Skip to main content
Log in

Brain endothelial cells as pharmacological targets in brain tumors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The blood-brain barrier contributes to brain homeostasis by controlling the access of nutrients and toxic substances to the central nervous system (CNS). The acquired brain endothelial cells phenotype results from their sustained interactions with their microenvironment. The endothelial component is involved in the development and progression of most CNS diseases such as brain tumors, Alzheimer’s disease, or stroke, for which efficient treatments remain to be discovered. The endothelium constitutes an attractive therapeutical target, particularly in the case of brain tumors, because of the high level of angiogenesis associated with this disease. Drug development based on targeting differential protein expression in the vasculature associated with normal tissues or with disease states holds great potential. This article highlights some of the growing body of evidence showing molecular differences between the vascular bed phenotype of normal and pathological endothelium, with a particular focus on brain tumor endothelium targets, which may play crucial roles in the development of brain cancers. Finally, an overview is presented of the emerging therapies for brain tumors that take the endothelial component into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribatti D., Nico B., Vacca A., Roncali L., Dammacco F. (2002). Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem. Cell Res. 11, 81–90.

    PubMed  Google Scholar 

  2. Ghitescu L., Robert M. (2002). Diversity in unity: the biochemical composition of the endothelial cell surface varies between the vascular beds. Microsc. Res. Tech. 57, 381–389.

    PubMed  CAS  Google Scholar 

  3. Aird W. C. (2003). Endothelial cell heterogeneity. Crit. Care Med. Apr. 31, S221-S230.

    Google Scholar 

  4. Pardridge W. M. (1999). Blood-brain barrier biology and methodology. J. Neurovirol. 5, 556–569.

    PubMed  CAS  Google Scholar 

  5. Kusuhara H., Sugiyama Y. (2001). Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (part 1). Drug Discov. Today 6, 150–156.

    CAS  Google Scholar 

  6. Kusuhara H., Sugiyama Y. (2001). Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (part 2). Drug Discov. Today 6, 206–212.

    CAS  Google Scholar 

  7. Tsuji A., Tamai I., I. (1999). Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 36, 277–290.

    CAS  Google Scholar 

  8. Dehouck B., Fenart L., Dehouck M. P., Pierce A., Torpier G., Cecchelli R. (1997). A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138, 877–889.

    PubMed  CAS  Google Scholar 

  9. Fillebeen C., Descamps L., Dehouck M. P., et al. (1999). Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J. Biol. Chem. 274, 7011–7017.

    PubMed  CAS  Google Scholar 

  10. Habgood M. D., Begley D. J., Abbott N. J. (2000). Determinants of passive drug entry into the central nervous system. Cell Mol. Neurobiol. 20, 231–253.

    PubMed  CAS  Google Scholar 

  11. van Asperen J., Mayer U., van Tellingen O., Beijnen J. H. (1997). The functional role of P-glycoprotein in the blood-brain barrier. J. Pharm. Sci. 86, 881–884.

    PubMed  Google Scholar 

  12. Schinkel A. H. (1999). P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 36, 179–194.

    CAS  Google Scholar 

  13. Banks W. A. (1999). Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative diseases. J. Neurvirol. 5, 538–555.

    CAS  Google Scholar 

  14. Fleischhack G., Reif S., Hasan C., Jaehde U., Hettmer S., Bode U. (2001). Feasibility of intraventricular administration of etoposide in patients with metastatic brain tumours. Br. J. Cancer 84, 1453–1459.

    PubMed  CAS  Google Scholar 

  15. Gregor A., Lind M., Newman H., et al. (1999). Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. RMP-7 European Study Group. J. Neurooncol. 44, 137–145.

    PubMed  CAS  Google Scholar 

  16. Borlongan C. V., Emerich D. F. (2003). Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: Laboratory and preliminary clinical evidence from bradykinin receptor agonist. Cereport. Brain Res. Bull. 60, 297–306.

    PubMed  CAS  Google Scholar 

  17. Zhou R., Mazurchuk R., Straubinger R. M. (2002). Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res. 62, 2561–2566.

    PubMed  CAS  Google Scholar 

  18. Brigger I., Morizet J., Aubert G., et al. (2002). Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol. Exp. Ther. 303, 928–936.

    PubMed  CAS  Google Scholar 

  19. Cornford E. M., Cornford M. E. (2002). New systems for delivery of drugs to the brain in neurological disease. Lancet Neurol. 1, 306–315.

    PubMed  CAS  Google Scholar 

  20. Demeule M., Poirier J., Jodoin J., et al. (2002). High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J. Neurochem. 83, 924–933.

    PubMed  CAS  Google Scholar 

  21. Bickel U., Yoshikawa T., Pardridge W. M. (2001). Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Deliv. Rev. 46, 247–279.

    PubMed  CAS  Google Scholar 

  22. Derossi D., Joliot A. H., Chassaing G., Prochiantz A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10,444–10,450.

    CAS  Google Scholar 

  23. Pooga M., Kut C., Kihlmark M., et al. (2001). Cellular translocation of proteins by transportan. FASEB J. 15, 1451–1453.

    PubMed  CAS  Google Scholar 

  24. Drin G., Rousselle C., Scherrmann J. M., Rees A. R., Temsamani J. (2002). Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors. AAPS. Pharm. Sci. 4, 26.

    Google Scholar 

  25. Fawell S., Seery J., Daikh Y., et al. (1994). Tatmediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664–668.

    PubMed  CAS  Google Scholar 

  26. Schwarze S. R., Ho A., Vocero-Akbani A., Dowdy S. F. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.

    PubMed  CAS  Google Scholar 

  27. Wu D., Pardridge W. M. (1998). Pharmacokinetics and blood-brain barrier transport of an anti-transferrin receptor monoclonal antibody (OX26) in rats after chronic treatment with the antibody. Drug Metab. Dispos. 26, 937–939.

    PubMed  CAS  Google Scholar 

  28. Wu D., Song B. W., Vinters H. V., Pardridge W. M. (2002). Pharmacokinetics and brain uptake of biotinylated basic fibroblast growth factor conjugated to a blood-brain barrier drug delivery system. J. Drug Target. 10, 239–245.

    PubMed  CAS  Google Scholar 

  29. Pardridge W. M. (2001). Brain drug targeting and gene technologies. Jpn. J. Pharmacol. 87, 97–103.

    PubMed  CAS  Google Scholar 

  30. Huber J. D., Egleton R. D., Davis T. P. (2001). Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends. Neurosci. 24, 719–725.

    PubMed  CAS  Google Scholar 

  31. Buee L., Hof P. R., Bouras C., et al. (1994). Pathological alterations of the cerebral microvasculature in Alzheimer’s disease and related dementing disorders. Acta Neuropathol. (Berl.) 87, 469–480.

    CAS  Google Scholar 

  32. Jancso G., Domoki F., Santha P., et al. (1998). Beta-amyloid (1–42) peptide impairs blood-brain barrier function after intracarotid infusion in rats. Neurosci. Lett. 253, 139–141.

    PubMed  CAS  Google Scholar 

  33. Mattila K. M., Pirttila T., Blennow K., Wallin A., Viitanen M., Frey H. (1994). Altered blood-brain-barrier function in Alzheimer’s disease? Acta Neurol. Scand. 89, 192–198.

    PubMed  CAS  Google Scholar 

  34. Thomas T., Thomas G., McLendon C., Sutton T., Mullan M. (1996). beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171.

    PubMed  CAS  Google Scholar 

  35. Horani M. H., Mooradian A. D. (2003). Effect of diabetes on the blood-brain barrier. Curr. Pharm. Des. 9, 833–840.

    PubMed  CAS  Google Scholar 

  36. Wardlaw J. M., Sandercock P. A., Dennis M. S., Starr J. (2003). Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34, 806–812.

    PubMed  CAS  Google Scholar 

  37. Behin A., Hoang-Xuan K., Carpentier A. F., Delattre J. Y. (2003). Primary brain tumours in adults. Lancet 361, 323–331.

    PubMed  Google Scholar 

  38. Sawaya R. (1999). Extent of resection in malignant gliomas: a critical summary. J. Neurooncol. 42, 303–305.

    PubMed  CAS  Google Scholar 

  39. Jolesz F. A., Talos I. F., Schwartz R. B., et al. (2002). Intraoperative magnetic resonance imaging and magnetic resonance imaging-guided therapy for brain tumors. Neuroimaging. Clin. N. Am. 12, 665–683.

    PubMed  Google Scholar 

  40. Kleihues P., Ohgaki H. (1999). Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncology 1, 44–51.

    PubMed  CAS  Google Scholar 

  41. Berg G., Blomquist E., Cavallin-Stahl E. (2003). A systematic overview of radiation therapy effects in brain tumours. Acta. Oncol. 42, 582–588.

    PubMed  Google Scholar 

  42. Karim A. B., Afra D., Cornu P., et al. (2002). Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult. European Organization for Research and Treatment of Cancer Study 22845 with the Medical Research Council Study BRO4: an interim analysis. Int. J. Radiat. Oncol. Biol. Phys. 52, 316–324.

    PubMed  Google Scholar 

  43. Deangelis L. M. (2003). Benefits of adjuvant chemotherapy in high-grade gliomas. Semin. Oncol. 30, 15–18.

    PubMed  CAS  Google Scholar 

  44. Westphal M., Hilt D. C., Bortey E., et al. (2003). A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncology 5, 79–88.

    PubMed  CAS  Google Scholar 

  45. Sansur C. A., Chin L. S., Ames J. W., et al. (2000). Gamma knife radiosurgery for the treatment of brain metastases. Stereotact. Funct. Neurosurg. 74, 37–51.

    PubMed  CAS  Google Scholar 

  46. Gerosa M., Nicolato A., Foroni R. (2003). The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors. Curr. Opin. Oncol. 15, 188–196.

    PubMed  Google Scholar 

  47. Jaeckle K. A., Hess K. R., Yung W. K., et al. (2003). Phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and progressive malignant glioma: a North American Brain Tumor Consortium Study. J. Clin. Oncol. 21, 2305–2311.

    PubMed  CAS  Google Scholar 

  48. Marras C., Mendola C., Legnani F. G., DiMeco F. (2003). Immunotherapy and biological modifiers for the treatment of malignant brain tumors. Curr. Opin. Oncol. 15, 204–208.

    PubMed  CAS  Google Scholar 

  49. Folkman J., Klagsbrun M. (1987). Angiogenic factors. Science 235, 442–447.

    PubMed  CAS  Google Scholar 

  50. Folkman J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18.

    PubMed  CAS  Google Scholar 

  51. O’Reilly M. S., Holmgren L., Shing Y., et al. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    PubMed  CAS  Google Scholar 

  52. Cao Y., Chen A., An S. S., Ji R. W., Davidson D., Llinas M. (1997). Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272, 22,924–22,928.

    CAS  Google Scholar 

  53. O’Reilly M. S., Boehm T., Shing Y., et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    PubMed  CAS  Google Scholar 

  54. Kamphaus G. D., Colorado P. C., Panka D. J., et al. (2000). Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem. 275, 1209–1215.

    PubMed  CAS  Google Scholar 

  55. Maeshima Y., Colorado P. C., Torre A., et al. (2000). Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J. Biol. Chem. 275, 21,340–21,348.

    CAS  Google Scholar 

  56. Yi M., Ruslahti E. (2001). A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc. Natl. Acad. Sci. USA 98, 620–624.

    PubMed  CAS  Google Scholar 

  57. Clapp C., Martial J. A., Guzman R. C., Rentier-Delure F., Weiner R. I. (1993). The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133, 1292–1299.

    PubMed  CAS  Google Scholar 

  58. Brooks P. C., Silletti S., von Schalscha T. L., Friedlander M., Cheresh D. A. (1998). Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400.

    PubMed  CAS  Google Scholar 

  59. Pike S. E., Yao L., Jones K. D., et al. (1998). Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188, 2349–2356.

    PubMed  CAS  Google Scholar 

  60. Cao Y., Cao R. (1999). Angiogenesis inhibited by drinking tea. Nature 398, 381.

    PubMed  CAS  Google Scholar 

  61. Strik H. M., Schluesener H. J., Seid K., Meyermann R., Deininger M. H. (2001). Localization of endostatin in rat and human gliomas. Cancer 91, 1013–1019.

    PubMed  CAS  Google Scholar 

  62. Morimoto T., Aoyagi M., Tamaki M., et al. (2002). Increased levels of tissue endostatin in human malignant gliomas. Clin. Cancer Res. 8, 2933–2938.

    PubMed  CAS  Google Scholar 

  63. McCarty M. F., Liu W., Fan F., et al. (2003). Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trends. Mol. Med. 9, 53–58.

    PubMed  CAS  Google Scholar 

  64. Wang J. L., Liu Y. H., Lee M. C., et al. (2000). Identification of tumor angiogenesis-related genes by subtractive hybridization. Microvasc. Res. 59, 394–397.

    PubMed  CAS  Google Scholar 

  65. Aitkenhead M., Wang S. J., Nakatsu M. N., Mestas J., Heard C., Hughes C. C. (2002). Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM. Microvasc. Res. 63, 159–171.

    PubMed  CAS  Google Scholar 

  66. Wary K. K., Thakker G. D., Humtsoe J. O., Yang J. (2003). Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Mol. Cancer 2, 25.

    PubMed  Google Scholar 

  67. Favre C. J., Mancuso M., Mass K., Mclean J. W., Baluk P., Mcdonald D. M. (2003). Expression of genes involved in vascular development and angiogenesis in endothelial cells freshly isolated from adult lungs. Am. J. Physiol. Heart. Circ. Physiol. 285, H1917-H1938.

    PubMed  CAS  Google Scholar 

  68. Yang R. B., Ng C. K., Wasserman S. M., et al. (2002). Identification of a novel family of cell-surface proteins expressed in human vascular endothelium. J. Biol. Chem. 277, 46,364–46,373.

    CAS  Google Scholar 

  69. Shusta E. V., Boado R. J., Pardridge W. M. (2002). Vascular proteomics and subtractive antibody expression cloning. Mol. Cell Proteomics. 1, 75–82.

    PubMed  CAS  Google Scholar 

  70. Boado R. J., Li J. Y., Pardridge W. M. (2000). Selective Lutheran glycoprotein gene expression at the blood-brain barrier in normal brain and in human brain tumors. J. Cereb. Blood Flow Metab. 20, 1096–1102.

    PubMed  CAS  Google Scholar 

  71. St Croix B., Rago C., Velculescu V., et al. (2000). Genes expressed in human tumor endothelium. Science 289, 1197–1202.

    PubMed  CAS  Google Scholar 

  72. Papadopoulos M. C., Saadoun S., Davies D. C., Bell B. A. (2001). Emerging molecular mechanisms of brain tumour oedema. Br. J. Neurosurg. 15, 101–108.

    PubMed  CAS  Google Scholar 

  73. Boado R. J., Black K. L., Pardridge W. M. (1994). Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res. Mol. Brain Res. 27, 51–57.

    PubMed  CAS  Google Scholar 

  74. Sonoda Y., Kanamori M., Deen D. F., Cheng S. Y., Berger M. S., Pieper R. O. (2003). Overexpression of vascular endothelial growth factor isoforms drives oxygenation and growth but not progression to glioblastoma multiforme in a human model of gliomagenesis. Cancer Res. 63, 1962–1968.

    PubMed  CAS  Google Scholar 

  75. Carmeliet P., Jain R. K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    PubMed  CAS  Google Scholar 

  76. Yancopoulos G. D., Davis S., Gale N. W., Rudge J. S., Wiegand S. J., Holash J. (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248.

    PubMed  CAS  Google Scholar 

  77. Tse V., Xu L., Yung Y. C., et al.: 4th (2003). The temporal-spatial expression of VEGF, angiopoietins-1 and 2, and Tie-2 during tumor angiogenesis and their functional correlation with tumor neovascular architecture. Neurol Res. 25(7), 729–738.

    PubMed  CAS  Google Scholar 

  78. Demeule M., Labelle M., Régina A., Berthelet F., Béliveau R. (2001). Isolation of endothelial cells from brain, lung, and kidney: expression of the multidrug resistance P-glycoprotein isoforms. Biochem. Biophys. Res. Commun. 281, 827–834.

    PubMed  CAS  Google Scholar 

  79. Kruse C. A., Molleston M. C., Parks E. P., Schiltz P. M., Kleinschmidt-DeMasters B. K., Hickey W. F. (1994). A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J. Neurooncol. 22, 191–200.

    PubMed  CAS  Google Scholar 

  80. Peoc’h M., Le Duc G., Trayaud A., et al. (1999). Quantification and distribution of neovascularization following microinjection of C6 glioma cells in rat brain. Anticancer Res. 19, 3025–3030.

    PubMed  CAS  Google Scholar 

  81. Beranek J. T. (2002). Endothelial hyperplasia: an important indicator of actual angiogenesis. Br. J. Cancer 86, 658.

    PubMed  CAS  Google Scholar 

  82. Regina A., Demeule M., Berube A., Moumdjian R., Berthelet F., Believau R. (2003). Differences in multidrug resistance phenotype and matrix metalloproteinases activity between endothelial cells from normal brain and glioma. J. Neurochem. 84, 316–324.

    PubMed  CAS  Google Scholar 

  83. Cordon-Cardo C., O’Brien J. P., Casals D., et al. (1989). Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86, 695–698.

    PubMed  CAS  Google Scholar 

  84. Smit J. J., Schinkel A. H., Oude E. R., et al. (1993). Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462.

    PubMed  CAS  Google Scholar 

  85. Schinkel A. H., Smit J. J., van Tellingen O., et al. (1994). Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502.

    PubMed  CAS  Google Scholar 

  86. Schinkel A. H. (1997). The physiological function of drug-transporting P-glycoproteins. Semin. Cancer Biol. 8, 161–170.

    PubMed  CAS  Google Scholar 

  87. Schinkel A. H. (1998). Pharmacological insights from P-glycoprotein knockout mice. Int. J. Clin. Pharmacol. Ther. 36, 9–13.

    PubMed  CAS  Google Scholar 

  88. Karssen A. M., Meijer O. C., van d. S. I., et al. (2001). Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142, 2686–2694.

    PubMed  CAS  Google Scholar 

  89. Karssen A. M., Meijer O. C., van d. S. I., De Boer A. G., De Lange E. C., De Kloet E. R. (2002). The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J. Endocrinol. 175, 251–260.

    PubMed  CAS  Google Scholar 

  90. Debry P., Nash E. A., Neklason D. W., Metherall J. E. (1997). Role of multidrug resistance P-glycoproteins in cholesterol esterification. J. Biol. Chem. 272, 1026–1031.

    PubMed  CAS  Google Scholar 

  91. Zhang L., Sachs C. W., Fu H. W., Fine R. L., Casey P. J. (1995). Characterization of prenylcysteines that interact with P-glycoprotein and inhibit drug transport in tumor cells. J. Biol. Chem. 270, 22,859–22,865.

    CAS  Google Scholar 

  92. Lam F. C., Liu R., Lu P., et al. (2001). beta-Amyloid efflux mediated by p-glycoprotein. J. Neurochem. 76, 1121–1128.

    PubMed  CAS  Google Scholar 

  93. Demeule M., Regina A., Jodoin J., et al. (2002). Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul. Pharmacol. 38, 339–348.

    PubMed  CAS  Google Scholar 

  94. Toth K., Vaughan M. M., Peress N. S., Slocum H. K., Rustum Y. M. (1996). MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am. J. Pathol. 149, 853–858.

    PubMed  CAS  Google Scholar 

  95. Sawada T., Kato Y., Sakayori N., Takekawa Y., Kobayashi M. (1999). Expression of the multidrug-resistance P-glycoprotein (Pgp, MDR-1) by endothelial cells of the neovasculature in central nervous system tumors. Brain Tumor Pathol. 16, 23–27.

    PubMed  CAS  Google Scholar 

  96. Sawada T., Kato Y., Kobayashi M., Takekekawa Y. (2000). Immunohistochemical study of tight junction-related protein in neovasculature in astrocytic tumor. Brain Tumor Pathol. 17, 1–6.

    PubMed  Google Scholar 

  97. Bertossi M., Virgintino D., Maiorano E., Occhiogrosso M., Roncali L. (1997). Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct. Pathol. 21, 41–49.

    PubMed  CAS  Google Scholar 

  98. Regina A., Koman A., Piciotti M., et al. (1998). Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71, 705–715.

    PubMed  CAS  Google Scholar 

  99. Seetharaman S., Maskell L., Scheper R. J., Barrand M. A. (1998). Changes in multidrug transporter protein expression in endothelial cells cultured from isolated human brain microvessels. Int. J. Clin. Pharmacol. Ther. 36, 81–83.

    PubMed  CAS  Google Scholar 

  100. Arosarena O., Guerin C., Brem H., Laterra J. (1994). Endothelial differentiation in intracerebral and subcutaneous experimental gliomas. Brain Res. 640, 98–104.

    PubMed  CAS  Google Scholar 

  101. Spiegl-Kreinecker S., Buchroithner J., Elbling L., et al. (2002). Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes. J. Neurooncol. 57, 27–36.

    PubMed  Google Scholar 

  102. Decleves X., Fajac A., Lehmann-Che J., et al. (2002). Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines. Int. J. Cancer 98, 173–180.

    PubMed  CAS  Google Scholar 

  103. Demeule M., Shedid D., Beaulieu E., et al. (2001). Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int. J. Cancer 93, 62–66.

    PubMed  CAS  Google Scholar 

  104. Thomas H., Coley H. M. (2003). Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control. 10, 159–165.

    PubMed  Google Scholar 

  105. Plow E. F., Herren T., Redlitz A., Miles L. A., Hoover-Plow J. L. (1995). The cell biology of the plasminogen system. FASEB J. 9, 939–945.

    PubMed  CAS  Google Scholar 

  106. Pepper M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 21, 1104–1117.

    PubMed  CAS  Google Scholar 

  107. Graham C. H., Fitzpatrick T. E., McCrae K. R. (1998). Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway. Blood 91, 3300–3307.

    PubMed  CAS  Google Scholar 

  108. Cavallaro U., Tenan M., Castelli V., et al. (2001). Response of bovine endothelial cells to FGF-2 and VEGF is dependent on their site of origin: relevance to the regulation of angiogensis. J. Cell Biochem. 82, 619–633.

    PubMed  CAS  Google Scholar 

  109. VanMeter T. E., Rooprai H. K., Kibble M. M., Fillmore H. L., Broaddus W. C., Pilkington G. J. (2001). The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J. Neurooncol. 53, 213–235.

    PubMed  CAS  Google Scholar 

  110. Birkedal-Hansen H. (1995). Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728–735.

    PubMed  CAS  Google Scholar 

  111. Forget M. A., Desrosiers R. R., Beliveau R. (1999). Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis. Can. J. Physiol. Pharmacol. 77, 465–480.

    PubMed  CAS  Google Scholar 

  112. Vince G. H., Wagner S., Pietsch T., et al. (1999). Heterogeneous regional expression patterns of matrix metalloproteinases in human malignant gliomas. Int. J. Dev. Neurosci. 17, 437–445.

    PubMed  CAS  Google Scholar 

  113. Raithatha S. A., Muzik H., Rewcastle N. B., Johnston R. N., Edwards D. R., Forsyth P. A. (2000). Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro Oncology 2, 145–150.

    PubMed  CAS  Google Scholar 

  114. Friedberg M. H., Glantz M. J., Klempner M. S., Cole B. F., Perides G. (1998). Specific matrix metalloproteinase profiles in the cerebrospinal fluid correlated with the presence of malignant astrocytomas, brain metastases, and carcinomatous meningitis. Cancer 82, 923–930.

    PubMed  CAS  Google Scholar 

  115. Killion J. J., Radinsky R., Fidler I. J. (1998). Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279–284.

    PubMed  Google Scholar 

  116. Egidy G., Eberl L. P., Valdenaire O., et al. (2000). The endothelin system in human glioblastoma. Lab. Invest. 80, 1681–1689.

    PubMed  CAS  Google Scholar 

  117. Hansen-Schwartz J., Szok D., Edvinsson L. (2002). Expression of ET(A) and ET(B) receptor mRNA in human cerebral arteries. Br. J. Neurosurg. 16, 149–153.

    PubMed  CAS  Google Scholar 

  118. Bagnato A., Spinella F. (2003). Emerging role of endothelin-1 in tumor angiogenesis. Trends. Endocrinol. Metab. 14, 44–50.

    PubMed  CAS  Google Scholar 

  119. Régina A., Jodoin J., Khoueir P., et al. (2004). Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J. Neurosci. Res. 75, 291–299.

    PubMed  Google Scholar 

  120. Razani B., Woodman S. E., Lisanti M. P. (2002). Caveolae: from cells biology to animal physiology. Pharmacol. Rev. 54, 431–467.

    PubMed  CAS  Google Scholar 

  121. Liu P., Rudick M., Anderson R. G. (2002). Multiple functions of caveolin-1. J. Biol. Chem. 277, 41,295–41,298.

    CAS  Google Scholar 

  122. Galbiati F., Volonte D., Engelman J. A., et al. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17, 6633–6648.

    PubMed  CAS  Google Scholar 

  123. Fiucci G., Ravid D., Reich R., Liscovitch M. (2002). Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21, 2365–2375.

    PubMed  CAS  Google Scholar 

  124. Liu J., Wang X. B., Park D. S., Lisanti M. P. (2002). Caveolin-1 expression enhances endothelial capillary tubule formation. J. Biol. Chem. 277, 10,661–10,668.

    CAS  Google Scholar 

  125. Enslen H., Davis R. J. (2001). Regulation of MAP kinases by docking domains. Biol. Cell 93, 5–14.

    PubMed  CAS  Google Scholar 

  126. Cohen A. W., Park D. S., Woodman S. E., et al. (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 284, C457-C474.

    PubMed  CAS  Google Scholar 

  127. Mandell J. W., Hussaini I. M., Zecevic M., Weber M. J., VandenBerg S. R. (1998). In situ visualization of intratumor growth factor signaling: immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms. Am. J. Pathol. 153, 1411–1423.

    PubMed  CAS  Google Scholar 

  128. Lakka S. S., Jasti S. L., Gondi C., et al. (2002). Downregulation of MMP-9 in ERK-mutated stable transfectants inhibits glioma invasion in vitro. Oncogene 21, 5601–5608.

    PubMed  CAS  Google Scholar 

  129. Labrecque L., Royal I., Surprenant D. S., Patterson C., Gingras D., Beliveau R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol. Biol. Cell. 14, 334–347.

    PubMed  CAS  Google Scholar 

  130. Bello L., Francolini M., Marthyn P., et al. (2001). alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49, 380–389.

    PubMed  CAS  Google Scholar 

  131. Bello L., Lucini V., Giussani C., et al. (2003). IS20I, a specific alphavbeta3 integrin inhibitor, reduces glioma growth in vivo. Neurosurgery 52, 177–185.

    PubMed  Google Scholar 

  132. Wild-Bode C., Weller M., Rimner A., Dichgans J., Wick W. (2001). Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res. 61, 2744–2750.

    PubMed  CAS  Google Scholar 

  133. Wick W., Wick A., Schulz J. B., Dichgans J., Rodemann H. P., Weller M. (2002). Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res. 62, 1915–1919.

    PubMed  CAS  Google Scholar 

  134. Qian L. W., Mizumoto K., Urashima T., et al. (2002). Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin. Cancer Res. 8, 1223–1227.

    PubMed  CAS  Google Scholar 

  135. Huang R. P., Fan Y., Boynton A. L. (1999). UV irradiation upregulates Egr-1 expression at transcription level. J. Cell Biochem. 73, 227–236.

    PubMed  CAS  Google Scholar 

  136. Datta R., Taneja N., Sukhatme V. P., Qureshi S. A., Weichselbaum R., Kufe D. W. (1993). Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc. Natl. Acad. Sci. USA 90, 2419–2422.

    PubMed  CAS  Google Scholar 

  137. Weichselbaum R. R., Hallahan D., Fuks Z., Kufe D. (1994). Radiation induction of immediate early genes: effectors of the radiationstress response. Int. J. Radiat. Oncol. Biol. Phys. 30, 229–234.

    PubMed  CAS  Google Scholar 

  138. Thiel G., Cibelli G. (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J. Cell Physiol. 193, 287–292.

    PubMed  CAS  Google Scholar 

  139. Haas T. L., Stitelman D., Davis S. J., Apte S. S., Madri J. A. (1999). Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase in endothelium. J. Biol. Chem. 274, 22,679–22,685.

    CAS  Google Scholar 

  140. Yamaguchi S., Yamaguchi M., Yatsuyanagi E., et al. (2002). Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab. Invest. 82, 949–956.

    PubMed  CAS  Google Scholar 

  141. Hallahan D. E., Qu S., Geng L., et al. (2001). Radiation-mediated control of drug delivery. Am. J. Clin. Oncol. 24, 473–480.

    PubMed  CAS  Google Scholar 

  142. Meineke V., Gilbertz K. P., Schilperoort K., et al. (2002). Ionizing radiation modulates cell surface integrin expression and adhesion of COLO-320 cells to collagen and fibronectin in vitro. Strahlenther. Onkol. 178, 709–714.

    PubMed  Google Scholar 

  143. Heckmann M., Douwes K., Peter R., Degitz K. (1998). Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation. Exp. Cell Res. 238, 148–154.

    PubMed  CAS  Google Scholar 

  144. Hallahan D., Geng L., Qu S., et al. (2003). Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3, 63–74.

    PubMed  CAS  Google Scholar 

  145. Kiani M. F., Yuan H., Chen X., Smith L., Gaber M. W., Goetz D. J. (2002). Targeting microparticles to select tissue via radiation-induced upregulation of endothelial cell adhesion molecules. Pharm. Res. 19, 1317–1322.

    PubMed  CAS  Google Scholar 

  146. Paris F., Fuks Z., Kang A., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297.

    PubMed  CAS  Google Scholar 

  147. Garcia-Barros M., Paris F., Cordon-Cardo C., et al. (2003). Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159.

    PubMed  CAS  Google Scholar 

  148. Mirsky N., Krispel Y., Shoshany Y., Maltz L., Oron U. (2002). Promotion of angiogenesis by low energy laser irradiation. Antioxid. Redox. Signal. 4, 785–790.

    PubMed  CAS  Google Scholar 

  149. Sonveaux P., Brouet A., Havaux X., et al. (2003). Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res. 63, 1012–1019.

    PubMed  CAS  Google Scholar 

  150. Hast J., Schiffer I. B., Neugebauer B., et al. (2002). Angiogenesis and fibroblast proliferation precede formation of recurrent tumors after radiation therapy in nude mice. Anticancer Res. 22, 677–688.

    PubMed  CAS  Google Scholar 

  151. Landuyt W., Ahmed B., Nuyts S., et al. (2001). In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int. J. Radiat. Oncol. Biol. Phys. 49, 443–450.

    PubMed  CAS  Google Scholar 

  152. Griscelli F., Li H., Cheong C., et al. (2000). Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. Proc. Natl. Acad. Sci. USA 97, 6698–6703.

    PubMed  CAS  Google Scholar 

  153. Gorski D. H., Mauceri H. J., Salloum R. M., Halpern A., Seetharam S., Weichselbaum R. R. (2003). Prolonged treatment with angiostatin reduces metastatic burden during radiation therapy. Cancer Res. 63, 308–311.

    PubMed  CAS  Google Scholar 

  154. Ning S., Laird D., Cherrington J. M., Knox S. J. (2002). The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat. Res. 157, 45–51.

    PubMed  CAS  Google Scholar 

  155. Hess C., Vuong V., Hegyi I., et al. (2001). Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Br. J. Cancer 85, 2010–2016.

    PubMed  CAS  Google Scholar 

  156. Lamy S., Gingras D., Beliveau R. (2002). Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res. 62, 381–385.

    PubMed  CAS  Google Scholar 

  157. Demeule M., Michaud-Levesque J., Annabi B., et al. (2002). Green tea catechins as novel antitumor and antiangiogenic compounds. Curr. Med. Chem. Anti.-Canc. Agents 2, 441–463.

    CAS  Google Scholar 

  158. Greenwald P., Clifford C. K., Milner J. A. (2001). Diet and cancer prevention. Eur. J. Cancer 2001. 37, 948–965.

    CAS  Google Scholar 

  159. Annabi B., Lee Y-T., Martel C., Pilorget A., Bahary J-P., Béliveau R. (2003). Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol(-)epigallocatechin-3-gallate. Cancer Biol. Ther 2, 642–649.

    PubMed  CAS  Google Scholar 

  160. Kinuya S., Kawashima A., Yokoyama K., et al. (2002). Cooperative effect of radioimmunotherapy and antiangiogenic therapy with thalidomide in human cancer xenografts. J. Nucl. Med. 43, 1084–1089.

    PubMed  CAS  Google Scholar 

  161. Curran W. J. (2002). New chemotherapeutic agents: update of major chemoradiation trials in solid tumors. Oncology 63, 29–38.

    PubMed  CAS  Google Scholar 

  162. Dicker A. P., Williams T. L., Grant D. S. (2001). Targeting angiogenic processes by combination rofecoxib and ionizing radiation. Am. J. Clin. Oncol. 24, 438–442.

    PubMed  CAS  Google Scholar 

  163. Prockop D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.

    PubMed  CAS  Google Scholar 

  164. Dennis J. E., Charbord P. (2002). Origin and differentiation of human and murine stroma. Stem. Cells 20, 205–214.

    PubMed  CAS  Google Scholar 

  165. Bianco P., Gehron R. P. (2000). Marrow stromal stem cells. J. Clin. Invest. 105, 1663–1668.

    PubMed  CAS  Google Scholar 

  166. Studeny M., Marini F. C., Champlin R. E., Zompetta C., Fidler I. J., Andreeff M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603–3608.

    PubMed  CAS  Google Scholar 

  167. Mezey E., Chandross K. J. (2000). Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 405, 297–302.

    PubMed  CAS  Google Scholar 

  168. Kopen G. C., Prockop D. J., Phinney D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10,711–10,716.

    CAS  Google Scholar 

  169. Annabi B., Lee Y. T., Turcotte S., et al. (2003). Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem. Cells 21, 337–347.

    PubMed  CAS  Google Scholar 

  170. Reyes M., Dudek A., Jahagirdar B., Koodie L., Marker P. H., Verfaillie C. M. (2002). Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109, 337–346.

    PubMed  CAS  Google Scholar 

  171. Al-Khaldi A., Eliopoulos N., Martineau D., Lejeune L., Lachapelle K., Galipeau J. (2003). Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. Apr. 10, 621–629.

    CAS  Google Scholar 

  172. Annabi B., Naud E., Lee Y. T., Eliopoulos N., Galipeau J. (2003). Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J. Cell. Biochem, 91, 1146–1158.

    Google Scholar 

  173. Al-Khaldi A., Al-Sabti H., Galipeau J., Lachapelle K. (2003). Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann. Thorac. Surg. 75, 204–209.

    PubMed  Google Scholar 

  174. Griscelli F., Li H., Bennaceur-Griscelli A., et al. (1998). Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc. Natl. Acad. Sci. USA 95, 6367–6372.

    PubMed  CAS  Google Scholar 

  175. Ma H. I., Lin S. Z., Chiang Y. H., et al. (2002). Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther. 9, 2–11.

    PubMed  CAS  Google Scholar 

  176. Peroulis I., Jonas N., Saleh M. (2002). Antiangiogenic activity of endostatin inhibits C6 glioma growth. Int. J. Cancer 97, 839–845.

    PubMed  CAS  Google Scholar 

  177. Lal B., Indurti R. R., Couraud P. O., Goldstein G. W., Laterra J. (1994). Endothelial cell implantation and survival within experimental gliomas. Proc. Natl. Acad. Sci. USA 91, 9695–9699.

    PubMed  CAS  Google Scholar 

  178. Quinonero J., Tchelingerian J. L., Vignais L., et al. (1997). Gene transfer to the central nervous system by transplantation of cerebral endothelial cells. Gene Ther. 4, 111–119.

    PubMed  CAS  Google Scholar 

  179. Ojeifo J. O., Lee H. R., Rezza P., Su N., Zwiebel J. A. (2001). Endothelial cell-based systemic gene therapy of metastatic melanoma. Cancer Gene Ther. 8, 636–648.

    PubMed  CAS  Google Scholar 

  180. De Bouard S., Guillamo J. S., Christov C., et al. (2003). Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum. Gene Ther. 14, 883–895.

    PubMed  Google Scholar 

  181. Takano S., Tsuboi K., Tomono Y., Mitsui Y., Nose T. (2000). Tissue factor, osteopontin alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br. J. Cancer 82, 1967–1973.

    PubMed  CAS  Google Scholar 

  182. Schaefer L. K., Ren Z., Fuller G. N., Schaefer T. S. (2002). Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21, 2058–2065.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Béliveau.

Additional information

Equal first authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demeule, M., Régina, A., Annabi, B. et al. Brain endothelial cells as pharmacological targets in brain tumors. Mol Neurobiol 30, 157–183 (2004). https://doi.org/10.1385/MN:30:2:157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:2:157

Index Entries

Navigation