Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

An efficient temporary immersion system for micropropagation of hybrid hazelnut

Publication: Botany
26 October 2015

Abstract

An efficient protocol for the micropropagation of hybrid hazelnut (Corylus L.) was developed using a temporary immersion system (TIS) for the proliferation of shoots in a liquid medium. Growth and proliferation of shoots as well as the length and number of nodes in developing shoots were significantly improved by combining two forms of chelated iron: ethylenediamine-N,N′-di-(ortho-hydroxyphenyl) acetic acid (FeEDDHA), and FeSO4/EDTA (FeEDTA). The use of TIS with optimized concentrations of FeEDTA and FeEDDHA significantly increased the number of shoots, shoot height, leaf area, and chlorophyll content in all of the four cultivars tested, compared with a semi-solid medium. Proliferated shoots developed roots on a semi-solid medium containing 2.5 μmol/L indole-3-butyric acid and rooted plantlets acclimatized in greenhouse conditions with 80% survival.

Résumé

Les auteurs ont développé un protocole efficace de micro-propagation de noisetier hybride (Corylus L.) qui utilise un système d’immersion temporaire (SIT) permettant de multiplier les pousses en milieu liquide. La croissance et la multiplication des pousses de même que la longueur et le nombre de nœuds présents sur les pousses en développement étaient significativement améliorés en combinant deux formes de fer chélaté, l’acide éthylènediamine-N,N′-di-(ortho-hydroxyphényl) acétique (FeEDDHA) et le FeSO4/EDTA. L’utilisation du SIT et de concentrations optimisées de FeEDTA et de FeEDDHA accroissait significativement le nombre de pousses, la hauteur des pousses, la surface foliaire et le contenu en chlorophylle des quatre cultivars testés, comparativement à un milieu semi-solide. Les pousses en prolifération développaient des racines sur un milieu semi-solide contenant 2,5 μmol/L d’IBA et les plantules enracinées s’acclimataient aux conditions de serre avec un taux de survie de 80 %. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Adelberg J. and Cousins M. 2006. Thin films of liquid media for heterotrophic growth and storage organ development: turmeric (Curcuma longa) as a model plant. Hortscience, 41(3): 539–542.
Antonopoulou C., Dimassi K., Therios I., Chatzissavvidis C., and Papadakis I. 2007. The effect of Fe-EDDHA and of ascorbic acid on in vitro rooting of the peach rootstock GF-677 explants. Acta Physiol. Plant, 29(6): 559–561.
Bassil N., Mok D., Mok M., and Rebhuhn B. 1992. Micropropagation of the hazelnut, Corylus avellana. Acta Hortic. 300: 137–140.
Caboni E., Frattarelli A., Giorgioni M., Meneghini M., and Damiano C. 2009. Improving micropropagation of hazelnut Italian cultivars through temporary immersion system. VII International Congress on Hazelnut, 845: 255–260.
Castillo B., Smith M., Madhavi D., and Yadava U. 1997. Interactions of irradiance level and iron chelate source during shoot tip culture of Carica papaya L. Hortscience, 32(6): 1120–1123.
Damiano C., Frattarelli A., and Giorgioni M. 2002. Micropropagation of pear through temporary immersion. Acta Hortic. 596: 425–429.
Damiano, C., La Starza, S., Monticelli, S., Gentile, A., Caboni, E., and Frattarelli, A. 2005. Propagation of Prunus and Malus by temporary immersion. In Liquid culture systems for in vitro plant propagation. Edited by A.K. Hvoslef-Eide and W. Preil. Springer, the Netherlands. pp. 243–251.
Driver J.A. and Kuniyuki A.H. 1984. In vitro propagation of paradox walnut rootstock. Hortscience, 19(4): 507–509.
Etienne H., Lartaud M., Michaux-Ferrière N., Carron M., Berthouly M., and Teisson C. 1997. Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique. In Vitro Cell Dev. Biol. Plant, 33(2): 81–87.
