World Scientific
  • Search
  •   
Skip main navigation

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Agrimonia pilosa Ledeb Root Extract: Anti-Inflammatory Activities of the Medicinal Herb in LPS-Induced Inflammation

    https://doi.org/10.1142/S0192415X20500949Cited by:8 (Source: Crossref)

    Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1 β , interleukin-6, tumor necrosis factor (TNF)- α ) , and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1 β , IL-6 and TNF- α in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.

    References

    • Asgarpanah, J., N. Kazemivash . Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chem. J. Int. Med. 19: 153–159, 2013. Google Scholar
    • Awika, J.M., L.W. Rooney, X. Wu, R.L. Prior and L. Cisneros-Zevallos . Screening methods to measure antioxidant activity of sorghum (sorghum bicolor) and sorghum products. J. Agric. Food Chem. 51: 6657–6662, 2003. Crossref, Medline, Web of ScienceGoogle Scholar
    • Azuma, M.M., P. Balani, H. Boisvert, M. Gil, K. Egashira, T. Yamaguchi, H. Hasturk, M. Duncan, T. Kawai and A. Movila . Endogenous acid ceramidase protects epithelial cells from Porphyromonas gingivalis-induced inflammation in vitro. Biochem. Biophys. Res. Co. 495: 2383–2389, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Barros, L. and P. Baptista, I.C.F.R. Ferreira . Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 245: 1731–1737, 2007. Crossref, Web of ScienceGoogle Scholar
    • Chambrone, L.A. and L. Chambrone . Tooth loss in well-maintained patients with chronic periodontitis during long-term supportive therapy in Brazil. J. Clin. Periodontol. 33: 759–764, 2006. Crossref, Medline, Web of ScienceGoogle Scholar
    • Chen, L., H. Teng, T. Fang and J. Xiao . Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-kappaB in lipopolysaccharide-stimulated macrophages. Phytomedicine 23: 846–855, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Choi, G.E. and K.Y. Hyun . Inhibitory effect of Acer tegmentosum maxim extracts on P. gingivalis LPS-induced periodontitis. Arch. Oral Biol. 109: 104529, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Chung, Y.C., S.M. Park, J.H. Kim, G.S. Lee, J.N. Lee and C.G. Hyun . Anti-inflammatory effect of pratol in LPS-stimulated RAW 264.7 cells via NF-kappa B signaling pathways. Nat. Prod. Commun. 13: 547–550, 2018. Web of ScienceGoogle Scholar
    • Dai, C.H., J.O. Price, T. Brunner and S.B. Krantz . Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon gamma to produce erythroid cell apoptosis. Blood 91: 1235–1242, 1998. Crossref, Medline, Web of ScienceGoogle Scholar
    • Diomede, F., S.R. Thangavelu, I. Merciaro, M. D’Orazio, P. Bramanti, E. Mazzon and O. Trubiani . Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation. Eur. J. Histochem. 61: 2826, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Fan, F.Y., L.X. Sang, and M. Jiang . Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 22: 484, 2017. Crossref, Web of ScienceGoogle Scholar
    • Hajishengallis, G. , Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15: 30–44, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Hasegawa, Y., J. Iwami, K. Sato, Y. Park, K. Nishikawa, T. Atsumi, K. Moriguchi, Y. Murakami, J.R. Lamont, H. Nakamura, N. Ohno and F. Yoshimura . Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. Microbiology 155: 3333–3347, 2009. Crossref, Medline, Web of ScienceGoogle Scholar
    • Herath, T.D., R.P. Darveau, C.J. Seneviratne, C.Y. Wang, Y. Wang and L. Jin . Tetra-and penta-acylated lipid A structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF- κ B signal transduction cascade and immuno-inflammatory response in human gingival fibroblasts. PloS One 8: e58496, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Houri-Haddad, Y., A.W. Soskolne, A. Halabi and L. Shapira . IL-10 gene transfer attenuates P. gingivalis-induced inflammation. J. Dent. Res. 86: 560–564, 2007. Crossref, Medline, Web of ScienceGoogle Scholar
    • Jin, X., S. Song, J. Wang, Q. Zhang, F. Qiu and F. Zhao . Tiliroside, the major component of Agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages. Exp. Ther. Med. 12: 499–505, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Jhang, J.J., C.C. Lu, C.Y. Ho, T.Y. Cheng and C.G. Yen . Protective effects of catechin against monosodium urate-induced inflammation through the modulation of NLRP3 inflammasome activation. J. Agr. Food Chem. 63: 7343–7352, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Jung, C.H., J.H. Kim, S. Park, D.H. Kweon, S.H. Kim and S.G. Ko . Inhibitory effect of Agrimonia pilosa Ledeb. on inflammation by suppression of iNOS and ROS production. Immunol. Invest. 39: 159–170, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kaliyeva, A.N., G. Dyuskaliyeva, A. Newsome, R. Zhexembiyev and D.G. Medeuova . Biological features of medicinal plants of agrimonia L. in south eastern Kazakhstan. Mod. Appl. Sci. 9: 63, 2014. CrossrefGoogle Scholar
    • Kim, D.S., S.Y. Lee, J.H. Lee, Y.C. Bae and J.S. Jung . MicroRNA-103a-3p controls proliferation and osteogenic differentiation of human adipose tissue-derived stromal cells. Exp. Mol. Med. 47: e172, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kim, J., Y. Lee, J.H. An, J.D. Lee and Y. Yi . Anti-inflammatory activities of taxifolin from Opuntia humifusa in lipopolysaccharide stimulated RAW 264.7 murine macrophages. Appl. Biol. Chem. 58: 241–246, 2015. CrossrefGoogle Scholar
    • Kloppsteck, P., M. Hall, Y. Hasegawa and K. Persson . Structure of the fimbrial protein Mfa4 from in its precursor form: Implications for a donor-strand complementation mechanism. Sci. Rep. 6: 22945, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lafon, A., B. Pereira, T. Dufour, V. Rigouby, M. Giroud, Y. Bejot and S. Tubert-Jeannin . Periodontal disease and stroke: A meta-analysis of cohort studies. Eur. J. Neurol. 21: 1155–1161, e1166–1157, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lafon, A., S. Tala, V. Ahossi, D. Perrin, M. Giroud and Y. Bejot . Association between periodontal disease and non-fatal ischemic stroke: A case-control study. Acta. Odontol. Scand. 72: 687–693, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Leone, C.W., H. Bokhadhoor, D. Kuo, T. Desta, J. Yang, M.F. Siqueira, S. Amar and D.T. Graves . Immunization enhances inflammation and tissue destruction in response to Porphyromonas gingivalis. Infect. Immun. 74: 2286–2292, 2006. Crossref, Medline, Web of ScienceGoogle Scholar
    • Li, C., J. Xu, F. Li, S.C. Chaudhary, Z. Weng, J. Wen, C.A. Elmets, H. Ahsan and M. Athar . Unfolded protein response signaling and MAP kinase pathways underlie pathogenesis of arsenic-induced cutaneous inflammation. Cancer Prev. Res (Phila). 4: 2101–2109, 2011. Crossref, Medline, Web of ScienceGoogle Scholar
    • Means, R.J. and S.B. Krantz . Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80: 1639–1647, 1992. Crossref, Medline, Web of ScienceGoogle Scholar
    • Miyaki, K., K. Masaki, M. Naito, T. Naito, K. Hoshi, A. Hara, S. Tohyama and T. Nakayama . Periodontal disease and atherosclerosis from the viewpoint of the relationship between community periodontal index of treatment needs and brachial-ankle pulse wave velocity. BMC Public Health 6: 131, 2006. Crossref, Medline, Web of ScienceGoogle Scholar
    • Moore, E.D., M. Kooshki, L.J. Metheny-Barlow, P.E. Gallagher and M.E. Robbins . Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic. Biol. Med. 65: 1060–1068, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Mysak, J., S. Podzimek, P. Sommerova, Y. Lyuya-Mi, J. Bartova, T. Janatova, J. Prochazkova and J. Duskova . Porphyromonas gingivalis: Major periodontopathic pathogen overview. J. Immunol. Res. 2014: 476068, 2014. Medline, Web of ScienceGoogle Scholar
    • Park, J., J.T. Decker, D.R. Smith, B.J. Cummings, A.J. Anderson and L.D. Shea . Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. J. Control Release 290: 88–101, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Rhee, M. H., M. Endale, S.M. Kamruzzaman, W.M. Lee, H.J. Park, M.J. Yoo and J.Y. Cho . Taxifolin inhibited the nitric oxide production and expression of pro-inflammatory cytokine mRNA in lipopolysaccharide-stimulated RAW264. 7 cells. J. Exp. Biomed. 14: 147–155. 2008. Google Scholar
    • Rubinstein, I., J. Potempa, J. Travis and X.P. Gao . Mechanisms mediating Porphyromonas gingivalis gingipain RgpA-induced oral mucosa inflammation in vivo. Infect. Immun. 69: 1199–1201, 2001. Crossref, Medline, Web of ScienceGoogle Scholar
    • Saiki, P., Y. Nakajima, L. Van Griensven and K. Miyazaki . Real-time monitoring of IL-6 and IL-10 reporter expression for anti-inflammation activity in live RAW 264.7 cells. Biochem. Bioph. Res. Co. 505: 885–890, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Singh, S.P., O. Huck, N.G. Abraham and S. Amar . Kavain reduces Porphyromonas gingivalis-induced adipocyte inflammation: Role of PGC-1alpha signaling. J. Immunol. 201: 1491–1499, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Stewart, R. and M. West . Increasing evidence for an association between periodontitis and cardiovascular disease. Circulation 133: 549–551, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Taira, J., H. Nanbu and K. Ueda . Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264.7 macrophages. Food Chem. 115: 1221–1227, 2009. Crossref, Web of ScienceGoogle Scholar
    • Taiyeb-Ali, T.B., R.P. Raman and R.D. Vaithilingam . Relationship between periodontal disease and diabetes mellitus: An Asian perspective. Periodontol. 2000 56: 258–268, 2011. Crossref, Medline, Web of ScienceGoogle Scholar
    • Weintraub, N.L. , The role of inflammation in health and disease: Translating discovery into novel therapeutic approaches. Transl. Res. 160: 97–98, 2012. Crossref, Medline, Web of ScienceGoogle Scholar
    • Wu, T., X. Chen, Y. Wang, H. Xiao, Y. Peng, L. Lin, W. Xia, M. Long, J. Tao and X. Shuai . Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and anti-inflammation. Biol. Med. 14: 2215–2226, 2018. Google Scholar
    • Zhang, L., T. Wu, W. Xiao, Z. Wang, G. Ding and L. Zhao . Enrichment and purification of total ginkgo flavonoid O-glycosides from ginkgo biloba extract with macroporous resin and evaluation of anti-inflammation activities in vitro. Molecules 23: 1167, 2018. Crossref, Web of ScienceGoogle Scholar
    • Zhu, L., J. Tan, B. Wang, R. He, Y. Liu and C. Zheng . Antioxidant activities of aqueous extract from Agrimonia pilosa Ledeb and its fractions. Chem. Biodivers. 6: 1716–1726, 2009. Crossref, Medline, Web of ScienceGoogle Scholar