Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells

Abstract

Many cellular processes require the proper cooperation between mitochondria and the endoplasmic reticulum (ER). Several recent works show that their functional interactions rely on dynamic structural contacts between both organelles. Such contacts, called mitochondria-associated membranes (MAMs), are crucial for the synthesis and intracellular transport of phospholipids, as well as for intracellular Ca2+ signaling and for the determination of mitochondrial structure. Although several techniques are available to isolate mitochondria, only few are specifically tuned to the isolation of MAM, containing unique regions of ER membranes attached to the outer mitochondrial membrane and mitochondria without contamination from other organelles (i.e., pure mitochondria). Here we provide optimized protocols to isolate these fractions from tissues and cells. These procedures require 4–5 h and can be easily modified and adapted to different tissues and cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: Pictures of different kinds of pellet and fractions obtained during the isolation process.
Figure 5: Intracellular distributions of p66Shc.

Similar content being viewed by others

References

  1. Copeland, D.E. & Dalton, A.J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol. 5, 393–396 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franke, W.W. & Kartenbeck, J. Outer mitochondrial membrane continuous with endoplasmic reticulum. Protoplasma 73, 35–41 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, J.A. & Tata, J.R. A rapidly sedimenting fraction of rat liver endoplasmic reticulum. J. Cell Sci. 13, 447–459 (1973).

    CAS  PubMed  Google Scholar 

  4. Morre, D.J., Merritt, W.D. & Lembi, C.A. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73, 43–49 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Vance, J.E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256 (1990).

    CAS  PubMed  Google Scholar 

  6. Ardail, D. et al. Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J. Biol. Chem. 268, 25985–25992 (1993).

    CAS  PubMed  Google Scholar 

  7. Camici, O. & Corazzi, L. Phosphatidylserine translocation into brain mitochondria: involvement of a fusogenic protein associated with mitochondrial membranes. Mol. Cell Biochem. 175, 71–80 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Shiao, Y.J., Lupo, G. & Vance, J.E. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J. Biol. Chem. 270, 11190–11198 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Zinser, E. et al. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae . J. Bacteriol. 173, 2026–2034 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaigg, B., Simbeni, R., Hrastnik, C., Paltauf, F. & Daum, G. Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Biochim. Biophys. Acta. 1234, 214–220 (1995).

    Article  PubMed  Google Scholar 

  11. Achleitner, G. et al. Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur. J. Biochem. 264, 545–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Mannella, C.A., Buttle, K., Rath, B.K. & Marko, M. Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8, 225–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Vance, J.E., Stone, S.J. & Faust, J.R. Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis. Biochim. Biophys. Acta. 1344, 286–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Giorgi, C., De Stefani, D., Bononi, A., Rizzuto, R. & Pinton, P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 41, 1817–1827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lebiedzinska, M., Szabadkai, G., Jones, A.W.E., Duszynski, J. & Wieckowski, M.R. Interaction between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int. J. Biochem. Cell Biol. 41, 1805–1816 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Mendes, C.C. et al. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J. Biol. Chem. 280, 40892–40900 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rapizzi, E. et al. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159, 613–624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayashi, T. & Su, T.P. Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc. Natl. Acad. Sci. USA 98, 491–496 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayashi, T. & Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131, 596–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, Z. & Bowen, W.D. Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J. Biol. Chem. 283, 28198–28215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higo, T. et al. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120, 85–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. John, L.M., Lechleiter, J.D. & Camacho, P. Differential modulation of SERCA2 isoforms by calreticulin. J. Cell Biol. 142, 963–973 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roderick, H.L., Lechleiter, J.D. & Camacho, P. Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J. Cell Biol. 149, 1235–1248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simmen, T. et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO. J. 24, 717–729 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wieckowski, M.R. et al. Overexpression of adenine nucleotide translocase reduces Ca2+ signal transmission between the ER and mitochondria. Biochem. Biophys. Res. Commun. 348, 393–399 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. de Brito, O.M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  PubMed  Google Scholar 

  29. Lebiedzinska, M., Duszynski, J., Rizzuto, R., Pinton, P. & Wieckowski, M.R. Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Arch. Biochem. Biophys. 486, 73–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Pinton, P. et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315, 659–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Antibody against CNX was a kind gift from Thomas Simmen. This research was supported by the Polish State Committee for Scientific Research (grant N301 092 32/3407), by the Polish Mitochondrial Network for M.R.W., M.L. and J.D. and by AIRC, UMDF, PRRIITT, FISM and Telethon (GGP09128) grants and local funds from the University of Ferrara to P.P.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. M.R.W., C.G. and M.L. carried out experiments; M.R.W., J.D. and P.P. analyzed data; M.R.W., C.G. and P.P. wrote the paper.

Corresponding authors

Correspondence to Mariusz R Wieckowski or Paolo Pinton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieckowski, M., Giorgi, C., Lebiedzinska, M. et al. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4, 1582–1590 (2009). https://doi.org/10.1038/nprot.2009.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.151

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing