Advertisement

Improving Whole-Genome Screens

Improved methods are needed for the knockout of individual genes in genome-scale functional screens. Wang et al. (p. 80, published online 12 December) and Shalem et al. (p. 84, published online 12 December) used the bacterial CRISPR/Cas9 system to power-screen protocols that avoid several of the pitfalls associated with small interfering RNA (siRNA) screens. Genome editing by these methods completely disrupts target genes, thus avoiding weak signals that can occur when transcript abundance is partially decreased by siRNA. Furthermore, gene targeting by the CRISPR system is more precise and appears to produce substantially fewer off-target effects than existing methods.

Abstract

The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S5
Tables S1 to S8
References (3343)

Resources

File (1246981s1.xlsx)
File (1246981s2.xlsx)
File (1246981s3.xlsx)
File (1246981s4.xlsx)
File (1246981s8.xlsx)
File (wang.sm.pdf)

References and Notes

1
Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Véronneau S., Dow S., Lucau-Danila A., Anderson K., André B., Arkin A. P., Astromoff A., El-Bakkoury M., Bangham R., Benito R., Brachat S., Campanaro S., Curtiss M., Davis K., Deutschbauer A., Entian K. D., Flaherty P., Foury F., Garfinkel D. J., Gerstein M., Gotte D., Güldener U., Hegemann J. H., Hempel S., Herman Z., Jaramillo D. F., Kelly D. E., Kelly S. L., Kötter P., LaBonte D., Lamb D. C., Lan N., Liang H., Liao H., Liu L., Luo C., Lussier M., Mao R., Menard P., Ooi S. L., Revuelta J. L., Roberts C. J., Rose M., Ross-Macdonald P., Scherens B., Schimmack G., Shafer B., Shoemaker D. D., Sookhai-Mahadeo S., Storms R. K., Strathern J. N., Valle G., Voet M., Volckaert G., Wang C. Y., Ward T. R., Wilhelmy J., Winzeler E. A., Yang Y., Yen G., Youngman E., Yu K., Bussey H., Boeke J. D., Snyder M., Philippsen P., Davis R. W., Johnston M., Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).
2
Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E. D., Sevier C. S., Ding H., Koh J. L., Toufighi K., Mostafavi S., Prinz J., St Onge R. P., VanderSluis B., Makhnevych T., Vizeacoumar F. J., Alizadeh S., Bahr S., Brost R. L., Chen Y., Cokol M., Deshpande R., Li Z., Lin Z. Y., Liang W., Marback M., Paw J., San Luis B. J., Shuteriqi E., Tong A. H., van Dyk N., Wallace I. M., Whitney J. A., Weirauch M. T., Zhong G., Zhu H., Houry W. A., Brudno M., Ragibizadeh S., Papp B., Pál C., Roth F. P., Giaever G., Nislow C., Troyanskaya O. G., Bussey H., Bader G. D., Gingras A. C., Morris Q. D., Kim P. M., Kaiser C. A., Myers C. L., Andrews B. J., Boone C., The genetic landscape of a cell. Science 327, 425–431 (2010).
3
Carette J. E., Guimaraes C. P., Varadarajan M., Park A. S., Wuethrich I., Godarova A., Kotecki M., Cochran B. H., Spooner E., Ploegh H. L., Brummelkamp T. R., Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).
4
Guo G., Wang W., Bradley A., Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429, 891–895 (2004).
5
Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
6
Brummelkamp T. R., Bernards R., Agami R., A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).
7
Moffat J., Grueneberg D. A., Yang X., Kim S. Y., Kloepfer A. M., Hinkle G., Piqani B., Eisenhaure T. M., Luo B., Grenier J. K., Carpenter A. E., Foo S. Y., Stewart S. A., Stockwell B. R., Hacohen N., Hahn W. C., Lander E. S., Sabatini D. M., Root D. E., A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).
8
Ngo V. N., Davis R. E., Lamy L., Yu X., Zhao H., Lenz G., Lam L. T., Dave S., Yang L., Powell J., Staudt L. M., A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).
9
Cheung H. W., Cowley G. S., Weir B. A., Boehm J. S., Rusin S., Scott J. A., East A., Ali L. D., Lizotte P. H., Wong T. C., Jiang G., Hsiao J., Mermel C. H., Getz G., Barretina J., Gopal S., Tamayo P., Gould J., Tsherniak A., Stransky N., Luo B., Ren Y., Drapkin R., Bhatia S. N., Mesirov J. P., Garraway L. A., Meyerson M., Lander E. S., Root D. E., Hahn W. C., Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl. Acad. Sci. U.S.A. 108, 12372–12377 (2011).
10
Echeverri C. J., Beachy P. A., Baum B., Boutros M., Buchholz F., Chanda S. K., Downward J., Ellenberg J., Fraser A. G., Hacohen N., Hahn W. C., Jackson A. L., Kiger A., Linsley P. S., Lum L., Ma Y., Mathey-Prévôt B., Root D. E., Sabatini D. M., Taipale J., Perrimon N., Bernards R., Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 3, 777–779 (2006).
11
Booker M., Samsonova A. A., Kwon Y., Flockhart I., Mohr S. E., Perrimon N., False negative rates in Drosophila cell-based RNAi screens: A case study. BMC Genomics 12, 50 (2011).
12
Kaelin W. G., Use and abuse of RNAi to study mammalian gene function. Science 337, 421–422 (2012).
13
Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
14
Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A., Zhang F., Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
15
Mali P., Yang L., Esvelt K. M., Aach J., Guell M., DiCarlo J. E., Norville J. E., Church G. M., RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
16
Hwang W. Y., Fu Y., Reyon D., Maeder M. L., Tsai S. Q., Sander J. D., Peterson R. T., Yeh J. R., Joung J. K., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).
17
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
18
Horii T., Tamura D., Morita S., Kimura M., Hatada I., Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int. J. Mol. Sci. 14, 19774–19781 (2013).
19
Wang H., Yang H., Shivalila C. S., Dawlaty M. M., Cheng A. W., Zhang F., Jaenisch R., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).
20
Hsu P. D., Scott D. A., Weinstein J. A., Ran F. A., Konermann S., Agarwala V., Li Y., Fine E. J., Wu X., Shalem O., Cradick T. J., Marraffini L. A., Bao G., Zhang F., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
21
Fu Y., Foden J. A., Khayter C., Maeder M. L., Reyon D., Joung J. K., Sander J. D., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).
22
Pattanayak V., Lin S., Guilinger J. P., Ma E., Doudna J. A., Liu D. R., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).
23
Yan T., Berry S. E., Desai A. B., Kinsella T. J., DNA mismatch repair (MMR) mediates 6-thioguanine genotoxicity by introducing single-strand breaks to signal a G2-M arrest in MMR-proficient RKO cells. Clin. Cancer Res. 9, 2327–2334 (2003).
24
Kolodner R. D., Marsischky G. T., Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).
25
Burgess D. J., Doles J., Zender L., Xue W., Ma B., McCombie W. R., Hannon G. J., Lowe S. W., Hemann M. T., Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 105, 9053–9058 (2008).
26
Scappini B., Gatto S., Onida F., Ricci C., Divoky V., Wierda W. G., Andreeff M., Dong L., Hayes K., Verstovsek S., Kantarjian H. M., Beran M., Changes associated with the development of resistance to imatinib (STI571) in two leukemia cell lines expressing p210 Bcr/Abl protein. Cancer 100, 1459–1471 (2004).
27
Xue S., Barna M., Specialized ribosomes: A new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 13, 355–369 (2012).
28
Johnston C. M., Lovell F. L., Leongamornlert D. A., Stranger B. E., Dermitzakis E. T., Ross M. T., Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLOS Genet. 4, e9 (2008).
29
Subramanian A., Tamayo P., Mootha V. K., Mukherjee S., Ebert B. L., Gillette M. A., Paulovich A., Pomeroy S. L., Golub T. R., Lander E. S., Mesirov J. P., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550 (2005).
30
Ran F. A., Hsu P. D., Lin C. Y., Gootenberg J. S., Konermann S., Trevino A. E., Scott D. A., Inoue A., Matoba S., Zhang Y., Zhang F., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).
31
Mali P., Aach J., Stranges P. B., Esvelt K. M., Moosburner M., Kosuri S., Yang L., Church G. M., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).
32
Yoshimoto K., Mizoguchi M., Hata N., Murata H., Hatae R., Amano T., Nakamizo A., Sasaki T., Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front. Oncol. 2, 186 (2012).
33
Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
34
Engreitz J. M., Pandya-Jones A., McDonel P., Shishkin A., Sirokman K., Surka C., Kadri S., Xing J., Goren A., Lander E. S., Plath K., Guttman M., The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).
35
Liu S. S., Zheng H. X., Jiang H. D., He J., Yu Y., Qu Y. P., Yue L., Zhang Y., Li Y., Identification and characterization of a novel gene, c1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation. J. Biomed. Sci. 19, 49 (2012).
36
Renella R., Roberts N. A., Brown J. M., De Gobbi M., Bird L. E., Hassanali T., Sharpe J. A., Sloane-Stanley J., Ferguson D. J., Cordell J., Buckle V. J., Higgs D. R., Wood W. G., Codanin-1 mutations in congenital dyserythropoietic anemia type 1 affect HP1α localization in erythroblasts. Blood 117, 6928–6938 (2011).
37
Chen S. H., Wu P. S., Chou C. H., Yan Y. T., Liu H., Weng S. Y., Yang-Yen H. F., A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 18, 2525–2532 (2007).
38
Cayrol C., Lacroix C., Mathe C., Ecochard V., Ceribelli M., Loreau E., Lazar V., Dessen P., Mantovani R., Aguilar L., Girard J. P., The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood 109, 584–594 (2007).
39
Sönnichsen B., Koski L. B., Walsh A., Marschall P., Neumann B., Brehm M., Alleaume A. M., Artelt J., Bettencourt P., Cassin E., Hewitson M., Holz C., Khan M., Lazik S., Martin C., Nitzsche B., Ruer M., Stamford J., Winzi M., Heinkel R., Röder M., Finell J., Häntsch H., Jones S. J., Jones M., Piano F., Gunsalus K. C., Oegema K., Gönczy P., Coulson A., Hyman A. A., Echeverri C. J., Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005).
40
Rual J.-F., Ceron J., Koreth J., Hao T., Nicot A. S., Hirozane-Kishikawa T., Vandenhaute J., Orkin S. H., Hill D. E., van den Heuvel S., Vidal M., Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, (10B), 2162–2168 (2004).
41
Mummery-Widmer J. L., Yamazaki M., Stoeger T., Novatchkova M., Bhalerao S., Chen D., Dietzl G., Dickson B. J., Knoblich J. A., Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458, 987–992 (2009).
42
Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M., The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).
43
Amsterdam A., Nissen R. M., Sun Z., Swindell E. C., Farrington S., Hopkins N., Identification of 315 genes essential for early zebrafish development. Proc. Natl. Acad. Sci. U.S.A. 101, 12792–12797 (2004).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 343 | Issue 6166
3 January 2014

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 8 October 2013
Accepted: 2 December 2013
Published in print: 3 January 2014

Permissions

Request permissions for this article.

Acknowledgments

We thank all members of the Sabatini and Lander labs, especially J. Engreitz, S. Schwartz, A. Shishkin, and Z. Tsun for protocols, reagents, and advice; T. Mikkelsen for assistance with oligonucleotide synthesis; and L. Gaffney for assistance with figures. This work was supported by the U.S. National Institutes of Health (CA103866) (D.M.S.), National Human Genome Research Institute (2U54HG003067-10) (E.S.L.), the Broad Institute of MIT and Harvard (E.S.L.), and an award from the U.S. National Science Foundation (T.W.). The composition of the sgRNA pools and screening data can be found in the supplementary materials. A patent application has been filed by the Broad Institute relating to aspects of the work described in this manuscript. Inducible Cas9 and sgRNA backbone lentiviral vectors and the genome-scale sgRNA plasmid pool are deposited in Addgene.

Authors

Affiliations

Tim Wang
Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA.
Jenny J. Wei
Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
David M. Sabatini*, [email protected]
Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA.
Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA.
Eric S. Lander*, [email protected]
Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

Notes

*
Corresponding author. E-mail: [email protected] (D.M.S.); [email protected] (E.S.L.)
These authors contributed equally to this work.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Transcriptional determinants of lipid mobilization in human adipocytes, Science Advances, 10, 1, (2024)./doi/10.1126/sciadv.adi2689
    Abstract
  2. Molecular Landscape of Tourette’s Disorder, International Journal of Molecular Sciences, 24, 2, (1428), (2023).https://doi.org/10.3390/ijms24021428
    Crossref
  3. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1127704
    Crossref
  4. Deep mutational scanning: A versatile tool in systematically mapping genotypes to phenotypes, Frontiers in Genetics, 14, (2023).https://doi.org/10.3389/fgene.2023.1087267
    Crossref
  5. Genome-Wide CRISPR-Cas9 Screening and Identification of Potential Genes Promoting Prostate Cancer Growth and Metastasis, Current Cancer Drug Targets, 23, 1, (71-86), (2023).https://doi.org/10.2174/1568009622666220615154137
    Crossref
  6. Entry receptors — the gateway to alphavirus infection, Journal of Clinical Investigation, 133, 2, (2023).https://doi.org/10.1172/JCI165307
    Crossref
  7. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo, Biochemistry (Moscow), 88, S1, (S123-S149), (2023).https://doi.org/10.1134/S0006297923140080
    Crossref
  8. CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing, mSystems, 8, 1, (2023).https://doi.org/10.1128/msystems.01045-22
    Crossref
  9. An Important Role for RPRD1B in the Heat Shock Response, Molecular and Cellular Biology, 42, 10, (2023).https://doi.org/10.1128/mcb.00173-22
    Crossref
  10. Inducible CRISPRi-Based Operon Silencing and Selective in Trans Gene Complementation in Borrelia burgdorferi , Journal of Bacteriology, 205, 2, (2023).https://doi.org/10.1128/jb.00468-22
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media