Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Therapeutic value of melatonin post-treatment on CCl4-induced fibrotic rat liver

Publication: Canadian Journal of Physiology and Pharmacology
20 July 2015

Abstract

Melatonin is known for being beneficial in targeting liver diseases. This study aimed to investigate whether melatonin post-treatment is capable of rat carbon tetrachloride (CCl4)-induced liver fibrosis reduction. Thirty-two male Sprague-Dawley rats were divided into 4 groups: normal; fibrosis with CCl4 injection (1 mL/kg) twice weekly for 8 weeks; phosphate-buffered saline (PBS); and melatonin (20 mg/kg) for a further 4 weeks on cessation of CCl4. At the beginning of week 13, liver tissue samples were used for hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), Masson’s trichrome (MT), and Oil Red O staining, quantitative real-time PCR (qRT-PCR) analysis of the matrix metalloproteinase-9 (MMP-9), MMP-13, transforming growth factor-β1 (TGF-β1), Bcl-2, and Bax genes as well as immunofluorescence (IF) of the first 3, and sera for measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, and hydroxyproline. Chronic administration of CCl4 followed by considerable increase in tissue disruption, macro- and micro-vesicles, collagen, lipid droplets (LDs), AST, ALT, hydroxyproline, TGF-β1, and Bax, and decrease in glycogen depository, albumin, Bcl-2, MMP-9, and MMP-13; however, the pattern was reverse when it comes to melatonin treatment (for all p < 0.05). Our results reveal the beneficial aspects of melatonin in treatment of liver fibrosis probably via inhibition of TGF-β1expression.

Résumé

La mélatonine est connue pour être bénéfique en ciblant les maladies hépatiques. Cette étude visait à déterminer si un post-traitement à la mélatonine est capable de réduire la fibrose hépatique induite par le tétrachlorure de carbone (CCl4) chez le rat. Trente-deux rats mâles Sprague-Dawley ont été répartis en quatre groupes : normal; fibrose avec une injection de CCl4 (1 ml/kg) deux fois par semaine pendant huit semaines; solution saline tamponnée au phosphate (PBS); mélatonine (20 mg/kg) pendant quatre semaines supplémentaires après la cessation du CCl4. Au début de la treizième semaine, des échantillons de tissu hépatique ont été colorés à l’hématoxyline-éosine (H&E), à l’acide periodique couplé au réactif de Schiff (PAS), au trichrome de Masson (MT) et au Oil Red O; ils ont été soumis à une PCR quantitative (qRT-PCR) de la métalloprotéase matricielle-9 (MMP 9), de la MMP 13, du facteur de croissance transformant-β1 (TGF-β1), de Bcl-2 et Bax, de même qu’à une immunofluorescence (IF) afin de mesurer les trois premiers marqueurs; l’aspartate aminotransférase (AST), l’alanine aminotransférase (ALT), l’albumine et l’hydroxyproline du sérum ont aussi été mesurées. L’administration chronique de CCl4 était suivie d’une augmentation considérable de dommages tissulaires, de macro- et de microvésicules, de collagène, de gouttelettes lipidiques, d’AST, d’ALT, d’hydroxyproline, de TGF-β1, et de Bax, ainsi que d’une diminution du dépôt de glycogène, d’albumine, de Bcl-2, de MMP 9 et de MMP 13; cependant, ce patron était renversé par le traitement à la mélatonine (p < 0.05, pour tous). Les résultats des auteurs révèlent les aspects bénéfiques de la mélatonine dans le traitement de la fibrose hépatique probablement par l’intermédiaire de l’inhibition de l’expression de TGF-β1. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Ali S.A., Faddah L., Abdel-Baky A., and Bayoumi A. 2010. Protective effect of l-carnitine and coenzyme Q10 on CCL4-induced liver injury in rats. Sci. Pharm. 78(4): 881–896.
Benyon R.C. and Arthur M. 2001. Extracellular matrix degradation and the role of hepatic stellate cells. Semin. Liver Dis. 21(3): 373–384.
Bhandarkar M.R. and Khan A. 2004. Antihepatotoxic effect of Nymphaea stellata willd., against carbon tetrachloride-induced hepatic damage in albino rats. J. Ethnopharmacol. 91(1): 61–64.
Candelario-Jalil E., Mohammed-Al-Dalain S., Fernandez O., Menéndez S., Pérez-Davison G., Merino N., et al. 2001. Oxidative preconditioning affords protection against carbon tetrachloride-induced glycogen depletion and oxidative stress in rats. J. Appl. Toxicol. 21(4): 297–301.
Carvalho A.B., Quintanilha L.F., Dias J.V., Paredes B.D., Mannheimer E.G., Carvalho F.G., et al. 2008. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells, 26(5): 1307–1314.
Chen R.J., Wu H.H., and Wang Y.J. 2015. Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch. Toxicol. 1-24. In press.
Crespo I., San-Miguel B., Fernández A., de Urbina J.O., González-Gallego J., and Tuñón M.J. 2015. Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice. Transl. Res. 165(2): 346–357.
Ding J., Yu J., Wang C., Hu W., Li D., Luo Y., et al. 2005. Ginkgo biloba extract alleviates liver fibrosis induced by CCl4 in rats. Liver Int. 25(6): 1224–1232.
Drobnik J. and Dabrowski R. 1998. Pinealectomy-induced elevation of collagen content in the intact skin is suppressed by melatonin application. Cytobios, 100(393): 49–55.
El-Samaligy M.S., Afifi N.N., and Mahmoud E.A. 2006. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm. 319(1): 121–129.
Fahmy S.R. 2015. Anti-fibrotic effect of Holothuria arenicola extract against bile duct ligation in rats. BMC Complement. Altern. Med. 15(1): 533–537.
Galli A., Crabb D., Price D., Ceni E., Salzano R., Surrenti C., et al. 2000. Peroxisome proliferator-activated receptor γ transcriptional regulation is involved in platelet-derived growth factor–induced proliferation of human hepatic stellate cells. Hepatology, 31(1): 101–108.
Guo X.L., Liang B., Wang X.W., Fan F.G., Jin J., Lan R., et al. 2013. Glycyrrhizic acid attenuates CCl4-induced hepatocyte apoptosis in rats via a p53-mediated pathway. World J. Gastroenterol. 19(24): 3781–3791.
Guzman R.E. and Solter P.F. 1999. Hepatic oxidative stress following prolonged sublethal microcystin LR exposure. Toxicol. Pathol. 27(5): 582–588.
Hardjo M., Miyazaki M., Sakaguchi M., Masaka T., Ibrahim S., Kataoka K., et al. 2009. Suppression of carbon tetrachloride-induced liver fibrosis by transplantation of a clonal mesenchymal stem cell line derived from rat bone marrow. Cell Transplant. 18(1): 89–99.
Hayden M.S. and Ghosh S. 2011. NF-κB in immunobiology. Cell Res. 21(2): 223–244.
Higashiyama R., Inagaki Y., Hong Y.Y., Kushida M., Nakao S., Niioka M., et al. 2007. Bone marrow–derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology, 45(1): 213–222.
Hong R.T., Xu J.M., and Mei Q. 2009. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J. Gastroenterol. 15(12): 1452–1458.
Huang G.J., Deng J.S., Chiu C.S., Liao J.C., Hsieh W.T., Sheu M.J., et al. 2011. Hispolon protects against acute liver damage in the rat by inhibiting lipid peroxidation, proinflammatory Cytokine, and Oxidative stress and downregulating the expressions of iNOS, COX-2, and MMP-9. Evid. Based Complement. Alternat. Med. 2012: 714–724.
Jaswal A. and Shukla S. 2015. Therapeutic efficacy of Nigella sativa Linn. seed extract against CCl4 induced hepatic injury in wistar rats. Indian J. Exp. Biol. 53(1): 44–50.
Jonsson J.R., Clouston A.D., Ando Y., Kelemen L.I., Horn M.J., Adamson M.D., et al. 2001. Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Gastroenterology, 121(1): 148–155.
Kaimori A., Potter J., Kaimori J.-y., Wang C., Mezey E., and Koteish A. 2007. Transforming growth factor-β1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J. Biol. Chem. 282(30): 22089–22101.
Kanzler S., Lohse A.W., Keil A., Henninger J., Dienes H.P., Schirmacher P., et al. 1999. TGF-β1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am. J. Physiol. 276(4): 1059–1068.