García-Marco S., Martínez N., Yunta F., Hernandez-Apaolaza L., and Lucena J.J. 2006. Effectiveness of ethylenediamine-N(o-hydroxyphenylacetic)-N′(p-hydroxyphenylacetic) acid (o,p-EDDHA) to supply iron to plants. Plant Soil, 279(1–2): 31–40.
Garrison W., Dale A., and Saxena P.K. 2013. Improved shoot multiplication and development in hybrid hazelnut nodal cultures by ethylenediamine di-2-hydroxy-phenylacetic acid (Fe-EDDHA). Can. J. Plant Sci. 93(3): 511–521.
Glozer, K. 2008. Protocol for leaf image analysis – surface area. Available from http://groups.ucanr.org/treecrop/files/58526.pdf. [Accessed 11 November 2015.]
Hand C. and Reed B.M. 2014. Minor nutrients are critical for the improved growth of Corylus avellana shoot cultures. Plant Cell Tiss. Org. Cult. 119: 427–439.
Hand C., Maki S., and Reed B.M. 2014. Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell Tiss. Org. Cult. 119: 411–425.
Harris R.E. and Mason E.B. 1983. Two machines for in vitro propagation of plants in liquid media. Can. J. Plant Sci. 63(1): 311–316.
Hirata S., Umezaki Y., and Ikeda M. 1986. Determination of chromium(III), titanium, vanadium, iron(III), and aluminum by inductively coupled plasma atomic emission spectrometry with an on-line preconcentrating ion-exchange column. Anal. Chem. 58: 2602–2606.
Kämäräinen-Karppinen T., Virtanen E., Rokka V., and Pirttilä A.M. 2010. Novel bioreactor technology for mass propagation of potato microtubers. Plant Cell Tiss. Org. Cult. 101(2): 245–249.
Jackson, M.B. 2002. Ventilation of plant tissue cultures. First International Symposium on Liquid Systems for In vitro Mass Propagation of Plants. Cost 843 Working Group, Norway. pp. 56–57.
Lichtenthaler, H.K., and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV–VIS spectroscopy. Curr. Protoc. Food Analyt. Chem.: F4.3.1–F4.3.8.
Meguro R., Asano Y., Odagiri S, Li C., Iwatsuki H., and Shoumura K. 2007. Nonheme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review. Arch. Histol. Cytol. 70(1): 1–19.
Nas M.N. and Read P.E. 2001. Micropropagation of hybrid hazelnuts: Medium composition, physical state and iron source affect shoot morphogenesis, multiplication and explant vitality. Acta Hortic. 556: 251–258.
Nas M.N. and Read P.E. 2004. A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Sci. Hortic. 101(1): 189–200.
Roels S., Escalona M., Cejas I., Noceda C., Rodriguez R., Canal M.J., Sandoval J., and Debergh P. 2005. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tiss. Org. Cult. 82: 57–66.
Schenkeveld W.D., Temminghoff E.J., Reichwein A.M., and van Riemsdijk W.H. 2010. FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil–plant system as a function of time and dosage. Plant Soil, 332(1–2): 69–85.
Shibli R.A., Smith M., and Nasi R. 1997. Iron source and cytokinin mitigate the incidence of chlorosis and hyperhydration in vitro. J. Plant Nutr. 20(6): 773–781.
Skoog, F., and Miller, C.O. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In The biological action of growth substances. Symposia of the Society for Experimental Biology No. 11. Edited by H.K. Porter. Cambridge University Press, Cambridge. pp. 118–131.
Van der Salm T.P.M., Van der Toorn Caroline J.G., Hänisch ten Cate Charlotte H., Dubois L.A.M., De Vries D.P., and Dons H.J.M. 1994. Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tiss. Org. Cult. 37(1): 73–77.
Yang S.-H. and Yeh D.-M. 2008. In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell Tiss. Org. Cult. 93: 201–207.
Yu X. and Reed B.M. 1995. A micropropagation system for hazelnuts (Corylus species). Hortscience, 30(1): 120–123.
Zobayed S.M.A. and Saxena P.K. 2003. In vitro-grown roots: a superior explant for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’) in a temporary immersion bioreactor. Plant Sci. 165(3): 463–470.

Information & Authors

Information

Published In

cover image Botany
Botany
Volume 94Number 1January 2016
Pages: 1 - 8

History

Received: 9 June 2015
Accepted: 20 October 2015
Accepted manuscript online: 26 October 2015
Version of record online: 26 October 2015

Permissions

Request permissions for this article.

Key Words

  1. Corylus
  2. FeEDDHA
  3. iron source
  4. temporary immersion system
  5. bioreactor
  6. micropropagation

Mots-clés

  1. Corylus
  2. FeEDDHA
  3. source de fer
  4. système d’immersion temporaire
  5. bioréacteur
  6. micro-propagation

Authors

Affiliations

Jyoti Latawa
Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada.
Mukund R. Shukla
Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada.
Praveen K. Saxena [email protected]
Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Direct Shoot From Root and True-to-Type Micropropagation of Limonium “Misty Blue” in Partially Immersed Culture on an Aluminum Mesh Raft
2. Особливості технології клонального розмноження фундука шляхом живцювання в умовах in vitro та шляхи підвищення її ефективності
3. Liquid Culture System: An Efficient Approach for Sustainable Micropropagation
4. In vitro germination and development of “Canelita” (Lycaste aromatica (Graham) Lindl.) in gravity immersion bioreactors
5. An Investigation into Using Temporary Immersion Bioreactors to Micropropagate Moringa oleifera Lam. Callus, Roots, and Shoots
6. An Alternative In Vitro Propagation Protocol of Cannabis sativa L. (Cannabaceae) Presenting Efficient Rooting, for Commercial Production
7. Chronic and intense droughts differentially influence grassland carbon-nutrient dynamics along a natural aridity gradient
8. Micropropagation of Plum (Prunus domestica L.) in Bioreactors Using Photomixotrophic and Photoautotrophic Conditions
9. In Vitro Technologies for American Chestnut (Castanea dentata (Marshall) Borkh) Conservation
10. Hazelnut Breeding
11. Cryopreservation of Hazelnut (Corylus avellana L.) Axillary Buds from In Vitro Shoots Using the Droplet Vitrification Method
12. The Effect of Sucrose Supplementation on the Micropropagation of Salix viminalis L. Shoots in Semisolid Medium and Temporary Immersion Bioreactors
13. Improved Conservation of Coffee (Coffea arabica L.) Germplasm via Micropropagation and Cryopreservation
14. Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia Jacks. ex Andrews
15. Exploring slope spatial heterogeneity by nitrogen transfer and arbuscular mycorrhizal community
16. In vitro rooting of hybrid hazelnuts (Corylus avellana × Corylus americana) in a temporary immersion system
17. Metabolomics and hormonomics to crack the code of filbert growth
18. Improved in vitro rooting in liquid culture using a two piece scaffold system
19. Resource competition and allelopathy in two peat mosses: implication for niche differentiation
20. Use of bioreactor systems in the propagation of forest trees
21. Micropropagation of Sicilian cultivars with an aim to preserve genetic diversity in hazelnut ( Corylus avellana L.)
22. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects
23. Hazelnut (Corylus spp.) Breeding
24. Effectual Bioprocess Development for Protein Production
25. Advances in genetic improvement of hazelnut
26. Advances in micropropagation of hazelnut ( Corylus avellana L.) in Chile
27. Identification of root-colonizing AM fungal communities and their responses to short-term climate change and grazing on Tibetan plateau
28. Micropropagation of carnation ( Dianthus caryophyllus L . ) in liquid medium by temporary immersion bioreactor in comparison with solid culture
29. Application of 3D printing to prototype and develop novel plant tissue culture systems
30. Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system
31. Kanamycin selection in temporary immersion bioreactors allows visual selection of transgenic citrus shoots
32. Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug
33. In vitro propagation of cherry birch (Betula lenta L.)

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Botany

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media