Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic pathway analysis using stable isotopes in patients with cancer

Abstract

Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic concepts of isotope labelling.
Fig. 2: Metabolic rewiring in different kinds of human cancer.
Fig. 3: Shared and divergent metabolic properties in cultured cells, mice and patients.
Fig. 4: Limitations of stable-isotope tracing studies in patients with cancer.
Fig. 5: Future directions of research in cancer metabolism in vivo.

Similar content being viewed by others

Data availability

The data supporting the findings displayed in Fig. 3 are available in Supplementary Table 1.

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Davies, P. S. W. Stable isotopes: their use and safety in human nutrition studies. Eur. J. Clin. Nutr. 74, 362–365 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu, W., Bennett, B. D. & Rabinowitz, J. D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 871, 236–242 (2008).

    CAS  Google Scholar 

  6. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Myers, W. G. Georg Charles de Hevesy: the father of nuclear medicine. J. Nucl. Med. 20, 590–594 (1979).

    CAS  PubMed  Google Scholar 

  8. Schoenheimer, R. & Rittenberg, D. Deuterium as an indicator in the study of intermediary metabolism. Science 82, 156–157 (1935). This paper reports the first use of a stable isotope — deuterium to trace metabolism in vivo, focusing on fatty acid and sterol metabolism in mice.

    CAS  PubMed  Google Scholar 

  9. Alves, T. C. et al. Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab. 22, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, J., Grossbach, M. T. & Antoniewicz, M. R. Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry. Anal. Chem. 84, 4628–4632 (2012).

    CAS  PubMed  Google Scholar 

  11. Wilkinson, D. J. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass. Spectrom. Rev. 37, 57–80 (2018). This is a detailed historical review of stable isotopes, emphasizing the influence of technology in the development and use of tracer studies, with a focus on protein metabolism.

    CAS  PubMed  Google Scholar 

  12. Malloy, C. R., Sherry, A. D. & Jeffrey, F. M. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J. Biol. Chem. 263, 6964–6971 (1988).

    CAS  PubMed  Google Scholar 

  13. Malloy, C. R., Sherry, A. D. & Jeffrey, F. M. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett. 212, 58–62 (1987). With the perfused heart as a model, this paper used isotope labelling with [13C]acetate to determine relative fluxes of anaplerosis and TCA cycle turnover.

    CAS  PubMed  Google Scholar 

  14. Chance, E. M., Seeholzer, S. H., Kobayashi, K. & Williamson, J. R. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem. 258, 13785–13794 (1983).

    CAS  PubMed  Google Scholar 

  15. Russell, R. R. 3rd et al. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation. J. Clin. Invest. 100, 2892–2899 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rothman, D. L., Magnusson, I., Katz, L. D., Shulman, R. G. & Shulman, G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254, 573–576 (1991).

    CAS  PubMed  Google Scholar 

  17. Bergman, B. C. et al. Active muscle and whole body lactate kinetics after endurance training in men. J. Appl. Physiol. 87, 1684–1696 (1999).

    CAS  PubMed  Google Scholar 

  18. Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan, T. W. et al. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 8, 41 (2009). This study, the first to infuse [13C]glucose into patients with cancer and assess labelling in metabolites extracted from the tumour, concluded that lactate, alanine and intermediates related to the TCA cycle were more enriched in lung tumours than in adjacent non-malignant lung.

    PubMed  PubMed Central  Google Scholar 

  20. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed Central  Google Scholar 

  21. Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science https://doi.org/10.1126/science.aaw5473 (2020).

  22. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stein, E. M. et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 133, 676–687 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sallan, S. E. et al. Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res. 43, 5601–5607 (1983).

    CAS  PubMed  Google Scholar 

  25. Hayes, G. M. et al. Regional cell proliferation in microdissected human prostate specimens after heavy water labeling in vivo: correlation with prostate epithelial cells isolated from seminal fluid. Clin. Cancer Res. 18, 3250–3260 (2012).

    CAS  PubMed  Google Scholar 

  26. Calissano, C. et al. In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 114, 4832–4842 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Kurhanewicz, J. et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13, 81–97 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson, S. J. et al.Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5, 198ra108 (2013). This paper imaged the metabolism of a hyperpolarized 13C-labelled nutrient in humans for the first time, focusing on hyperpolarized [1-13C]pyruvate in prostate cancer.

    PubMed  PubMed Central  Google Scholar 

  30. Granlund, K. L. et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab. 31, 105–114.e3 (2020).

    CAS  PubMed  Google Scholar 

  31. Ursprung, S. et al. Hyperpolarized 13C-pyruvate metabolism as a surrogate for tumor grade and poor outcome in renal cell carcinoma — a proof of principle study. Cancers (Basel) https://doi.org/10.3390/cancers14020335 (2022).

  32. Bartman, C. R., TeSlaa, T. & Rabinowitz, J. D. Quantitative flux analysis in mammals. Nat. Metab. 3, 896–908 (2021).

    PubMed  PubMed Central  Google Scholar 

  33. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Davidson, S. M. et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnston, K. et al. Isotope tracing reveals glycolysis and oxidative metabolism in childhood tumors of multiple histologies. Med 2, 395–410 (2021).

    CAS  PubMed  Google Scholar 

  36. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Courtney, K. D. et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab. 28, 793–800.e2 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghergurovich, J. M. et al. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer. Med 2, 736–754 (2021).

    CAS  PubMed  Google Scholar 

  39. Maher, E. A. et al. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed. 25, 1234–1244 (2012). This paper reported the first use of intra-operative steady-state infusions of [13C]glucose in patients with cancer and concluded that glucose contributes a minority of acetyl-CoA for the TCA cycle in high-grade gliomas and brain metastases in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chappell, J. C., Payne, L. B. & Rathmell, W. K. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J. Clin. Invest. 129, 442–451 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 749 (2016).

    CAS  PubMed  Google Scholar 

  42. Gonsalves, W. I. et al. In vivo assessment of glutamine anaplerosis into the TCA cycle in human pre-malignant and malignant clonal plasma cells. Cancer Metab. 8, 29 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Payen, V. L., Mina, E., Van Hee, V. F., Porporato, P. E. & Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab. 33, 48–66 (2020).

    CAS  PubMed  Google Scholar 

  46. Altenberg, B. & Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84, 1014–1020 (2004).

    CAS  PubMed  Google Scholar 

  47. Woitek, R. et al. Hyperpolarized carbon-13 MRI for early response assessment of neoadjuvant chemotherapy in breast cancer patients. Cancer Res. 81, 6004–6017 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    CAS  PubMed  Google Scholar 

  49. Garcia-Canaveras, J. C., Chen, L. & Rabinowitz, J. D. The tumor metabolic microenvironment: lessons from lactate. Cancer Res. 79, 3155–3162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    CAS  PubMed  Google Scholar 

  51. Seley-Radtke, K. L. & Yates, M. K. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antivir. Res. 154, 66–86 (2018).

    CAS  PubMed  Google Scholar 

  52. Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).

    CAS  PubMed  Google Scholar 

  53. Chattopadhyay, S., Moran, R. G. & Goldman, I. D. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol. Cancer Ther. 6, 404–417 (2007).

    CAS  PubMed  Google Scholar 

  54. Antoniewicz, M. R. A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. Med. 50, 19 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Baksh, S. C. et al. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat. Cell Biol. 22, 779–790 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bott, A. J. et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep. 29, 1287–1298.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pemmaraju, N. et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N. Engl. J. Med. 380, 1628–1637 (2019).

    CAS  PubMed  Google Scholar 

  59. Wagenmakers, A. J. Tracers to investigate protein and amino acid metabolism in human subjects. Proc. Nutr. Soc. 58, 987–1000 (1999).

    CAS  PubMed  Google Scholar 

  60. Willemsen, A. T. et al. In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-11C]-tyrosine and PET. J. Nucl. Med. 36, 411–419 (1995).

    CAS  PubMed  Google Scholar 

  61. Bustany, P. et al. Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C11-l-methionine. J. Neurooncol. 3, 397–404 (1986).

    CAS  PubMed  Google Scholar 

  62. Garlick, P. J., Wernerman, J., McNurlan, M. A. & Heys, S. D. Organ-specific measurements of protein turnover in man. Proc. Nutr. Soc. 50, 217–225 (1991).

    CAS  PubMed  Google Scholar 

  63. Hartl, W. H., Demmelmair, H., Jauch, K. W., Koletzko, B. & Schildberg, F. W. Effect of glucagon on protein synthesis in human rectal cancer in situ. Ann. Surg. 227, 390–397 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023). This paper reports a method for quantifying metabolic fluxes in tumours in mice and concludes that TCA cycle flux is low in primary tumours owing to low demand for ATP, but is higher in metastatic tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    CAS  PubMed  Google Scholar 

  68. Thandapani, P. et al. Valine tRNA levels and availability regulate complex I assembly in leukaemia. Nature 601, 428–433 (2022).

    CAS  PubMed  Google Scholar 

  69. Sahu, N. et al. Proline starvation induces unresolved ER stress and hinders mTORC1-dependent tumorigenesis. Cell Metab. 24, 753–761 (2016).

    CAS  PubMed  Google Scholar 

  70. Kumar, S. K. et al. Multiple myeloma. Nat. Rev. Dis. Prim. 3, 17046 (2017).

    PubMed  Google Scholar 

  71. Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 24, 640–641 (2016).

    CAS  PubMed  Google Scholar 

  72. Ali, E. S. et al. The mTORC1-SLC4A7 axis stimulates bicarbonate import to enhance de novo nucleotide synthesis. Mol. Cell 82, 3284–3298.e7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sulkes, A., Livingston, R. B. & Murphy, W. K. Tritiated thymidine labeling index and response in human breast cancer. J. Natl Cancer Inst. 62, 513–515 (1979).

    CAS  PubMed  Google Scholar 

  74. Johnson, H. A., Rubini, J. R., Cronkite, E. P. & Bond, V. P. Labeling of human tumor cells in vivo by tritiated thymidine. Lab. Invest. 9, 460–465 (1960).

    CAS  PubMed  Google Scholar 

  75. Clarkson, B. et al. Studies of cellular proliferation in human leukemia. IV. Behavior of normal hemotopoietic cells in 3 adults with acute leukemia given continuous infusions of 3H-thymidine for 8 or 10 days. Cancer 26, 1–19 (1970).

    CAS  PubMed  Google Scholar 

  76. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nilsson, R. et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 10, 119–130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mehrmohamadi, M., Liu, X., Shestov, A. A. & Locasale, J. W. Characterization of the usage of the serine metabolic network in human cancer. Cell Rep. 9, 1507–1519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05055609 (2022).

  80. Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3, 1608–1620 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Z., Chen, L., Liu, L., Su, X. & Rabinowitz, J. D. Chemical basis for deuterium labeling of fat and NADPH. J. Am. Chem. Soc. 139, 14368–14371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mendez-Lucas, A. et al. Identifying strategies to target the metabolic flexibility of tumours. Nat. Metab. 2, 335–350 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Szutowicz, A., Kwiatkowski, J. & Angielski, S. Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br. J. Cancer 39, 681–687 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ookhtens, M., Kannan, R., Lyon, I. & Baker, N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. 247, R146–R153 (1984).

    CAS  PubMed  Google Scholar 

  87. Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  89. Falchook, G. et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. eClinicalMedicine 34, 100797 (2021).

    Google Scholar 

  90. Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    PubMed  Google Scholar 

  91. Bloch, K. & Rittenberg, D. On the utilization of acetic acid for cholesterol formation. J. Biol. Chem. 145, 625–636 (1942).

    CAS  Google Scholar 

  92. Ostlund, R. E. Stable Isotopes in Human Nutrition: Laboratory Methods and Research Applications 157–173 (CABI Publishing, 2003).

  93. Osono, Y., Woollett, L. A., Herz, J. & Dietschy, J. M. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J. Clin. Invest. 95, 1124–1132 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Siperstein, M. D. Regulation of Cholesterol Biosynthesis in Normal and Malignant Tissues Vol. 2, 65–100 (Elsevier, 1970).

  95. Rashkovan, M. et al. Intracellular cholesterol pools regulate oncogenic signaling and epigenetic circuitries in early T-cell precursor acute lymphoblastic leukemia. Cancer Discov. 12, 856–871 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Boudreau, D. M., Yu, O. & Johnson, J. Statin use and cancer risk: a comprehensive review. Expert Opin. Drug Saf. 9, 603–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Platz, E. A. et al. Statin drugs and risk of advanced prostate cancer. J. Natl Cancer Inst. 98, 1819–1825 (2006).

    CAS  PubMed  Google Scholar 

  98. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo, D. et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1, 442–456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Riscal, R. et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11, 3106–3125 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu, A., Lee, D. & Shim, H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol. 38, 55–69 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nat. Protoc. 14, 313–330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, L. et al. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 3, 119–136 (2022).

    CAS  PubMed  Google Scholar 

  105. Chen, P. H. et al. Metabolic diversity in human non-small cell lung cancer cells. Mol. Cell 76, 838–851.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lau, A. N. et al. Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. eLife https://doi.org/10.7554/eLife.56782 (2020).

  107. Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688 e674 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Landau, B. R. et al. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux. Am. J. Physiol. 265, E636–E647 (1993).

    CAS  PubMed  Google Scholar 

  109. DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. TeSlaa, T. et al. The source of glycolytic intermediates in mammalian tissues. Cell Metab. 33, 367–378.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Park, J. S. et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578, 621–626 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255–258 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, Y. J. et al. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 12, 937–943 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Eagle, H. The specific amino acid requirements of a mammalian cell (strain L) in tissue culture. J. Biol. Chem. 214, 839–852 (1955).

    CAS  PubMed  Google Scholar 

  121. Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife https://doi.org/10.7554/eLife.27713 (2017).

  122. Lagziel, S., Gottlieb, E. & Shlomi, T. Mind your media. Nat. Metab. 2, 1369–1372 (2020).

    PubMed  Google Scholar 

  123. Bezwada, D. et al. Mitochondrial metabolism in primary and metastatic human kidney cancers. Preprint at bioRxiv https://doi.org/10.1101/2023.02.06.527285 (2023).

  124. Tannir, N. M. et al. Efficacy and safety of telaglenastat plus cabozantinib vs placebo plus cabozantinib in patients with advanced renal cell carcinoma: the CANTATA randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2022.3511 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yuneva, M. O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kaushik, A. K. et al. In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. Sci. Adv. 8, eabp8293, https://doi.org/10.1126/sciadv.abp8293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314(2019).

    PubMed  PubMed Central  Google Scholar 

  129. Guarecuco, R. et al. Dietary thiamine influences l-asparaginase sensitivity in a subset of leukemia cells. Sci. Adv. https://doi.org/10.1126/sciadv.abc7120 (2020).

  130. Lee, W. D. et al. Tumor reliance on cytosolic versus mitochondrial one-carbon flux depends on folate availability. Cell Metab. 33, 190–198.e6 (2021).

    CAS  PubMed  Google Scholar 

  131. Leney-Greene, M. A., Boddapati, A. K., Su, H. C., Cantor, J. R. & Lenardo, M. J. Human plasma-like medium improves T lymphocyte activation. iScience 23, 100759 (2020).

    CAS  PubMed  Google Scholar 

  132. Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108–112 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Previs, S. F. & Kelley, D. E. Tracer-based assessments of hepatic anaplerotic and TCA cycle flux: practicality, stoichiometry, and hidden assumptions. Am. J. Physiol. Endocrinol. Metab. 309, E727–E735 (2015).

    CAS  PubMed  Google Scholar 

  135. Marin-Valencia, I. et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827–837 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Friedlander, A. L. et al. Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J. Appl. Physiol. 85, 1175–1186 (1998).

    CAS  PubMed  Google Scholar 

  140. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Woelders, T. et al. Machine learning estimation of human body time using metabolomic profiling. Proc. Natl Acad. Sci. USA 120, e2212685120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941–946 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kim, J. et al. The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nat. Metab. 2, 1401–1412 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Poillet-Perez, L. et al. Autophagy maintains tumour growth through circulating arginine. Nature 563, 569–573 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  146. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis. Nat. Biotechnol. 28, 245–248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wolfe, R. R. & Chinkes, D. L. Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis Vol. 2 (Wiley, 2004). This is an excellent resource on the principles and applications of stable-isotope tracing.

  149. Holm, E. et al. Substrate balances across colonic carcinomas in humans. Cancer Res. 55, 1373–1378 (1995).

    CAS  PubMed  Google Scholar 

  150. Xiong, N. et al. Using arterial-venous analysis to characterize cancer metabolic consumption in patients. Nat. Commun. 11, 3169 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    CAS  PubMed  Google Scholar 

  152. Cornett, D. S., Reyzer, M. L., Chaurand, P. & Caprioli, R. M. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4, 828–833 (2007).

    CAS  PubMed  Google Scholar 

  153. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Prim. 2, 16022 (2016).

    PubMed  Google Scholar 

  155. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021). This paper used radioisotopes to study nutrient uptake among different cell types in the tumour microenvironment and reported that myeloid cells exceed cancer cells in their ability to take up glucose, with the reverse occurring for glutamine uptake.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022).

    PubMed  Google Scholar 

  159. DeBerardinis, R. J. & Keshari, K. R. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 185, 2678–2689 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kernstine, K. H. et al. Does tumor FDG-PET avidity represent enhanced glycolytic metabolism in non-small cell lung cancer. Ann. Thorac. Surg. 109, 1019–1025 (2020).

    PubMed  Google Scholar 

  161. Aston, F. W. The constitution of atmospheric neon. Philos. Mag. 39, 449–455 (1920).

    CAS  Google Scholar 

  162. Hevesy, G. The absorption and translocation of lead by plants: a contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem. J. 17, 439–445 (1923).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hahn, L. A., Hevesy, G. C. & Lundsgaard, E. C. The circulation of phosphorus in the body revealed by application of radioactive phosphorus as indicator. Biochem. J. 31, 1705–1709 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hevesy, G. Adventures in Radioisotope Research: The Collected Papers of George Hevesy in Two Volumes Vol. 1 (Pergamon Press, 1962).

  165. King, A. S. An isotope of carbon, mass 13. Nature 124, 127 (1929).

    CAS  Google Scholar 

  166. Urey, H. C., Brickwedde, F. G. & Murphy, G. M. A hydrogen isotope of mass 2. Phys. Rev. J. 39, 164–165 (1932).

    CAS  Google Scholar 

  167. Nier, A. O. The development of a high resolution mass spectrometer: a reminiscence. J. Am. Soc. Mass Spectrom. 2, 447–452 (1991).

    CAS  PubMed  Google Scholar 

  168. Steinwedel, P. W. A. H. Notizen: Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. Teil. A 8, 448–450 (1953).

    Google Scholar 

  169. Chandramouli, V. et al. Quantifying gluconeogenesis during fasting. Am. J. Physiol. 273, E1209–E1215 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.J.D. is supported by the Howard Hughes Medical Institute and by US National Cancer Institutes grants R35CA22044901, P50CA196516-06A1 and 2P50CA070907-21A1. B.F. is supported by US National Cancer Institutes grant R00CA237724.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature and contributed to the conceptualization of the text and figures for this Review. C.R.B. and B.F. wrote the first draft, which was edited by J.D.R. and R.J.D. All authors participated in revising the final version of the paper.

Corresponding authors

Correspondence to Joshua D. Rabinowitz or Ralph J. DeBerardinis.

Ethics declarations

Competing interests

R.J.D. is a founder and adviser for Atavistik Bioscience and an adviser for Agios Pharmaceuticals, Vida Ventures and Droia Ventures. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Chi Dang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

18-Fluorodeoxyglucose-PET

(18FDG-PET). 18Fluorodeoxyglucose (FDG) is an analogue of glucose conjugated with a radioisotope of fluorine (18F). FDG is imported into tissues and tumours using the same transporters that import glucose, for example, GLUT1, and the tracer is retained after phosphorylation by hexokinase. The localized accumulation of 18F can be imaged by positron emission tomography. FDG uptake is increased in many tumours, so this technique can be used to diagnose and stage multiple cancers.

Acetyl-CoA carboxylase

The first enzyme of fatty acid synthesis, which catalyses the carboxylation of acetyl-CoA to produce malonyl-CoA for fatty acid synthesis.

Anaplerotic contribution

Metabolic pathways that contribute to recover or replenish catalytic intermediates, particularly in the TCA cycle. Examples include the use of glutamine or pyruvate to provide 4-carbon and 5-carbon intermediates to the TCA cycle.

Antifolates

Drugs that inhibit folate-using enzymes, including three of the enzymes required for nucleotide biosynthesis. Several chemotherapeutic agents, such as pemetrexed and methotrexate, are antifolates.

Fatty acid synthase

(FASN). A multifunctional enzyme that catalyses several reactions required to produce fatty acids from precursors, including malonyl-CoA and acetyl-CoA.

Folate cycle

A metabolic pathway producing one-carbon metabolites for use in numerous biochemical reactions, including nucleotide synthesis.

Fractional contribution

Refers to the fraction of a metabolite pool arising from a particular precursor. In stable-isotope tracing experiments, transfer of the isotope from the labelled precursor such as [13C]glucose to a metabolite, for example, pyruvate, provides information about the fractional contribution of that tracer to that metabolite.

Hyperpolarization

A molecular state in which the nuclear spin is polarized well beyond thermal equilibrium, increasing the ability to detect the nucleus by NMR. Hyperpolarization of 13C nuclei can be achieved by transferring to 13C the high polarization state of free electrons contained in a radical.

Imaging mass spectrometry

An analytical technique that enables visualization of the spatial distribution of metabolites within a tissue sample.

Lactate dehydrogenase

(LDH). A tetrameric, reversible NAD(H)-dependent enzyme that interconverts pyruvate and lactate.

Metabolic flux analysis

An algorithm to calculate metabolic fluxes in cultured cells, which takes as inputs the consumption and production rates of media nutrients, 13C labelling of cellular metabolites from 13C isotope tracers such as glucose and glutamine and the known reaction structure of metabolic pathways.

Metabolic fluxes

The rates at which metabolites flow through biochemical reactions.

Monocarboxylate transporters

A family of membrane proteins that transport monocarboxylates such as lactate, pyruvate and ketone bodies across the plasma membrane.

Monoclonal gammopathy of undetermined significance

A condition characterized by the accumulation of abnormal monoclonal immunoglobulin in the blood. Monoclonal gammopathy of undetermined significance can be a precursor to multiple myeloma or other disorders.

Nuclear spins

The intrinsic angular momentum of an atomic nucleus.

Nucleoside analogues

Synthetic compounds that structurally mimic endogenous nucleosides and are used as chemotherapeutic agents. These analogues can be incorporated into the DNA of rapidly dividing cells, disrupting DNA replication.

Nutrostat

Cell culture system designed to maintain consistent levels of extracellular nutrients and other metabolites by providing a consistent source of fresh medium to the culture.

Pyruvate carboxylation

A mitochondrial anaplerotic activity in which the enzyme pyruvate carboxylase converts pyruvate to oxaloacetate.

Von Hippel–Lindau (VHL) tumour suppressor

A tumour suppressor whose physiological role is to target the α subunits of hypoxia-inducible factors (HIF1α and HIF2α) for degradation when oxygen is present. In VHL-deficient tumours such as ccRCC, HIF1α and HIF2α are stabilized regardless of oxygen availability. The resulting ‘pseudohypoxic’ state causes chronic expression of genes involved in the hypoxic response.

Warburg metabolism

Named after Otto Warburg and also known as aerobic glycolysis, this classic metabolic phenotype of tumours and proliferating cells involves the brisk conversion of glucose to lactate in the presence of sufficient oxygen to oxidize glucose to CO2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartman, C.R., Faubert, B., Rabinowitz, J.D. et al. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 23, 863–878 (2023). https://doi.org/10.1038/s41568-023-00632-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00632-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer