Combined MCSS MM-GBSA Approach. Journal of Chemical Information and Modeling 2011, 51 (5) , 1092-1105. https://doi.org/10.1021/ci100469n
    30. Luke Zehnder, Michael Bennett, Jerry Meng, Buwen Huang, Sacha Ninkovic, Fen Wang, John Braganza, John Tatlock, Tanya Jewell, Joe Zhongxiang Zhou, Ben Burke, Jeff Wang, Karen Maegley, Pramod P. Mehta, Min-Jean Yin, Ketan S. Gajiwala, Michael J. Hickey, Shinji Yamazaki, Evan Smith, Ping Kang, Anand Sistla, Elena Dovalsantos, Michael R. Gehring, Robert Kania, Martin Wythes, and Pei-Pei Kung . Optimization of Potent, Selective, and Orally Bioavailable Pyrrolodinopyrimidine-Containing Inhibitors of Heat Shock Protein 90. Identification of Development Candidate 2-Amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide. Journal of Medicinal Chemistry 2011, 54 (9) , 3368-3385. https://doi.org/10.1021/jm200128m
    31. Andrew J. Massey. ATPases as Drug Targets: Insights from Heat Shock Proteins 70 and 90. Journal of Medicinal Chemistry 2010, 53 (20) , 7280-7286. https://doi.org/10.1021/jm100342z
    32. Christopher W. Murray, Maria G. Carr, Owen Callaghan, Gianni Chessari, Miles Congreve, Suzanna Cowan, Joseph E. Coyle, Robert Downham, Eva Figueroa, Martyn Frederickson, Brent Graham, Rachel McMenamin, M. Alistair O’Brien, Sahil Patel, Theresa R. Phillips, Glyn Williams, Andrew J. Woodhead and Alison J.-A. Woolford. Fragment-Based Drug Discovery Applied to Hsp90. Discovery of Two Lead Series with High Ligand Efficiency. Journal of Medicinal Chemistry 2010, 53 (16) , 5942-5955. https://doi.org/10.1021/jm100059d
    33. Andrew J. Woodhead, Hayley Angove, Maria G. Carr, Gianni Chessari, Miles Congreve, Joseph E. Coyle, Jose Cosme, Brent Graham, Philip J. Day, Robert Downham, Lynsey Fazal, Ruth Feltell, Eva Figueroa, Martyn Frederickson, Jonathan Lewis, Rachel McMenamin, Christopher W. Murray, M. Alistair O’Brien, Lina Parra, Sahil Patel, Theresa Phillips, David C. Rees, Sharna Rich, Donna-Michelle Smith, Gary Trewartha, Mladen Vinkovic, Brian Williams and Alison J.-A. Woolford . Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. Journal of Medicinal Chemistry 2010, 53 (16) , 5956-5969. https://doi.org/10.1021/jm100060b
    34. Wei Qin, Jie Li, Ming‐Chan Wang, Xin‐Yu Li, Peng‐Quan Li, Dong Zhao, Hai‐Qing Chu, Jia Fu, Chun‐Xia He, Hui‐Jin Li, Lu Xing, Xin Zhou, Ye Zhang, Fang‐Yun Sun, Hui‐Ling Cao. Comparative Study of the Crystal Structure and Simulated 3D Structure of the Hsp90 N ‐Inhibitor Complex. Crystal Research and Technology 2023, 58 (8) https://doi.org/10.1002/crat.202300017
    35. Timothy R. Stachowski, Stanley Nithianantham, Murugendra Vanarotti, Karlo Lopez, Marcus Fischer. Pan‐HSP90 ligand binding reveals isoform‐specific differences in plasticity and water networks. Protein Science 2023, 32 (5) https://doi.org/10.1002/pro.4629
    36. Jaka Dernovšek, Tihomir Tomašič. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacology & Therapeutics 2023, 245 , 108396. https://doi.org/10.1016/j.pharmthera.2023.108396
    37. Menna Tallah M. Sayed, Rasha A. Hassan, Peter A. Halim, Afaf K. El-Ansary. Recent updates on thienopyrimidine derivatives as anticancer agents. Medicinal Chemistry Research 2023, 32 (4) , 659-681. https://doi.org/10.1007/s00044-023-03040-y
    38. Rajapandi Raju, Kumarappan Chidambaram, Balakumar Chandrasekaran, Mohammad F. Bayan, Tapan Kumar Maity, Abdullah M. Alkahtani, Harish C Chandramoorthy. Synthesis, pharmacological evaluation, and molecular modeling studies of novel isatin hybrids as potential anticancer agents. Journal of Saudi Chemical Society 2023, 27 (2) , 101598. https://doi.org/10.1016/j.jscs.2023.101598
    39. Roderick E. Hubbard. Fragment-based Ligand Discovery (FBLD). 2023, 188-230. https://doi.org/10.1039/9781788018982-00188
    40. Rajapandi Raju, Kumarappan Chidambaram, Balakumar Chandrasekaran, Tapan Kumar Maity. RETRACTED ARTICLE: Synthesis, Pharmacological Evaluation, and Molecular Modeling Studies of New Isatin Hybrids as Potential Anticancer Agents. Pharmaceutical Chemistry Journal 2023, 56 (10) , 1389-1399. https://doi.org/10.1007/s11094-023-02803-6
    41. Saba Rezvani, Ahmad Ebadi, Nima Razzaghi-Asl. In silico identification of potential Hsp90 inhibitors via ensemble docking, DFT and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics 2022, 40 (21) , 10665-10676. https://doi.org/10.1080/07391102.2021.1947383
    42. Chen Hu, Jing Yang, Ziping Qi, Hong Wu, Beilei Wang, Fengming Zou, Husheng Mei, Jing Liu, Wenchao Wang, Qingsong Liu. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022, 3 (3) https://doi.org/10.1002/mco2.161
    43. Krishnan Anand, Muthusamy Ramesh, Thishana Singh, Chandrasekaran Balakumar, Vadivalagan Chithravel, Parteek Prasher, Naresh Kumar Katari, Gaurav Gupta, Sachin Kumar Singh, Dinesh Kumar Chellappan, Kamal Dua, Vivek Chavda, Alexey Laishevtcev, Mohd Shahbaaz, Magda H. Abdellattif, Muthupandian Saravanan, Anil A. Chuturgoon. One-step synthesis of picolinohydrazides from fusaric acid: DFT, structural characterization and molecular inhibitory studies on metastatic tumor-derived exosomal and non-exosomal proteins. Journal of Molecular Structure 2022, 1255 , 132442. https://doi.org/10.1016/j.molstruc.2022.132442
    44. Fabian Freisleben, Franziska Modemann, Jana Muschhammer, Hauke Stamm, Franziska Brauneck, Alexander Krispien, Carsten Bokemeyer, Karl N. Kirschner, Jasmin Wellbrock, Walter Fiedler. Mebendazole Mediates Proteasomal Degradation of GLI Transcription Factors in Acute Myeloid Leukemia. International Journal of Molecular Sciences 2021, 22 (19) , 10670. https://doi.org/10.3390/ijms221910670
    45. Roderick E. Hubbard. Fragment‐Based Lead Discovery. 2021, 1-35. https://doi.org/10.1002/0471266949.bmc265
    46. Rony Mshaik, John Simonet, Aleksandra Georgievski, Layla Jamal, Shaliha Bechoua, Paola Ballerini, Pierre-Simon Bellaye, Zandile Mlamla, Jean-Paul Pais de Barros, Audrey Geissler, Pierre-Jean Francin, François Girodon, Carmen Garrido, Ronan Quéré. HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer Journal 2021, 11 (3) https://doi.org/10.1038/s41408-021-00450-2
    47. Ben J. Davis. Fragment Screening by NMR. 2021, 247-270. https://doi.org/10.1007/978-1-0716-1197-5_11
    48. Francesca Stanzione, Ilenia Giangreco, Jason C. Cole. Use of molecular docking computational tools in drug discovery. 2021, 273-343. https://doi.org/10.1016/bs.pmch.2021.01.004
    49. Lisa M. Baker, Anthony Aimon, James B. Murray, Allan E. Surgenor, Natalia Matassova, Stephen D. Roughley, Patrick M. Collins, Tobias Krojer, Frank von Delft, Roderick E. Hubbard. Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00367-0
    50. Stephen D. Roughley. Five Years of the KNIME Vernalis Cheminformatics Community Contribution. Current Medicinal Chemistry 2020, 27 (38) , 6495-6522. https://doi.org/10.2174/0929867325666180904113616
    51. Matja Zalar, Hristo L. Svilenov, Alexander P. Golovanov. Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. European Journal of Pharmaceutics and Biopharmaceutics 2020, 151 , 127-136. https://doi.org/10.1016/j.ejpb.2020.04.002
    52. Ben J. Davis, Roderick E. Hubbard. Fragment‐Based Ligand Discovery. 2020, 79-98. https://doi.org/10.1002/9781118681121.ch4
    53. Daniela Tomaselli, Alessia Lucidi, Dante Rotili, Antonello Mai. Epigenetic polypharmacology: A new frontier for epi‐drug discovery. Medicinal Research Reviews 2020, 40 (1) , 190-244. https://doi.org/10.1002/med.21600
    54. Paul Workman. Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective. 2020, 163-179. https://doi.org/10.1007/978-3-030-40204-4_11
    55. Christopher A. Waudby, Margaux Ouvry, Ben Davis, John Christodoulou. Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments. Journal of Biomolecular NMR 2020, 74 (1) , 95-109. https://doi.org/10.1007/s10858-019-00297-7
    56. Fangfang Yan, Xinguo Liu, Shaolong Zhang, Qinggang Zhang, Jianzhong Chen. Understanding conformational diversity of heat shock protein 90 (HSP90) and binding features of inhibitors to HSP90 via molecular dynamics simulations. Chemical Biology & Drug Design 2020, 95 (1) , 87-103. https://doi.org/10.1111/cbdd.13623
    57. Rajeev Kumar, Neeraj Kumar, Ram Kumar Roy, Anita Singh. 1,3,5-Triazine Analogs: A Potent Anticancer Scaffold. Current Signal Transduction Therapy 2019, 14 (2) , 87-106. https://doi.org/10.2174/1574362413666180221113805
    58. Dario Valenti, Stanimira Hristeva, Dimitrios Tzalis, Christian Ottmann. Clinical candidates modulating protein-protein interactions: The fragment-based experience. European Journal of Medicinal Chemistry 2019, 167 , 76-95. https://doi.org/10.1016/j.ejmech.2019.01.084
    59. Tai Wang, Anna Rodina, Mark P. Dunphy, Adriana Corben, Shanu Modi, Monica L. Guzman, Daniel T. Gewirth, Gabriela Chiosis. Chaperome heterogeneity and its implications for cancer study and treatment. Journal of Biological Chemistry 2019, 294 (6) , 2162-2179. https://doi.org/10.1074/jbc.REV118.002811
    60. Robert Kuhnert, Menyhárt‐Botond Sárosi, Sven George, Peter Lönnecke, Bettina Hofmann, Dieter Steinhilber, Sara Steinmann, Regine Schneider‐Stock, Blagoje Murganić, Sanja Mijatović, Danijela Maksimović‐Ivanić, Evamarie Hey‐Hawkins. Carborane‐Based Analogues of 5‐Lipoxygenase Inhibitors Co‐inhibit Heat Shock Protein 90 in HCT116 Cells. ChemMedChem 2019, 14 (2) , 255-261. https://doi.org/10.1002/cmdc.201800651
    61. Yue Hu, Xiao J. Zhang, Xiao T. Yang, Ying Y. Tang, Lin Y. Hu, Dong Zhu. Screening Technique for Heat Shock Protein 90 Inhibitors from Natural Products. 2019, 411-439. https://doi.org/10.1007/978-3-030-23158-3_19
    62. Abdelreheem Abdelfatah Saddik, Adel Mohamed Kamal El‐Dean, Waleed Ahmed El‐Said, Khairy Mohamed Hassan, Mohamed Saad Abbady. Synthesis, Antimicrobial, and Anticancer Activities of a New Series of Thieno[2,3‐ d ] Pyrimidine Derivatives. Journal of Heterocyclic Chemistry 2018, 55 (9) , 2111-2122. https://doi.org/10.1002/jhet.3256
    63. Luca Pinzi, Andrew Anighoro, Jürgen Bajorath, Giulio Rastelli. Identification of 4‐aryl‐1 H ‐pyrrole[2,3‐b]pyridine derivatives for the development of new B‐Raf inhibitors. Chemical Biology & Drug Design 2018, 92 (1) , 1382-1386. https://doi.org/10.1111/cbdd.13185
    64. Lianbin Yao, Sten Ohlson, Brian W. Dymock. Design and synthesis of triple inhibitors of janus kinase (JAK), histone deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorganic & Medicinal Chemistry Letters 2018, 28 (8) , 1357-1362. https://doi.org/10.1016/j.bmcl.2018.03.009
    65. Akira R. Kinjo. Cooperative “folding transition” in the sequence space facilitates function-driven evolution of protein families. Journal of Theoretical Biology 2018, 443 , 18-27. https://doi.org/10.1016/j.jtbi.2018.01.019
    66. Pierfausto Seneci. Step IIIb: The Drug-Like Chemical Diversity Pool: Diverse and Targeted Compound Collections. 2018, 115-177. https://doi.org/10.1016/B978-0-08-099420-8.00004-3
    67. Grace Q. Gong, Jackie D. Kendall, James M.J. Dickson, Gordon W. Rewcastle, Christina M. Buchanan, William A. Denny, Peter R. Shepherd, Jack U. Flanagan. Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity. Biochemical Journal 2017, 474 (13) , 2261-2276. https://doi.org/10.1042/BCJ20161098
    68. B. Wilding, N. Klempier. Newest Developments in the Preparation of Thieno[2,3- d ]pyrimidines. Organic Preparations and Procedures International 2017, 49 (3) , 183-215. https://doi.org/10.1080/00304948.2017.1320513
    69. Sergio Ruiz-Carmona, Peter Schmidtke, F. Javier Luque, Lisa Baker, Natalia Matassova, Ben Davis, Stephen Roughley, James Murray, Rod Hubbard, Xavier Barril. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nature Chemistry 2017, 9 (3) , 201-206. https://doi.org/10.1038/nchem.2660
    70. Ben J. Davis, Stephen D. Roughley. Fragment-Based Lead Discovery. 2017, 371-439. https://doi.org/10.1016/bs.armc.2017.07.002
    71. A. Anighoro, L. Pinzi, G. Marverti, J. Bajorath, G. Rastelli. Heat shock protein 90 and serine/threonine kinase B-Raf inhibitors have overlapping chemical space. RSC Advances 2017, 7 (49) , 31069-31074. https://doi.org/10.1039/C7RA05889F
    72. Jianping Hua, Chao Sima, Milana Cypert, Edward R. Dougherty, Jeffery M. Trent, Michael L. Bittner. Dynamical Analysis of Drug Efficacy and Mechanism of Action Using GFP Reporters. 2017, 1145-1174. https://doi.org/10.4018/978-1-5225-0983-7.ch045
    73. Jean-Paul Renaud, Chun-wa Chung, U. Helena Danielson, Ursula Egner, Michael Hennig, Roderick E. Hubbard, Herbert Nar. Biophysics in drug discovery: impact, challenges and opportunities. Nature Reviews Drug Discovery 2016, 15 (10) , 679-698. https://doi.org/10.1038/nrd.2016.123
    74. Dhanaji V. Jawale, Umesh R. Pratap, Manisha R. Bhosale, Ramrao A. Mane. One‐Pot Three‐Component Synthesis of 2‐Amino Pyrimidines in Aqueous PEG‐400 at Ambient Temperature. Journal of Heterocyclic Chemistry 2016, 53 (5) , 1626-1630. https://doi.org/10.1002/jhet.673
    75. Majda Misini Ignjatović, Octav Caldararu, Geng Dong, Camila Muñoz-Gutierrez, Francisco Adasme-Carreño, Ulf Ryde. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. Journal of Computer-Aided Molecular Design 2016, 30 (9) , 707-730. https://doi.org/10.1007/s10822-016-9942-z
    76. Veronica Salmaso, Mattia Sturlese, Alberto Cuzzolin, Stefano Moro. DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015. Journal of Computer-Aided Molecular Design 2016, 30 (9) , 773-789. https://doi.org/10.1007/s10822-016-9966-4
    77. Arun Chandramohan, Srinath Krishnamurthy, Andreas Larsson, Paer Nordlund, Anna Jansson, Ganesh S. Anand, . Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design. PLOS Computational Biology 2016, 12 (6) , e1004840. https://doi.org/10.1371/journal.pcbi.1004840
    78. Roderick E. Hubbard. The Role of Fragment‐based Discovery in Lead Finding. 2016, 1-36. https://doi.org/10.1002/9783527683604.ch01
    79. A V Jacobsen, K N Lowes, M C Tanzer, I S Lucet, J M Hildebrand, E J Petrie, M F van Delft, Z Liu, S A Conos, J-G Zhang, D C S Huang, J Silke, G Lessene, J M Murphy. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death & Disease 2016, 7 (1) , e2051-e2051. https://doi.org/10.1038/cddis.2015.386
    80. Stefano Forli. Charting a Path to Success in Virtual Screening. Molecules 2015, 20 (10) , 18732-18758. https://doi.org/10.3390/molecules201018732
    81. Khurshed Bozorov, Jiang-Yu Zhao, Burkhon Elmuradov, Apar Pataer, Haji A. Aisa. Recent developments regarding the use of thieno[2,3-d]pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties. European Journal of Medicinal Chemistry 2015, 102 , 552-573. https://doi.org/10.1016/j.ejmech.2015.08.018
    82. Maria E. Chizhova, Olga Yu. Bakulina, Alexander Yu. Ivanov, Pavel S. Lobanov, Dmitrii V. Dar'in. Facile synthesis of pyrido[2,3-d]pyrimidines via cyclocondensation of 4,6-dichloro-2-methylsulfanylpyrimidine-5-carbaldehyde with β-substituted β-aminoacrylic esters. Tetrahedron 2015, 71 (36) , 6196-6203. https://doi.org/10.1016/j.tet.2015.06.085
    83. Ola Fjellström, Sibel Akkaya, Hans-Georg Beisel, Per-Olof Eriksson, Karl Erixon, David Gustafsson, Ulrik Jurva, Daiwu Kang, David Karis, Wolfgang Knecht, Viveca Nerme, Ingemar Nilsson, Thomas Olsson, Alma Redzic, Robert Roth, Jenny Sandmark, Anna Tigerström, Linda Öster, . Creating Novel Activated Factor XI Inhibitors through Fragment Based Lead Generation and Structure Aided Drug Design. PLOS ONE 2015, 10 (1) , e0113705. https://doi.org/10.1371/journal.pone.0113705
    84. Chunquan Sheng, Guoqiang Dong, Chen Wang. Computational Fragment-Based Drug Design. 2015, 189-215. https://doi.org/10.1007/7653_2015_51
    85. Venkata Velvadapu, Bennett T. Farmer, Allen B. Reitz. Fragment-Based Drug Discovery. 2015, 161-180. https://doi.org/10.1016/B978-0-12-417205-0.00007-9
    86. Galal H. Elgemeie, Reham A. Mohamed. Application of dimethyl N -cyanodithioiminocarbonate in synthesis of fused heterocycles and in biological chemistry. Heterocyclic Communications 2014, 20 (6) , 313-331. https://doi.org/10.1515/hc-2014-0156
    87. D. M. Ramsey, R. R. A. Kitson, J. I. Levin, C. J. Moody, S. R. McAlpine. Recent Advances in Macrocyclic Hsp90 Inhibitors. 2014, 37-77. https://doi.org/10.1039/9781782623113-00037
    88. JIANYUE WU, WEIMIN WANG, QIN SHAO, GUOMIN XIAO, JUN CHENG, YUNPENG YUAN, MEI ZHANG. Irradiation facilitates the inhibitory effect of the heat shock protein 90 inhibitor NVP-BEP800 on the proliferation of malignant glioblastoma cells through attenuation of the upregulation of heat shock protein 70. Experimental and Therapeutic Medicine 2014, 8 (3) , 893-898. https://doi.org/10.3892/etm.2014.1800
    89. Valentina Abet, Angelica Mariani, Fiona R. Truscott, Sébastien Britton, Raphaël Rodriguez. Biased and unbiased strategies to identify biologically active small molecules. Bioorganic & Medicinal Chemistry 2014, 22 (16) , 4474-4489. https://doi.org/10.1016/j.bmc.2014.04.019
    90. Elena Casale, Nadia Amboldi, Maria Gabriella Brasca, Dannica Caronni, Nicoletta Colombo, Claudio Dalvit, Eduard R. Felder, Gianpaolo Fogliatto, Arturo Galvani, Antonella Isacchi, Paolo Polucci, Laura Riceputi, Francesco Sola, Carlo Visco, Fabio Zuccotto, Francesco Casuscelli. Fragment-based hit discovery and structure-based optimization of aminotriazoloquinazolines as novel Hsp90 inhibitors. Bioorganic & Medicinal Chemistry 2014, 22 (15) , 4135-4150. https://doi.org/10.1016/j.bmc.2014.05.056
    91. Mohamed Hassan, Hidemichi Watari, Ali AbuAlmaaty, Yusuke Ohba, Noriaki Sakuragi. Apoptosis and Molecular Targeting Therapy in Cancer. BioMed Research International 2014, 2014 , 1-23. https://doi.org/10.1155/2014/150845
    92. Tony Taldone, Hardik J Patel, Alexander Bolaender, Maulik R Patel, Gabriela Chiosis. Protein chaperones: a composition of matter review (2008 – 2013). Expert Opinion on Therapeutic Patents 2014, 24 (5) , 501-518. https://doi.org/10.1517/13543776.2014.887681
    93. Sergio Ruiz-Carmona, Daniel Alvarez-Garcia, Nicolas Foloppe, A. Beatriz Garmendia-Doval, Szilveszter Juhos, Peter Schmidtke, Xavier Barril, Roderick E. Hubbard, S. David Morley, . rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Computational Biology 2014, 10 (4) , e1003571. https://doi.org/10.1371/journal.pcbi.1003571
    94. Tim ten Brink, Clementine Aguirre, Isabelle Krimm. Fragment docking supported by NMR shift perturbations. Journal of Cheminformatics 2014, 6 (S1) https://doi.org/10.1186/1758-2946-6-S1-P18
    95. Swee Sharp, Keith Jones, Paul Workman. Exploiting Cancer Dependence on Molecular Chaperones. 2014, 239-274. https://doi.org/10.1016/B978-0-12-396521-9.00009-7
    96. Justin T. Ernst, Michael Liu, Harmon Zuccola, Timothy Neubert, Kevin Beaumont, Amy Turnbull, Adam Kallel, Bryan Vought, Dean Stamos. Correlation between chemotype-dependent binding conformations of HSP90α/β and isoform selectivity—Implications for the structure-based design of HSP90α/β selective inhibitors for treating neurodegenerative diseases. Bioorganic & Medicinal Chemistry Letters 2014, 24 (1) , 204-208. https://doi.org/10.1016/j.bmcl.2013.11.036
    97. Bo Li, Zhizhou Yue, Haoyue Xiang, Linlin Lv, Shanshan Song, Zehong Miao, Chunhao Yang. Catalyst-free synthesis of benzofuran-fused pyrido[4,3-d]pyrimidines from 2-(2-hydroxyaryl)acetonitrile and 4,6-dichloropyrimidine-5-carbaldehyde through domino condensation reactions. RSC Adv. 2014, 4 (1) , 358-364. https://doi.org/10.1039/C3RA44828B
    98. Jacob D. Durrant, Rommie E. Amaro. De Novo Design by Fragment Growing and Docking. 2013, 125-142. https://doi.org/10.1002/9783527677016.ch5
    99. Michael Mazanetz, Richard Law, Mark Whittaker. Hit and Lead Identification from Fragments. 2013, 143-200. https://doi.org/10.1002/9783527677016.ch6
    100. Paul A. Brough, Joseph Schoepfer, Andrew Massey, Michael Rugaard Jensen. Discovery of NVP-AUY922. 2013, 213-240. https://doi.org/10.1039/9781849739689-00213
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect