Skip to main content

Advertisement

Log in

Pravastatin Effects on Placental Prosurvival Molecular Pathways in a Mouse Model of Preeclampsia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Using an animal model of preeclampsia induced by overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1), we previously showed that pravastatin prevents the development of a preeclampsia phenotype. Our objective is to determine whether pravastatin treatment may be explained by its effects on apoptotic/survival pathways in the placenta.

Methods

Pregnant CD1 mice at day 8 of gestation (length of gestation 19 days) were randomly allocated to injection via tail vein with either adenovirus carrying sFlt-1 or adenovirus carrying the murine immunoglobulin G2a Fc fragment (mFc virus control group). Mice from the sFlt group were randomly assigned to receive pravastatin (5 mg/kg/d) in their drinking water from day 9 until killing (sFlt-1 ± Pravastatin) or water (sFlt-1). The mFc control received water only. Mice were killed on day 18, and the placentas were collected. Protein mitogen-activated protein kinase (MAPK) pathway substrates were assayed using Bioplex Multiplex Immunoassay (Bio- Rad, Hercules, California). Data are reported as mean + standard error of the mean or median (interquartile range) when appropriate. One-way analysis of variance followed by post hoc analysis was performed. Two-sided P value <.05 was considered statistically significant.

Results

The sFlt-1 ± Pravastatin mice had significantly higher placental protein concentrations of prosurvival/ antiapoptotic factors (activating transcription factor 2, pp38, phosphorylated c-jun N-terminal kinase, and phosphorylated extracellular signal-regulated kinase) and of heat-shock protein 27 and signal transducer and activator of transcription 3, 2 factors crucial for embryonic and placental development during oxidative stress, compared to sFlt-1 mice (P <.05) and similar to the mFc control group. No differences were noted in substrates of the proapoptotic pp53 pathway.

Conclusion

Pravastatin ability to prevent preeclampsia phenotype may be mediated through pleiotropic mechanisms involving a prosurvival/ antiapoptotic MAPK pathway in the placenta. Our results further support continued research in the role for statins in the prevention of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACOG Committee on Practice Bulletins—Obstetrics. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol. 2002;99(1):159–167.

    Article  Google Scholar 

  2. Costantine MM, Cleary K; Eunice Kennedy Shriver National Institute of Child Health and Human Development Obstetric—Fetal Pharmacology Research Units Network. Pravastatin for the prevention of preeclampsia in high risk pregnant women. Obstet Gynecol. 2013;121(2 pt 1):349–353.

    Article  CAS  PubMed  Google Scholar 

  3. Lu F, Bytautiene E, Tamayo E, et al. Gender-specific effect of overexpression of SFlt-1 in pregnant mice on fetal programming of blood pressure in the offspring later in life. Am J Obstet Gynecol. 2007;197(4):418.e1-e5.

    Article  PubMed  Google Scholar 

  4. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saad AF, Kechichian T, Yin H, et al. Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia. Reprod Sci. 2014;21(1):138–145.

    Article  PubMed  Google Scholar 

  6. Costantine MM, Tamayo E, Lu F, et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-Like tyrosine kinase-1-induced preeclampsia. Obstet Gynecol. 2010;116(1):114–120.

    Article  Google Scholar 

  7. Fox KA, Longo M, Tamayo E, et al. Effects of pravastatin on mediators of vascular function in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Am J Obstet Gynecol. 2011;205(4):366.e1–e5.

    Article  Google Scholar 

  8. Ahmed A, Singh J, Khan Y, Seshan SV, Girardi G. A new mouse model to explore therapies for preeclampsia. PLoS One. 2010;5(10):e13663.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumasawa K, Ikawa M, Kidoya H, et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci of the U S A. 2011;108(4):1451–1455.

    Article  CAS  Google Scholar 

  10. Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension. 2011;58(4):716–724.

    Article  CAS  PubMed  Google Scholar 

  11. Torry DS, Mukherjea D, Arroyo J, Torry RJ. Expression and function of placenta growth factor: implications for abnormal placentation. J Soc Gynecol Invest. 2003;10(4):178–188.

    Article  CAS  Google Scholar 

  12. Levine RJ, Lam C, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672.

    Article  CAS  PubMed  Google Scholar 

  13. Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.

    Article  CAS  PubMed  Google Scholar 

  14. Berends AL, de Groot CJ, Sijbrands EJ, et al. Shared constitutional risks for maternal vascular-related pregnancy complications and future cardiovascular disease. Hypertension. 2008;51(4):1034–1041.

    Article  CAS  PubMed  Google Scholar 

  15. Shi GX, Jin L, Andres DA. A Rit GTPase-p38 mitogen-activated protein kinase survival pathway confers resistance to cellular stress. Mol Cell Biol. 2011;31(10):1938–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yano M, Matsumura T, Senokuchi T, et al. Statins activate peroxisome proliferator-activated receptor through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase–dependent cyclooxygenase-2 expression in macrophages. Circ Res. 2007;100(10):1442–1451.

    Article  CAS  PubMed  Google Scholar 

  17. Takenouchi Y, Kobayashi T, Matsumoto T, et al. Possible involvement of Akt activity in endothelial dysfunction in type 2 diabetic mice. J Pharmacol Sci. 2008;106(4):600–681.

    Article  CAS  PubMed  Google Scholar 

  18. Shiota M, Hikita Y, Kawamoto Y, et al. Pravastatin-induced proangiogenic effects depend upon extracellular FGF-2. J Cell Mol Med. 2012;16(9):2001–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen JC, Huang KC, Lin WW. HMG–CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Sign. 2006;18(1):32–39.

    Article  CAS  Google Scholar 

  20. Hinkelmann U, Grosser N, Erdmann K, Schröder H, Immenschuh S. Simvastatin-dependent up-regulation of heme oxygenase-1 via mRNA stabilization in human endothelial cells. Eur J Pharm Sci. 2010;41(1):118–124.

    Article  CAS  PubMed  Google Scholar 

  21. Cudmore M, Ahmad S, Al-Ani B, et al. Negative regulation of soluble flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2007;115(13):1789–1797.

    Article  CAS  PubMed  Google Scholar 

  22. Nadeau V1, Charron J. Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Development. 2014;141(14):2825–2837. doi:10.1242/dev.107409.

    Article  CAS  PubMed  Google Scholar 

  23. Torry DS, Mukherjea D, Arroyo J, Torry RJ. Expression and function of placenta growth factor: implications for abnormal placentation. J Soc Gynecol Investig. 2003;10(4):178–188.

    Article  CAS  PubMed  Google Scholar 

  24. Breitwieser W, Lyons S, Flenniken AM, et al. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev. 2007;21(16):2069–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. San Martin S, Fitzgerald JS, Weber M, et al. STAT3 and SOCS3 expression patterns during murine placenta development. Eur J Histochem. 2013;57(2):e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rana S, Rajakumar A, Geahchan C, et al. Ouabain inhibits placental sFlt1 production by repressing HSP27 dependent HIF-1α pathway. FASEB J. 2014;28(10):4324–4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ofori B, Rey E, Berard A. Risk of congenital anomalies in pregnant users of statin drugs. Br J Clin Pharmacol. 2007;64(4):496.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Taguchi N, Rubin ET, Hosokawa A, et al. Prenatal exposure to HMG-CoA reductase inhibitor: effects on fetal and neonatal outcomes. Reprod Toxicol. 2008;26(2):175.

    Article  CAS  PubMed  Google Scholar 

  29. Petersen EE, Mitchell AA, Carey JC, et al. Maternal exposure to statins and risk for birth defects. Am J Med Gen. 2008;146A(20):2701–2705.

    Article  Google Scholar 

  30. Winterfeld U, Allignol A, Panchaud A, et al. Pregnancy outcome following maternal exposure to statins: a multicentre prospective study. Br J Obstet Gynaecol. 2013;120(4):463–471.

    Article  CAS  Google Scholar 

  31. Bateman BT, Hernandez-Diaz S, Fischer MA, et al. Statins and congenital malformations: cohort study. BMJ. 2015;350:h1035.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zarek J, Degorter MK, Lubetsky A, et al. The transfer of pravastatin in the dually perfused human placenta. Placenta. 2013;34(8):719–721.

    Article  CAS  PubMed  Google Scholar 

  33. Nanovskaya TN, Patrikeeva SL, Paul J, Costantine M, Hankins GDV, Ahmed MS. Transplacental transfer and distribution of pravastatin. Am J Obstet Gynecol. 2013;209(4):373.e1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Woollett LA. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. Am J Clin Nutr. 2005;82(6):1155–1161.

    Article  CAS  PubMed  Google Scholar 

  35. Ethier-Chiasson M, Duchesne A, Forest JC, et al. Influence of maternal lipid profile on placental protein expression of LDLr and SR-BI. Biochem Biophys Res Commun. 2007;359(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  36. Kazmin A, Garcia-Bournissen F, Koren G. Risks of statin use during pregnancy: a systematic review. J Obstet Gynaecol Can. 2007;29(11):906–908.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Saad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, A.F., Diken, Z.M., Kechichian, T.B. et al. Pravastatin Effects on Placental Prosurvival Molecular Pathways in a Mouse Model of Preeclampsia. Reprod. Sci. 23, 1593–1599 (2016). https://doi.org/10.1177/1933719116648218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116648218

Keywords

Navigation