Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating β2 integrins

Abstract

Nonmuscle myosin light-chain kinase (MYLK) mediates increased lung vascular endothelial permeability in lipopolysaccharide-induced lung inflammatory injury, the chief cause of the acute respiratory distress syndrome. In a lung injury model, we demonstrate here that MYLK was also essential for neutrophil transmigration, but that this function was mostly independent of myosin II regulatory light chain, the only known substrate of MYLK. Instead, MYLK in neutrophils was required for the recruitment and activation of the tyrosine kinase Pyk2, which mediated full activation of β2 integrins. Our results demonstrate that MYLK-mediated activation of β2 integrins through Pyk2 links β2 integrin signaling to the actin motile machinery of neutrophils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ex vivo LPS-induced lung injury and edema formation.
Figure 2: Loss of MYLK function fails to prevent myosin II activation.
Figure 3: Activation of β2 integrin in neutrophils.
Figure 4: Tyrosine kinase activation and interaction with β2 integrin.
Figure 5: The interaction of β2 integrin and the cytoskeleton in neutrophils.

Similar content being viewed by others

References

  1. Cohen, M.S. Molecular events in the activation of human neutrophils for microbial killing. Clin. Infect. Dis. 18 Suppl 2, S170–S179 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Stevens, T., Garcia, J.G., Shasby, D.M., Bhattacharya, J. & Malik, A.B. Mechanisms regulating endothelial cell barrier function. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L419–L422 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y. et al. Regulation of leukocyte transmigration: cell surface interactions and signaling events. J. Immunol. 172, 7–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Simpson, S.Q. & Casey, L.C. Role of tumor necrosis factor in sepsis and acute lung injury. Crit. Care Clin. 5, 27–47 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Crockett-Torabi, E. & Ward, P.A. The role of leukocytes in tissue injury. Eur. J. Anaesthesiol. 13, 235–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Adelstein, R.S. Regulation of contractile proteins by phosphorylation. J. Clin. Invest. 72, 1863–1866 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamm, K.E. & Stull, J.T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. Toxicol. 25, 593–620 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Kamm, K.E. & Stull, J.T. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276, 4527–4530 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kudryashov, D.S. et al. Unique sequence of a high molecular weight myosin light chain kinase is involved in interaction with actin cytoskeleton. FEBS Lett. 463, 67–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wainwright, M.S. et al. Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc. Natl. Acad. Sci. USA 100, 6233–6238 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia, J.G., Davis, H.W. & Patterson, C.E. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J. Cell. Physiol. 163, 510–522 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, S.Y. et al. Myosin light chain phosphorylation in neutrophil-stimulated coronary microvascular leakage. Circ. Res. 90, 1214–1221 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lowell, C.A. & Berton, G. Integrin signal transduction in myeloid leukocytes. J. Leukoc. Biol. 65, 313–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Ginsberg, M.H., Partridge, A. & Shattil, S.J. Integrin regulation. Curr. Opin. Cell Biol. 17, 509–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, B.H., Carman, C.V. & Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ley, K. Integration of inflammatory signals by rolling neutrophils. Immunol. Rev. 186, 8–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Calderwood, D.A., Shattil, S.J. & Ginsberg, M.H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. van Kooyk, Y. & Figdor, C.G. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr. Opin. Cell Biol. 12, 542–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Totani, L. et al. Src-family kinases mediate an outside-in signal necessary for β2 integrins to achieve full activation and sustain firm adhesion of polymorphonuclear leucocytes tethered on E-selectin. Biochem. J. 396, 89–98 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol. 6, 497–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Advani, A., Marshall, S.M. & Thomas, T.H. Impaired neutrophil actin assembly causes persistent CD11b expression and reduced primary granule exocytosis in type II diabetes. Diabetologia 45, 719–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, S.I., Hotchin, N.A. & Nash, G.B. Role of the cytoskeleton in rapid activation of CD11b/CD18 function and its subsequent downregulation in neutrophils. J. Cell Sci. 113, 2737–2745 (2000).

    CAS  PubMed  Google Scholar 

  24. DeMali, K.A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, A., Bracke, M., Leitinger, B., Porter, J.C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MYLK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Webb, D.J. et al. FAK-Src signalling through paxillin, ERK and MYLK regulates adhesion disassembly. Nat. Cell Biol. 6, 154–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kudryashov, D.S. et al. Myosin light chain kinase (210 kDa) is a potential cytoskeleton integrator through its unique N-terminal domain. Exp. Cell Res. 298, 407–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Vilitkevich, E.L., Kudriashev, D.S., Stepanova, O.V. & Shirinskii, V.P. A new actin-binding area of the myosin light chains' high-molecular kinase. Ross. Fiziol. Zh. Im. I. M. Sechenova 90, 577–585 (2004).

    CAS  PubMed  Google Scholar 

  29. Dudek, S.M., Birukov, K.G., Zhan, X. & Garcia, J.G. Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochem. Biophys. Res. Commun. 298, 511–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, L. et al. Properties of long myosin light chain kinase binding to F-actin in vitro and in vivo. J. Biol. Chem. 277, 35597–35604 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Gao, X. et al. Differential role of CD18 integrins in mediating lung neutrophil sequestration and increased microvascular permeability induced by Escherichia coli in mice. J. Immunol. 167, 2895–2901 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Straight, A.F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Sutton, T.A., Mang, H.E. & Atkinson, S.J. Rho-kinase regulates myosin II activation in MDCK cells during recovery after ATP depletion. Am. J. Physiol. Renal Physiol. 281, F810–F818 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ueda, K., Murata-Hori, M., Tatsuka, M. & Hosoya, H. Rho-kinase contributes to diphosphorylation of myosin II regulatory light chain in nonmuscle cells. Oncogene 21, 5852–5860 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, J., Wang, F., Van Keymeulen, A., Rentel, M. & Bourne, H.R. Neutrophil microtubules suppress polarity and enhance directional migration. Proc. Natl. Acad. Sci. USA 102, 6884–6889 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Birukov, K.G. et al. Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60Src. J. Biol. Chem. 276, 8567–8573 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ren, X.R. et al. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J. Cell Biol. 152, 971–984 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murata-Hori, M., Suizu, F., Iwasaki, T., Kikuchi, A. & Hosoya, H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 451, 81–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Berton, G., Mocsai, A. & Lowell, C.A. Src and Syk kinases: key regulators of phagocytic cell activation. Trends Immunol. 26, 208–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Lowell, C.A., Fumagalli, L. & Berton, G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J. Cell Biol. 133, 895–910 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Thakur, M.L. et al. Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J. Nucl. Med. 18, 1022–1026 (1977).

    CAS  PubMed  Google Scholar 

  43. Mansfield, P.J., Hinkovska-Galcheva, V., Carey, S.S., Shayman, J.A. & Boxer, L.A. Regulation of polymorphonuclear leukocyte degranulation and oxidant production by ceramide through inhibition of phospholipase D. Blood 99, 1434–1441 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Betsuyaku, T. et al. A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation. J. Clin. Invest. 103, 825–832 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao, X.P. et al. Inactivation of CD11b in a mouse transgenic model protects against sepsis-induced lung PMN infiltration and vascular injury. Physiol. Genomics 21, 230–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Vogel, S.M. et al. Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol. Genomics 4, 137–145 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D.M. Watterson (Northwestern University) for Mylk−/− mice; X. Zhu (University of Chicago) for Pyk2 cDNA; X. Zhu, X. Du, R. Ye and Y. Li for suggestions and reading the manuscript; R.A. Skidgel and T. Sharma (Department of Pharmacology Molecular Core Facility) for making glutathione S-transferase–Pyk2; and G. Liu, C. Gilbert, S. Debra and K. Javaid for technical assistance. Supported by the University of Illinois (J.X.) and the US National Institutes of Health (HL77806 and HL46350 to A.B.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.X. designed experiments, did research and wrote the paper; A.B.M. designed research and wrote the paper; X.-P.G. designed and did research; and R.R., Y.-Y.Z. and S.M.V. did research.

Corresponding authors

Correspondence to Jingsong Xu or Asrar B Malik.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Gao, XP., Ramchandran, R. et al. Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating β2 integrins. Nat Immunol 9, 880–886 (2008). https://doi.org/10.1038/ni.1628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing