Skip to main content

Advertisement

Log in

Familial and sporadic pancreatic cancer share the same molecular pathogenesis

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is nearly uniformly lethal, with a median overall survival in 2014 of only 6 months. The genetic progression of sporadic PDAC (SPC) is well established, with common somatic alterations in KRAS, p16/CDKN2A, TP53, and SMAD4/DPC4. Up to 10 % of all PDAC cases occur in families with two or more affected first-degree relatives (familial pancreatic cancer, FPC), but these cases do not appear to present at an obviously earlier age of onset. This is unusual because most familial cancer syndrome patients present at a substantially younger age than that of corresponding sporadic cases. Here we collated the reported age of onset for FPC and SPC from the literature. We then used an integrated approach including whole exomic sequencing, whole genome sequencing, RNA sequencing, and high density SNP microarrays to study a cohort of FPC cell lines and corresponding germline samples. We show that the four major SPC driver genes are also consistently altered in FPC and that each of the four detection strategies was able to detect the mutations in these genes, with one exception. We conclude that FPC undergoes a similar somatic molecular pathogenesis as SPC, and that the same gene targets can be used for early detection and minimal residual disease testing in FPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Howlader N NA, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (2013) SEER Cancer Statistics Review, 1975–2010, National Cancer Institute. SEER web site

  2. Petersen GM, Hruban RH (2003) Familial pancreatic cancer: where are we in 2003? J Natl Cancer Inst 95(3):180–181

    Article  PubMed  Google Scholar 

  3. Shi C, Hruban RH, Klein AP (2009) Familial pancreatic cancer. Arch Pathol Lab Med 133(3):365–374. doi:10.1043/1543-2165-133.3.365

    PubMed  Google Scholar 

  4. Klein AP, Brune KA, Petersen GM et al (2004) Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 64(7):2634–2638

    Article  CAS  PubMed  Google Scholar 

  5. Hruban RH, Canto MI, Goggins M, Schulick R, Klein AP (2010) Update on familial pancreatic cancer. Adv Surg 44:293–311

    Article  PubMed Central  PubMed  Google Scholar 

  6. Haddad A, Kowdley GC, Pawlik TM, Cunningham SC (2011) Hereditary pancreatic and hepatobiliary cancers. Int J Surg Oncol 2011:154673. doi:10.1155/2011/154673

    PubMed Central  PubMed  Google Scholar 

  7. Roberts NJ, Jiao Y, Yu J et al (2012) ATM mutations in patients with hereditary pancreatic cancer. Cancer Discovery 2(1):41–46. doi:10.1158/2159-8290.CD-11-0194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hruban RH, Wilentz RE, Kern SE (2000) Genetic progression in the pancreatic ducts. Am J Pathol 156(6):1821–1825. doi:10.1016/S0002-9440(10)65054-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Caldas C, Hahn SA, da Costa LT et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8(1):27–32. doi:10.1038/ng0994-27

    Article  CAS  PubMed  Google Scholar 

  10. Iacobuzio-Donahue CA, van der Heijden MS, Baumgartner MR et al (2004) Large-scale allelotype of pancreaticobiliary carcinoma provides quantitative estimates of genome-wide allelic loss. Cancer Res 64(3):871–875

    Article  CAS  PubMed  Google Scholar 

  11. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806. doi:10.1126/science.1164368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Biankin AV, Waddell N, Kassahn KS et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491(7424):399–405. doi:10.1038/nature11547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Brune K, Abe T, Canto M et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. The American Journal of Surgical Pathology 30(9):1067–1076

    PubMed Central  PubMed  Google Scholar 

  14. Shi C, Klein AP, Goggins M et al (2009) Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. Clin Cancer Res 15(24):7737–7743. doi:10.1158/1078-0432.CCR-09-0004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Singhi AD, Ishida H, Ali S, et al (Submitted) A histomorphologic comparison of familial and sporadic pancreatic cancers

  16. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Trans Med 6(224):224ra24. doi:10.1126/scitranslmed.3007094

    Article  Google Scholar 

  17. Hall JM, Lee MK, Newman B et al (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250(4988):1684–1689

    Article  CAS  PubMed  Google Scholar 

  18. Bunyan DJ, Shea-Simonds J, Reck AC, Finnis D, Eccles DM (1995) Genotype-phenotype correlations of new causative APC gene mutations in patients with familial adenomatous polyposis. J Med Genet 32(9):728–731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Myrhoj T, Bisgaard ML, Bernstein I, Svendsen LB, Sondergaard JO, Bulow S (1997) Hereditary non-polyposis colorectal cancer: clinical features and survival. Results from the Danish HNPCC register. Scand J Gastroenterol 32(6):572–576

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein AM, Chan M, Harland M et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66(20):9818–9828. doi:10.1158/0008-5472.CAN-06-0494

    Article  CAS  PubMed  Google Scholar 

  21. Krainer M, Silva-Arrieta S, FitzGerald MG et al (1997) Differential contributions of BRCA1 and BRCA2 to early-onset breast cancer. N Engl J Med 336(20):1416–1421. doi:10.1056/NEJM199705153362003

    Article  CAS  PubMed  Google Scholar 

  22. Raimondi S, Maisonneuve P, Lohr JM, Lowenfels AB (2007) Early onset pancreatic cancer: evidence of a major role for smoking and genetic factors. Cancer Epidemiol Biomarkers Prev 16(9):1894–1897. doi:10.1158/1055-9965.EPI-07-0341

    Article  PubMed  Google Scholar 

  23. Nicholls EM (1969) Somatic variation and multiple neurofibromatosis. Hum Hered 19(5):473–479

    Article  CAS  PubMed  Google Scholar 

  24. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823

    Article  PubMed Central  PubMed  Google Scholar 

  25. Griffin CA, Morsberger L, Hawkins AL et al (2007) Molecular cytogenetic characterization of pancreas cancer cell lines reveals high complexity chromosomal alterations. Cytogenet Genome Res 118(2–4):148–156. doi:10.1159/000108295

    Article  CAS  PubMed  Google Scholar 

  26. Ouyang H, Mou L, Luk C et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157(5):1623–1631. doi:10.1016/S0002-9440(10)64800-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203. doi:10.1126/science.1200609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. doi:10.1186/1471-2105-12-323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. doi:10.1093/bib/bbs017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Internet] NCIhot (released April 2005, based on the November 2004 submission [cited 2014 Jun 24]) Surveillance Epidemiology and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER 13 Regs Public-Use, Nov 2004 Sub (1973–2002 varying), National Cancer Institute DCCPS, Surveillance Research Program, Cancer Statistics Branch. http://www.seercancergov

  31. Brune K, Hong SM, Li A et al (2008) Genetic and epigenetic alterations of familial pancreatic cancers. Cancer Epidemiol Biomarkers Prev 17(12):3536–3542. doi:10.1158/1055-9965.EPI-08-0630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Jiao Y, Yonescu R, Offerhaus GJ et al (2014) Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol 232(4):428–435. doi:10.1002/path.4310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wu J, Jiao Y, Dal Molin M et al (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA 108(52):21188–21193. doi:10.1073/pnas.1118046108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wu J, Matthaei H, Maitra A et al (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Science Transl Med 3(92):92ra66. doi:10.1126/scitranslmed.3002543

    Article  CAS  Google Scholar 

  35. Luttges J, Stigge C, Pacena M, Kloppel G (2004) Rare ductal adenocarcinoma of the pancreas in patients younger than age 40 years. Cancer 100(1):173–182. doi:10.1002/cncr.11860

    Article  PubMed  Google Scholar 

  36. Lal G, Liu G, Schmocker B et al (2000) Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res 60(2):409–416

    CAS  PubMed  Google Scholar 

  37. James TA, Sheldon DG, Rajput A et al (2004) Risk factors associated with earlier age of onset in familial pancreatic carcinoma. Cancer 101(12):2722–2726. doi:10.1002/cncr.20700

    Article  PubMed  Google Scholar 

  38. Brandt A, Bermejo JL, Sundquist J, Hemminki K (2008) Age of onset in familial cancer. Ann Oncol 19(12):2084–2088. doi:10.1093/annonc/mdn527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Petersen GM, de Andrade M, Goggins M et al (2006) Pancreatic cancer genetic epidemiology consortium. Cancer Epidemiol Biomarkers Prev 15(4):704–710. doi:10.1158/1055-9965.EPI-05-0734

    Article  PubMed  Google Scholar 

  40. Eberle MA, Pfutzer R, Pogue-Geile KL et al (2002) A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am J Hum Genet 70(4):1044–1048. doi:10.1086/339692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ozcelik H, Schmocker B, Di Nicola N et al (1997) Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nat Genet 16(1):17–18. doi:10.1038/ng0597-17

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez E, La Vecchia C, D’Avanzo B, Negri E, Franceschi S (1994) Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomarkers Prev 3(3):209–212

    CAS  PubMed  Google Scholar 

  43. McWilliams RR, Bamlet WR, Rabe KG, Olson JE, de Andrade M, Petersen GM (2006) Association of family history of specific cancers with a younger age of onset of pancreatic adenocarcinoma. Clin Gastroenterol Hepatol 4(9):1143–1147. doi:10.1016/j.cgh.2006.05.029

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bartsch DK, Kress R, Sina-Frey M et al (2004) Prevalence of familial pancreatic cancer in Germany. Int J Cancer 110(6):902–906. doi:10.1002/ijc.20210

    Article  CAS  PubMed  Google Scholar 

  45. Lynch HT, Fitzsimmons ML, Smyrk TC et al (1990) Familial pancreatic cancer: clinicopathologic study of 18 nuclear families. Am J Gastroenterol 85(1):54–60

    CAS  PubMed  Google Scholar 

  46. Lynch HT, Fusaro L, Lynch JF (1992) Familial pancreatic cancer: a family study. Pancreas 7(5):511–515

    Article  CAS  PubMed  Google Scholar 

  47. Ji J, Forsti A, Sundquist J, Lenner P, Hemminki K (2008) Survival in familial pancreatic cancer. Pancreatology 8(3):252–256. doi:10.1159/000134272

    Article  PubMed  Google Scholar 

  48. Ghadirian P, Boyle P, Simard A, Baillargeon J, Maisonneuve P, Perret C (1991) Reported family aggregation of pancreatic cancer within a population-based case-control study in the Francophone community in Montreal, Canada. Int J Pancreatol 10(3–4):183–196

    CAS  PubMed  Google Scholar 

  49. Hruban RH, Petersen GM, Ha PK, Kern SE (1998) Genetics of pancreatic cancer. From genes to families. Surgical oncology clinics of North America 7(1):1–23

    CAS  Google Scholar 

  50. Silverman DT, Schiffman M, Everhart J et al (1999) Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer. Br J Cancer 80(11):1830–1837. doi:10.1038/sj.bjc.6690607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Permuth-Wey J, Egan KM (2009) Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer 8(2):109–117. doi:10.1007/s10689-008-9214-8

    Article  PubMed  Google Scholar 

  52. Couch FJ, Johnson MR, Rabe KG et al (2007) The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 16(2):342–346. doi:10.1158/1055-9965.EPI-06-0783

    Article  CAS  PubMed  Google Scholar 

  53. Al-Tassan N, Chmiel NH, Maynard J et al (2002) Inherited variants of MYH associated with somatic G:C– > T: A mutations in colorectal tumors. Nat Genet 30(2):227–232. doi:10.1038/ng828

    Article  CAS  PubMed  Google Scholar 

  54. FitzGerald MG, Harkin DP, Silva-Arrieta S et al (1996) Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93(16):8541–8545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA (2000) Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 92(12):1006–1010

    Article  CAS  PubMed  Google Scholar 

  56. Iacobuzio-Donahue CA, Velculescu VE, Wolfgang CL, Hruban RH (2012) Genetic basis of pancreas cancer development and progression: insights from whole-exome and whole-genome sequencing. Clin Cancer Res 18(16):4257–4265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Drs. Scott Kern, Ming Tseh-Lin, Gloria Petersen, Manuel Hidalgo, Elizabeth Jaffee, Steve Leach, Michael Goggins, Christine Iacobuzio-Donahue, Hiro Kamiyama, Mihoko Kamiyama, and Denise Batista for helpful discussions. We thank Alyza Skaist, Laura Morsberger, Jennifer Meyers, Diane Echavarria, Roxanne Ashworth, and Hong Liang for outstanding technical support. Grants: The Sol Goldman Pancreatic Cancer Research Center (pilot project) (JRE), R21CA164592 (JRE), PanCan/AACR Innovation Award (JRE), SPORE P50-CA62924-13 (Kern) and The Stringer Foundation (JRE).

Ethical standard

This study was performed with approval by the Institutional Review Board at Johns Hopkins Medical Institution. All participants gave informed consent and details that might disclose the identity of the subjects under study have been omitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Eshleman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norris, A.L., Roberts, N.J., Jones, S. et al. Familial and sporadic pancreatic cancer share the same molecular pathogenesis. Familial Cancer 14, 95–103 (2015). https://doi.org/10.1007/s10689-014-9755-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-014-9755-y

Keywords

Navigation