Kus I., Ogeturk M., Oner H., Sahin S., Yekeler H., and Sarsilmaz M. 2005. Protective effects of melatonin against carbon tetrachloride-induced hepatotoxicity in rats: a light microscopic and biochemical study. Cell Biochem. Funct. 23(3): 169–174.
Lee H., Jeong H., Park S., Yoo W., Choi S., Choi K., et al. 2015. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol. Med. 7(6): 819–830.
Ling H., Roux E., Hempel D., Tao J., Smith M., Lonning S., et al. 2013. Transforming growth factor β neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS One, 8(1): e54499.
Malavolta M., Piacenza F., Basso A., Giacconi R., Costarelli L., and Mocchegiani E. 2015. Serum copper to zinc ratio: relationship with aging and health status. Mech. Ageing Dev. In press.
Mazepa R., Cuevas M., Collado P., and Gonzalez-Gallego J. 1999. Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 66(2): 153–160.
Messner M., Huether G., Lorf T., Ramadori G., and Schwörer H. 2001. Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci. 69(5): 543–551.
Mormone E., George J., and Nieto N. 2011. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem. Biol. Interact. 193(3): 225–231.
Mu Y., Liu P., Du G., Du J., Wang G., Long A., et al. 2009. Action mechanism of Yi Guan Jian Decoction on CCl 4 induced cirrhosis in rats. J. Ethnopharmacol. 121(1): 35–42.
Musso G., Cassader M., Bo S., De Michieli F., and Gambino R. 2013. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism. Diabetes, 62(4): 1109–1120.
Nakamura H., Hirata K., Yamashiro K., Hiranuma K., Shibata K., Higashi K., et al. 1994. Increase of hepatic mRNAS of profilin, actin and extracellular matrix proteins after carbon tetrachloride treatment and partial hepatectomy in rats. Biochem. Biophys. Res. Commun. 198(2): 568–573.
Ohta Y., Kongo M., Sasaki E., Nishida K., and Ishiguro I. 2000. Therapeutic effect of melatonin on carbon tetrachloride-induced acute liver injury in rats. J. Pineal Res. 28(2): 119–126.
Ohuchi E., Imai K., Fujii Y., Sato H., Seiki M., and Okada Y. 1997. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272(4): 2446–2451.
Oyagi S., Hirose M., Kojima M., Okuyama M., Kawase M., Nakamura T., et al. 2006. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl 4-injured rats. J. Hepatol. 44(4): 742–748.
Sagor A.T., Chowdhury M.R., Tabassum N., Hossain H., Rahman M., and Alam A. 2015. Supplementation of fresh ucche (Momordica charantia L. var. muricata Willd) prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. BMC Complement. Altern. Med. 15(1): 115.
Salazar-Montes A.M., Hernández-Ortega L.D., Lucano-Landeros M.S., and Armendariz-Borunda J. 2015. New gene therapy strategies for hepatic fibrosis. World J. Gastroenterol. 21(13): 3813–3825.
San-Miguel B., Crespo I., Sánchez D.I, González-Fernández B., Ortiz de Urbina J.J., Tuñón M.J., et al. 2015. Melatonin inhibits autophagy and endoplasmic reticulum stress in mice with carbon tetrachloride-induced fibrosis. J. Pineal Res.
Shaker M., Houssen M., Abo-Hashem E., and Ibrahim T. 2009. Comparison of vitamin E, L-carnitine and melatonin in ameliorating carbon tetrachloride and diabetes induced hepatic oxidative stress. J. Physiol. Biochem. 65(3): 225–233.
She M., Deng X., Guo Z., Laudon M., Hu Z., Liao D., et al. 2009. NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats. Pharmacol. Res. 59(4): 248–253.
Shieh J.M., Wu H.T., Cheng K.C., and Cheng J.T. 2009. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCζ-Akt-GSK3β pathway in hepatic cells. J. Pineal Res. 47(4): 339–344.
Solá S., Ma X., Castro R.E., Kren B.T., Steer C.J., and Rodrigues C.M. 2003. Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor β1-induced apoptosis of rat hepatocytes. J. Biol. Chem. 278(49): 48831–48838.
Tahan G., Akin H., Aydogan F., Ramadan S.S., Yapicier O., Tarcin O., et al. 2010. Melatonin ameliorates liver fibrosis induced by bile-duct ligation in rats. Can. J. Surg. 53(5): 313–318.
Tarantino G. and Finelli C. 2013. What about non-alcoholic fatty liver disease as a new criterion to define metabolic syndrome? World J. Gastroenterol. 19(22): 3375–3384.
Tarantino G., Conca P., Riccio A., Tarantino M., Di Minno M.N., Chianese D., et al. 2008. Enhanced serum concentrations of transforming growth factor-beta1 in simple fatty liver: is it really benign? J. Transl. Med. 6(72): 49.
Tarantino G., Savastano S., Capone D., and Colao A. 2011a. Spleen: A new role for an old player? World J. Gastroenterol. 17(33): 3776–3784.
Tarantino G., Scopacasa F., Colao A., Capone D., Tarantino M., Grimaldi E., et al. 2011b. Serum Bcl-2 concentrations in overweight-obese subjects with nonalcoholic fatty liver disease. World J. Gastroenterol. 17(48): 5280–5288.
Terai S., Ishikawa T., Omori K., Aoyama K., Marumoto Y., Urata Y., et al. 2006. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells, 24(10): 2292–2298.
Tien Y.C., Liao J.C., Chiu C.S., Huang T.H., Huang C.Y., Chang W.T., et al. 2011. Esculetin ameliorates carbon tetrachloride-mediated hepatic apoptosis in rats. Int. J. Mol. Sci. 12(6): 4053–4067.
Tu X., Zheng X., Li H., Cao Z., Chang H., Luan S., et al. 2015. microRNA-30 protect against CCl4-induced liver fibrosis by attenuating TGF-β signaling in hepatic stellate cells. Toxicol. Sci. 146(1): 157–169.
Wang H., Wei W., Wang N.P., Gui S.Y., Wu L., Sun W.Y., et al. 2005. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci. 77(15): 1902–1915.
Wang M.Y., Anderson G., Nowicki D., and Jensen J. 2008. Hepatic protection by noni fruit juice against CCl4-induced chronic liver damage in female SD rats. Plant Foods Hum. Nutr. 63(3): 141–145.
Weber L.W., Boll M., and Stampfl A. 2003. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33(2): 105–136.
Yang H., Zhao L.F., Zhao Z.F., Wang Y., Zhao J.J., and Zhang L. 2012. Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARγ and NF-κB. World J. Gastroenterol. 18(14): 1680–1688.
Zavodnik L., Zavodnik I., Lapshina E., Belonovskaya E., Martinchik D., Kravchuk R., et al. 2005. Protective effects of melatonin against carbon tetrachloride hepatotoxicity in rats. Cell Biochem. Funct. 23(5): 353–359.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 94Number 2February 2016
Pages: 119 - 130

History

Received: 14 June 2015
Accepted: 29 June 2015
Accepted manuscript online: 20 July 2015
Version of record online: 20 July 2015

Permissions

Request permissions for this article.

Key Words

  1. transforming growth factor-β1
  2. melatonin
  3. post-treatment
  4. matrix metalloproteinase
  5. fibrosis
  6. collagen
  7. carbon tetrachloride

Mots-clés

  1. facteur de croissance transformant-β1
  2. mélatonine
  3. post-traitement
  4. métalloprotéase matricielle
  5. fibrose
  6. collagène
  7. tétrachlorure de carbone

Authors

Affiliations

Keywan Mortezaee
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran, 1417613151.
Fatemeh Sabbaghziarani
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran, 1417613151.
Ameneh Omidi
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran, 1417613151.
Ahmad Reza Dehpour
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Negar Omidi
Department of Surgery, Ziaian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Soudabeh Ghasemi
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran, 1417613151.
Parichehr Pasbakhsh
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran, 1417613151.
Iraj Ragerdi Kashani [email protected]
Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran, 1417613151.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis
2. Is human umbilical cord mesenchymal stem cell-derived conditioned medium effective against oxidative and inflammatory status in CCl4-induced acute liver injury?
3. CD8+ T Cells in SARS-CoV-2 Induced Disease and Cancer—Clinical Perspectives
4. Key promoters of tumor hallmarks
5. Traditional Chinese medicine for prevention and treatment of hepatocellular carcinoma: A focus on epithelial-mesenchymal transition
6. The current knowledge concerning solid cancer and therapy
7. Melatonin and Cancer: A Polyhedral Network Where the Source Matters
8. Redox tolerance and metabolic reprogramming in solid tumors
9. Melatonin ameliorates hepatic steatosis by inhibiting NLRP3 inflammasome in db/db mice
10. The Effect of Lecithins Coupled Decorin Nanoliposomes on Treatment of Carbon Tetrachloride-Induced Liver Fibrosis
11. Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer's disease
12. Increased Purinergic Responses Dependent on P2Y2 Receptors in Hepatocytes from CCl4-Treated Fibrotic Mice
13. Two different melatonin treatment regimens prevent an increase in kidney injury marker-1 induced by carbon tetrachloride in rat kidneys
14. SVIP alleviates CCl4-induced liver fibrosis via activating autophagy and protecting hepatocytes
15. Targeting axonal degeneration and demyelination using combination administration of 17β‐estradiol and Schwann cells in the rat model of spinal cord injury
16. Human hepatocellular carcinoma: Protection by melatonin
17. Roles of methyltrienolone (R1881) in AKTs and AR expression patterns of cultured granulosa‐lutein cells
18. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review
19. Inflammasome: Its role in traumatic brain and spinal cord injury
20. Melatonin application in targeting oxidative‐induced liver injuries: A review
21. Resveratrol pretreatment enhanced homing of SDF‐1α‐preconditioned bone marrow‐derived mesenchymal stem cells in a rat model of liver cirrhosis
22. Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4
23. Effects of Melatonin on Liver Injuries and Diseases
24. Melatonin and the “Diseases of the Soul”: The Stone of Madness Returns

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media