Advertisement

Gut microbes affect immunotherapy

The unleashing of antitumor T cell responses has ushered in a new era of cancer treatment. Although these therapies can cause dramatic tumor regressions in some patients, many patients inexplicably see no benefit. Mice have been used in two studies to investigate what might be happening. Specific members of the gut microbiota influence the efficacy of this type of immunotherapy (see the Perspective by Snyder et al.). Vétizou et al. found that optimal responses to anticytotoxic T lymphocyte antigen blockade required specific Bacteroides spp. Similarly, Sivan et al. discovered that Bifidobacterium spp. enhanced the efficacy of antiprogrammed cell death ligand 1 therapy.
Science, this issue, p. 1079 and p. 1084; see also p. 1031

Abstract

Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis–specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S22
Tables S1 to S5
References (1935)

Resources

File (aad1329_vetizou.sm.pdf)

References and Notes

1
Peggs K. S., Quezada S. A., Korman A. J., Allison J. P., Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol. 18, 206–213 (2006).
2
Hodi F. S., O’Day S. J., McDermott D. F., Weber R. W., Sosman J. A., Haanen J. B., Gonzalez R., Robert C., Schadendorf D., Hassel J. C., Akerley W., van den Eertwegh A. J., Lutzky J., Lorigan P., Vaubel J. M., Linette G. P., Hogg D., Ottensmeier C. H., Lebbé C., Peschel C., Quirt I., Clark J. I., Wolchok J. D., Weber J. S., Tian J., Yellin M. J., Nichol G. M., Hoos A., Urba W. J., Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
3
Beck K. E., Blansfield J. A., Tran K. Q., Feldman A. L., Hughes M. S., Royal R. E., Kammula U. S., Topalian S. L., Sherry R. M., Kleiner D., Quezado M., Lowy I., Yellin M., Rosenberg S. A., Yang J. C., Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).
4
Berman D., Parker S. M., Siegel J., Chasalow S. D., Weber J., Galbraith S., Targan S. R., Wang H. L., Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 10, 11 (2010).
5
Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillère R., Hannani D., Enot D. P., Pfirschke C., Engblom C., Pittet M. J., Schlitzer A., Ginhoux F., Apetoh L., Chachaty E., Woerther P. L., Eberl G., Bérard M., Ecobichon C., Clermont D., Bizet C., Gaboriau-Routhiau V., Cerf-Bensussan N., Opolon P., Yessaad N., Vivier E., Ryffel B., Elson C. O., Doré J., Kroemer G., Lepage P., Boneca I. G., Ghiringhelli F., Zitvogel L., The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).
6
Rogoz A., Reis B. S., Karssemeijer R. A., Mucida D., A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J. Immunol. Methods 421, 89–95 (2015).
7
Dasgupta S., Erturk-Hasdemir D., Ochoa-Reparaz J., Reinecker H. C., Kasper D. L., Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 15, 413–423 (2014).
8
Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L., An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).
9
Stingele F., Corthésy B., Kusy N., Porcelli S. A., Kasper D. L., Tzianabos A. O., Zwitterionic polysaccharides stimulate T cells with no preferential V beta usage and promote anergy, resulting in protection against experimental abscess formation. J. Immunol. 172, 1483–1490 (2004).
10
Tzianabos A. O., Pantosti A., Baumann H., Brisson J. R., Jennings H. J., Kasper D. L., The capsular polysaccharide of Bacteroides fragilis comprises two ionically linked polysaccharides. J. Biol. Chem. 267, 18230–18235 (1992).
11
Huang J. Y., Lee S. M., Mazmanian S. K., The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 17, 137–141 (2011).
12
Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T., Batto J. M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H. B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E. G., Wang J., Guarner F., Pedersen O., de Vos W. M., Brunak S., Doré J., Antolín M., Artiguenave F., Blottiere H. M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K. U., Friss C., van de Guchte M., Guedon E., Haimet F., Huber W., van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O., Layec S., Le Roux K., Maguin E., Mérieux A., Melo Minardi R., M’rini C., Muller J., Oozeer R., Parkhill J., Renault P., Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S. D., Bork P.MetaHIT Consortium, Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
13
Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D. R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.-M., Hansen T., Le Paslier D., Linneberg A., Nielsen H. B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., Bork P., Ehrlich S. D., Wang J.MetaHIT Consortium, A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
14
Cebula A., Seweryn M., Rempala G. A., Pabla S. S., McIndoe R. A., Denning T. L., Bry L., Kraj P., Kisielow P., Ignatowicz L., Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497, 258–262 (2013).
15
Sonnenburg J. L., Chen C. T., Gordon J. I., Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLOS Biol. 4, e413 (2006).
16
Lam W., Bussom S., Guan F., Jiang Z., Zhang W., Gullen E. A., Liu S. H., Cheng Y. C., The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci. Transl. Med. 2, 45ra59 (2010).
17
Xu H., Yang J., Gao W., Li L., Li P., Zhang L., Gong Y. N., Peng X., Xi J. J., Chen S., Wang F., Shao F., Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).
18
Mimee M., Tucker A. C., Voigt C. A., Lu T. K., Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Systems 1, 62–71 (2015).
19
Venkatesh M., Mukherjee S., Wang H., Li H., Sun K., Benechet A. P., Qiu Z., Maher L., Redinbo M. R., Phillips R. S., Fleet J. C., Kortagere S., Mukherjee P., Fasano A., Le Ven J., Nicholson J. K., Dumas M. E., Khanna K. M., Mani S., Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296–310 (2014).
20
Schneider C. A., Rasband W. S., Eliceiri K. W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
21
Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).
22
Franks A. H., Harmsen H. J., Raangs G. C., Jansen G. J., Schut F., Welling G. W., Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 3336–3345 (1998).
23
Rigottier-Gois L., Rochet V., Garrec N., Suau A., Doré J., Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rRNA probes. Syst. Appl. Microbiol. 26, 110–118 (2003).
24
Schlitzer A., McGovern N., Teo P., Zelante T., Atarashi K., Low D., Ho A. W., See P., Shin A., Wasan P. S., Hoeffel G., Malleret B., Heiseke A., Chew S., Jardine L., Purvis H. A., Hilkens C. M., Tam J., Poidinger M., Stanley E. R., Krug A. B., Renia L., Sivasankar B., Ng L. G., Collin M., Ricciardi-Castagnoli P., Honda K., Haniffa M., Ginhoux F., IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).
25
Pantosti A., Tzianabos A. O., Onderdonk A. B., Kasper D. L., Immunochemical characterization of two surface polysaccharides of Bacteroides fragilis. Infect. Immun. 59, 2075–2082 (1991).
26
Chen F. T., Dobashi T. S., Evangelista R. A., Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology 8, 1045–1052 (1998).
27
Nigou J., Vercellone A., Puzo G., New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: Lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level. J. Mol. Biol. 299, 1353–1362 (2000).
28
Baumann H., Tzianabos A. O., Brisson J. R., Kasper D. L., Jennings H. J., Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy. Biochemistry 31, 4081–4089 (1992).
29
Sato T., Vries R. G., Snippert H. J., van de Wetering M., Barker N., Stange D. E., van Es J. H., Abo A., Kujala P., Peters P. J., Clevers H., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
30
Furet J.-P., Firmesse O., Gourmelon M., Bridonneau C., Tap J., Mondot S., Doré J., Corthier G., Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68, 351–362 (2009).
31
Suzuki M. T., Taylor L. T., DeLong E. F., Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614 (2000).
32
Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K.-H., Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106 (1996).
33
Odamaki T., Xiao J. Z., Sakamoto M., Kondo S., Yaeshima T., Iwatsuki K., Togashi H., Enomoto T., Benno Y., Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl. Environ. Microbiol. 74, 6814–6817 (2008).
34
Lee S. M., Donaldson G. P., Mikulski Z., Boyajian S., Ley K., Mazmanian S. K., Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).
35
Tong J., Liu C., Summanen P., Xu H., Finegold S. M., Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64–68 (2011).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 350 | Issue 6264
27 November 2015

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 31 July 2015
Accepted: 21 October 2015
Published in print: 27 November 2015

Permissions

Request permissions for this article.

Acknowledgments

We are grateful to the staff of the animal facility of Gustave Roussy and Institut Pasteur. The data presented in this manuscript are tabulated in the main paper and in the supplementary materials. L.Z., M.V., and P.L. have filed patent application no. EP 14190167 that relates to the following: Methods and products for modulating microbiota composition for improving the efficacy of a cancer treatment with an immune checkpoint blocker. M.V. and J.M.P. were supported by La Ligue contre le cancer and ARC, respectively. L.Z. received a special prize from the Swiss Bridge Foundation and ISREC. G.K. and L.Z. were supported by the Ligue Nationale contre le Cancer (Equipes labelisées), Agence Nationale pour la Recherche (ANR AUTOPH, ANR Emergence), European Commission (ArtForce), European Research Council Advanced Investigator Grant (to G.K.), Fondation pour la Recherche Médicale (FRM), Institut National du Cancer (INCa), Fondation de France, Cancéropôle Ile-de-France, Fondation Bettencourt-Schueller, Swiss Bridge Foundation, the LabEx Immuno-Oncology, the Institut national du cancer (SIRIC) Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM), and the Paris Alliance of Cancer Research Institutes (PACRI). S.M. was supported by NIH (R01 CA161879, as Principal Investigator). M.C. was supported by the Fondation pour la Recherche Médicale, the Fondation ARC pour la recherche sur le cancer, and Institut Nationale du Cancer. N.W. is a recipient of a Postdoctoral Fellowship from the Agence Nationale de la Recherche. A.S. was supported by BMSI YIG 2014. F.G. is supported by SIgN core funding. L.Z., M.C., and I.B.G. are all sponsored by Association pour la Recherche contre le Cancer (PGA120140200851). F.C. was supported by INCA-DGOS (GOLD H78008). N.C. was supported by INCA-DGOS (GOLD study; 2012-1-RT-14-IGR-01). L’Oreal awarded a prize to M.V. We are grateful to the staff of the animal facility of Gustave Roussy and Institut Pasteur. We thank P. Gonin, B. Ryffel, T. Angelique, N. Chanthapathet, H. Li, and S. Zuberogoitia for technical help. DNA sequence reads from this study have been submitted to the NCBI under the Bioproject IDPRJNA299112 and are available from the Sequence Read Archive (SRP Study accession SRP065109; run accession numbers SRR2758006, SRR2758031, SRR2758178, SRR2758179, SRR2758180, SRR2758181, SRR2768454, and SRR2768457.

Authors

Affiliations

Marie Vétizou
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
University of Paris Sud XI, Kremlin-Bicêtre, France.
Jonathan M. Pitt
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
University of Paris Sud XI, Kremlin-Bicêtre, France.
Romain Daillère
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
University of Paris Sud XI, Kremlin-Bicêtre, France.
Patricia Lepage
Institut National de la Recherche Agronomique (INRA), Micalis-UMR1319, 78360 Jouy-en-Josas, France.
Nadine Waldschmitt
University of Lille, CNRS, INSERM, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France.
Caroline Flament
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Sylvie Rusakiewicz
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Bertrand Routy
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
University of Paris Sud XI, Kremlin-Bicêtre, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Maria P. Roberti
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Connie P. M. Duong
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Vichnou Poirier-Colame
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Antoine Roux
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
Sonia Becharef
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Silvia Formenti
Department of Radiation Oncology, New York University, New York, NY, USA.
Encouse Golden
Department of Radiation Oncology, New York University, New York, NY, USA.
Sascha Cording
Microenvironment and Immunity Unit, Institut Pasteur, Paris, France.
Gerard Eberl
Microenvironment and Immunity Unit, Institut Pasteur, Paris, France.
Andreas Schlitzer
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Florent Ginhoux
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Sridhar Mani
Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Takahiro Yamazaki
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.
Nicolas Jacquelot
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
University of Paris Sud XI, Kremlin-Bicêtre, France.
David P. Enot
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
Metabolomics Platform, GRCC, Villejuif, France.
Marion Bérard
Animalerie Centrale, Institut Pasteur, Paris, France.
Jérôme Nigou
Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France.
Université de Toulouse, Université Paul Sabatier, IPBS, F-31077 Toulouse, France.
Paule Opolon
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
Alexander Eggermont
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
Paul-Louis Woerther
Service de microbiologie, GRCC, Villejuif, France.
Elisabeth Chachaty
Service de microbiologie, GRCC, Villejuif, France.
Nathalie Chaput
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US 23 INSERM, GRCC, Villejuif, France.
Caroline Robert
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
INSERM U981, GRCC, Villejuif, France.
Christina Mateus
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
Guido Kroemer
Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
Metabolomics Platform, GRCC, Villejuif, France.
INSERM U848, Villejuif, France.
Equipe 11 Labellisée—Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.
Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique—Hôpitaux de Paris, Paris, France.
Didier Raoult
Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France.
Ivo Gomperts Boneca*
Institut Pasteur, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France.
INSERM, Equipe Avenir, Paris, France.
Franck Carbonnel*
University of Paris Sud XI, Kremlin-Bicêtre, France.
Gastroenterology Department, Hôpital Bicêtre, Assistance Publique—Hôpitaux de Paris, Paris, France.
Mathias Chamaillard*
University of Lille, CNRS, INSERM, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France.
Laurence Zitvogel [email protected]
Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France.
INSERM U1015, GRCC, Villejuif, France.
University of Paris Sud XI, Kremlin-Bicêtre, France.
Center of Clinical Investigations in Biotherapies of Cancer 1428, Villejuif, France.

Notes

*
These authors contributed equally to this work.
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Microbes and vitamin D aid immunotherapy, Science, 384, 6694, (384-385), (2024)./doi/10.1126/science.adp1309
    Abstract
  2. Microbiota-dependent activation of CD4+ T cells induces CTLA-4 blockade–associated colitis via Fcγ receptors, Science, 383, 6678, (62-70), (2024)./doi/10.1126/science.adh8342
    Abstract
  3. Vitamin D regulates microbiome-dependent cancer immunity, Science, 384, 6694, (428-437), (2024)./doi/10.1126/science.adh7954
    Abstract
  4. Introductory Chapter: Introduction to New Insights and Recent Progress in Immune Checkpoint Inhibitors, Immune Checkpoint Inhibitors - New Insights and Recent Progress, (2023).https://doi.org/10.5772/intechopen.107901
    Crossref
  5. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond, World Journal of Gastroenterology, 29, 9, (1395-1426), (2023).https://doi.org/10.3748/wjg.v29.i9.1395
    Crossref
  6. Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer, World Journal of Gastroenterology, 29, 4, (670-681), (2023).https://doi.org/10.3748/wjg.v29.i4.670
    Crossref
  7. The Debate between the Human Microbiota and Immune System in Treating Aerodigestive and Digestive Tract Cancers: A Review, Vaccines, 11, 3, (492), (2023).https://doi.org/10.3390/vaccines11030492
    Crossref
  8. Recent Advances in Cancer Immunotherapy Delivery Modalities, Pharmaceutics, 15, 2, (504), (2023).https://doi.org/10.3390/pharmaceutics15020504
    Crossref
  9. Role of Gut Microbiota in Breast Cancer and Drug Resistance, Pathogens, 12, 3, (468), (2023).https://doi.org/10.3390/pathogens12030468
    Crossref
  10. Fecal and Tissue Microbiota Are Associated with Tumor T-Cell Infiltration and Mesenteric Lymph Node Involvement in Colorectal Cancer, Nutrients, 15, 2, (316), (2023).https://doi.org/10.3390/nu15020316
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media