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Specific point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) occur in a variety of cancers, in-
cluding acute myeloid leukemia (AML), low-grade gliomas, and chondrosarcomas. These mutations inactivate
wild-type enzymatic activity and convey neomorphic function to produce D-2-hydroxyglutarate (D-2HG),
which accumulates at millimolar levels within tumors. D-2HG can impact α-ketoglutarate-dependent
dioxygenase activity and subsequently affect various cellular functions in these cancers. Inhibitors of the
neomorphic activity of mutant IDH1 and IDH2 are currently in Phase I/II clinical trials for both solid and blood
tumors. As IDH1 and IDH2 represent key enzymes within the tricarboxylic acid (TCA) cycle, mutations have
significant impact on intermediary metabolism. The loss of some wild-type metabolic activity is an important,
potentially deleterious and therapeutically exploitable consequence of oncogenic IDH mutations and requires
continued investigation in the future. Here we review how IDH1 and IDH2mutations influence cellular metabo-
lism, epigenetics, and other biochemical functions, discussing these changes in the context of current efforts to
therapeutically target cancers bearing these mutations.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Mutations in oncogenes and tumor suppressors facilitate the rapid
growth of cancer cells and their survival in response to environmental
itase;AML, acutemyeloid leuke-
arate; FAS, fatty acid synthase;
IDH, isocitrate dehydrogenase;
Mal,malate; Oac, oxaloacetate;
ehydrogenase; SDH, succinate
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stress. To maintain this phenotype tumor cells initiate a metabolic
program that supplies the energy, reducing equivalents, and biosyn-
thetic precursors necessary to divide (Tennant et al., 2010). In the
early 20th centuryOttoWarburg observed that cancer cells (andnormal
proliferating cells) selectivelymetabolized glucose to lactate even under
aerobic conditions (Warburg, 1956). This phenomenon, also known as
the “Warburg Effect”, is common to many (but not all) tumors. Since
Warburg's discovery, biochemists have painstakingly annotated the
network of biochemical reactions comprising cellular metabolism.
Though not yet complete, this information provides a biochemical
roadmap to study metabolic dysfunction in the context of diseases
using a range of datasets (Yizhak et al., 2010; Bordbar et al., 2014). Most
oncogenes and tumor suppressors directly impact cellular metabolism,
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and several hallmark cancer mutations have been observed to occur in
metabolic enzymes. Homozygous loss-of-functionmutations in fumarate
hydratase (FH) or one of thefive subunits comprising the succinate dehy-
drogenase (SDH) complex can lead to the development of specific can-
cers, representing the first time that metabolic enzymes were classified
as bonafide tumor suppressors (King et al., 2006). More recently, muta-
tions in isocitrate dehydrogenase 1 and 2 (IDH1, IDH2) have been discov-
ered in various cancers. These exclusively heterozygousmutations do not
follow a traditional loss-of-function mechanism, and the downstream
effects of these mutations on tumor initiation, metabolism, and growth
are currently being investigated. Here we review how mutations in
IDH1 and IDH2 impact intermediarymetabolism and other cell functions.
Finally, the metabolic and epigenetic consequences of mutant IDH1 and
IDH2 are discussed in the context of current efforts to therapeutically
target cancers harboring these mutations.

2. Mutation of isocitrate dehydrogenase 1 and 2

Mutations of IDH1 and IDH2 were initially identified through
exome sequencing of colon tumor and glioblastoma multiforme
(GBM) (Sjoblom et al., 2006; Parsons et al., 2008). Since these dis-
coveries, IDH mutations have been observed in several other tumor
types, including acute myeloid leukemia (AML), chondrosarcoma,
and intrahepatic cholangiocarcinoma (Parsons et al., 2008; Mardis
et al., 2009; Yan et al., 2009; Amary et al., 2011; Borger et al.,
2012). These mutations are somatically acquired and occur on dis-
tinct arginine residues of IDH1 (R132) and IDH2 (R172 or R140).
Interestingly, IDH1 mutations occur at much higher incidences than
IDH2 mutations in low grade gliomas, cholangiocarcinoma, and
chondrosarcoma; however, IDH1 and IDH2 mutations occur at simi-
lar rates in AML (Ward et al., 2010; Molenaar et al., 2014). Due to
the frequency of observation in low grade gliomas, IDH mutations
are thought to play a significant role in early tumorigenesis and pre-
cede other oncogenic mutations (Balss et al., 2008; Watanabe et al.,
2009; Juratli et al., 2013).

In contrast to SDH and FHmutants, which exhibit traditional homo-
zygous loss-of-function mutations, IDH mutants retain one wild-type
allele and rarely exhibit loss of heterozygosity (Mullen & DeBerardinis,
2012; Jin et al., 2013). Furthermore, the occurrence of mutations on dis-
tinct IDH1 and IDH2 residues within the active site provided evidence
that these changes elicit a gain-of-function phenotype in each enzyme.
Subsequently, an analysis of the x-ray structure of mutant IDH1 in
conjunction with metabolomics profiling demonstrated that (D)-2-
hydroxyglutarate (D- or R-2HG) was produced by mutant IDH1 and
Fig. 1. Multiple cellular pathways are affected by mutations in IDH1 and IDH2. Metabolites inv
metabolism as well as epigenetic regulation.
accumulated at high levels in mutant tumors, confirming a gain-of-
function mechanism (Dang et al., 2009). Similar production of D-2HG
was demonstrated in cells and tumors harboring IDH2 mutations
(Ward et al., 2010).

Wild-type IDH1 and IDH2 normally catalyze the reversible,
NADP + -dependent oxidative decarboxylation of isocitrate to alpha-
ketoglutarate in either the cytosol (IDH1) or mitochondria (IDH2).
However, the mutant IDH enzyme loses oxidative activity and instead
reduces alpha-ketoglutarate (αKG, also known as 2-oxoglutarate)
to D-2HG, consuming one molecule of NADPH in the process (Fig. 1).
Under normal conditions human cells produce low levels of both
D-2HG and L-2HG (or S-2HG) due to enzyme promiscuity, but 2HG
(referring to both D-2HG and L-2HG) fails to accumulate due to the
activity enantiomer-specific FAD-dependent 2-hydroxyglutarate dehy-
drogenases (L2HGDH and D2HGDH) that convert 2HG to αKG (Van
Schaftingen et al., 2013). Deficiency in L2HGDH or D2HGDH due to
homozygous loss-of-function mutation causes patients to develop
2HG aciduria characterized by an accumulation of either enantiomer
in body fluids (Struys, 2006; Rzem et al., 2007). About 50% of patients
with D-2HG aciduria have autosomal recessive mutations in D2HGDH;
however, the majority of patients with normal D-2HGDH enzyme but
high D-2HG harbored mutations in IDH2 (either R140Q or R140G)
(Kranendijk et al., 2010). Patients with D-2HG aciduria either show no
symptoms or exhibit developmental delay, epilepsy, cardiomyopathy,
and other clinical symptoms (Kranendijk et al., 2010). In contrast, pa-
tients with L-2HG aciduria have an increased risk of developing certain
brain cancers, suggesting that 2HGmay act as a driver of tumorigenesis
(Moroni et al., 2004; DeBerardinis & Thompson, 2012). Most patients
who developed metastatic brain tumors exhibited high levels of
L-2HG, not D-2HG, and tumors that develop are of a different type
than those commonly associated with IDH mutation (Cairns & Mak,
2013). Thus, D-2HG accumulation from mutant IDH may not be suffi-
cient to drive malignancy and may require additional oncogenic
mutations. Indeed, IDH mutations observed in low-grade gliomas fre-
quently precede 1p/19q co-deletion and/or TP53 mutation which give
rise to either oligoastrocytomas/oligodendrogliomas or low grade astro-
cytomas, respectively (Labussiere et al., 2010; Lai et al., 2011; Ichimura,
2012; Cairns &Mak, 2013). These tumors follow distinct transformation
programs with 1p/19q co-deleted tumors commonly activating PI3K/
Akt or Ras and p53mutant tumors amplifying receptor tyrosine kinases
(i.e., MET and PDGFR) (Wakimoto et al., 2014). Further transformation
of IDHmutant low-grade gliomas into secondary glioblastomas requires
EGFR amplification, PTEN loss, and/or additional genetic alterations
(Lai et al., 2011).
olved in these reactions are critical for glucose, glutamine, NADPH, amino acid, and lipid
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Sequencing of IDH1 and IDH2 in AML patients indicated that these
mutations occurred in a subset of tumors that were distinct from
those harboring loss-of-function TET2 mutations, suggesting that
D-2HG accumulation disrupts the function of TET2 or another αKG-
dependent dioxygenase (Figueroa et al., 2010). Several studies have
subsequently indicated that both L-2HG and D-2HG can act as com-
petitive inhibitors of αKG-dependent dioxygenases, including the
EglN family of prolyl hydroxylases (PHDs), the TET family of DNA
demethylases, and the JmjC family of histone demethylases
(Chowdhury et al., 2011; Xu et al., 2011; Koivunen et al., 2012; Lu
et al., 2012). As such, D-2HG acts in a manner similar to the succinate
and fumarate that accumulate in the context of SDH and FH mutant
tumors, respectively (Selak et al., 2005; Xiao et al., 2012). Indeed,
D-2HG accumulation resulting from mutant IDH expression has
been observed to promote DNA and/or histone hypermethylation phe-
notypes (Figueroa et al., 2010; Lu et al., 2013; Turcan et al., 2012). At
least in the context of SDH mutant cells, this inhibitory effect on
dioxygenase activity can be ameliorated by addition of cell-permeable
αKGanalogs (MacKenzie et al., 2007). In addition, histone hypermethy-
lation associated with IDH1mutant expression in U87 glioma cells was
reversed by octyl-αKG addition (Xu et al., 2011). In contrast to the in-
hibitorymechanisms noted above, D-2HGhas been observed to activate
EglN in many cell and in vivo models, leading to hypoxia inducible
factor-1α (HIF1α) degradation and the promotion of tumor develop-
ment (Koivunen et al., 2012; Losman et al., 2013). On the other hand,
other studies have observed increases in HIF1α levels in IDH1 mutant
U87 cells (Zhao et al., 2009; Xu et al., 2011) or in brain-specific
Nestin-IDH1R132H/wt transgenic mouse embryos (Sasaki et al., 2012a).
In contrast, an analysis of IDH1-R132H and HIF1α expression in serial
sections of IDH1-R132H positive gliomas suggested that IDH1-R132H
expression was not sufficient for HIF1α stabilization (Williams et al.,
2011). Overall, the role of IDH mutants and 2HG on HIF1α stabilization
is complex and can be influenced by cell type, tissue, and the local
microenvironment. The epigenetic dysregulation caused byαKG antag-
onism has been proposed to be one mechanism through which D-2HG
contributes to tumorigenesis in mutant IDH tumors (Fig. 1). However,
the specific αKG-dependent dioxygenases that contribute to tumor
development are likely to be context-dependent (e.g. tissue specific).
As this family of enzymes catalyzes a wide variety of reactions and
includes protein- and DNA-modifying enzymes as well as metabolic
enzymes (reviewed by Losman & Kaelin, 2013), additional insights are
needed to determine the mechanistic drivers of tumorigenesis down-
stream of mutant IDH (Losman & Kaelin, 2013).
3. Isocitrate dehydrogenase mechanism and regulation

The crystal structures of human IDH1 and pig IDH2, which shares
N97% identity with human IDH2, have yielded insights into the enzy-
matic and regulatory mechanisms of these NADP + -dependent en-
zymes (Ceccarelli et al., 2002; Xu et al., 2004). Structural studies of
IDH1 suggest that its IDH1 follows a self-regulation feedback mecha-
nismwhereby isocitrate binds directly to Arg132, inducing a conforma-
tional change that allows the Asp279 residue to interact with Ca2+
cofactor and participate in catalysis (Xu et al., 2004). Kinetic studies sug-
gest that isocitrate, and to a greater extent NADP+, regulate the activity
and directionality of IDH1 (Rendina et al., 2013). The point muta-
tions in IDH1 and IDH2 have significant effects on enzyme catalytic
function and mechanism (Dang et al., 2009; Rendina et al., 2013).
Arg132 directly interacts with isocitrate, and amino acid substitu-
tions from any of the mutations observed in gliomas prevented
isocitrate from binding (Dang et al., 2009; Zhao et al., 2009). Thus,
IDH1 mutants become insensitive to physiological isocitrate levels and
exhibit a N80% decreased capacity to carry out the oxidative reaction
(Zhao et al., 2009). Consequently, the NADPH production by oxidative
IDH activity is diminished, resulting in a ~38% reduction in the NADPH
generation capacity in IDH1-mutant versus wild-type glioblastoma
tumor tissue (Bleeker et al., 2010).

IDH1 mutants exhibit a sequential kinetic mechanism whereby
NADPH first binds, reductively trapping αKG into D-2HG before
allowing it to undergo carboxylation to form ICT (Rendina et al.,
2013). IDH1-R132 variants (H, C, G, S, L) exhibit significantly different
kinetic parameters for αKG and, consequently, produce different levels
of D-2HG in cells expressing IDH1-R132 (Pusch et al., 2014). These
mechanistic insights offer an explanation as to why D-2HG is preferen-
tially produced by mutant IDH1 enzymes. In addition to the IDH1-
R132 and IDH2-R172 and R140Q mutants, other IDH mutation sites
have been predicted and/or demonstrated to exhibit neomorphic activ-
ity, including IDH1-R100, IDH1-Y179, and IDH1-G97 (Ward et al., 2012;
Rendina et al., 2013). IDH1-Y179 and IDH1-G97 mutants exhibited
lower Km values for isocitrate (i.e., improved binding); suggesting
that neomorphic function is not reliant on an impaired utilization of
isocitrate (Rendina et al., 2013). Ultimately, the changes in wild-type
and neomorphic function of IDH1 and IDH2 described above influence
cell signaling, epigenetics, and enzyme activity to directly and indirectly
drive metabolic reprogramming within tumors (Fig. 2).

4. Glucose metabolism

Glycolytic flux is commonly upregulated in tumors downstream of
various signaling pathways. For example, phosphoinositide 3-kinase
(PI3K) is activated in many tumors and plays a significant role in main-
taining the glycolytic phenotype of cancers through protein kinase B
(PKB/Akt) signaling (Engelman, 2009). This oncogenic signal stimulates
glycolysis, in part, by promoting the expression of glucose and other
nutrient transporters and stimulating the activity of glycolytic enzymes
including hexokinase and PFKFB3 (Elstrom et al., 2004; DeBerardinis
et al., 2008; VanderHeiden et al., 2009; Cairns et al., 2011).While hyper-
activation of PI3K/Akt signaling contributes to the aggressiveness of
gliomas (Bleau et al., 2009; Koul, 2008), U87 glioma cells expressing
IDH1-R132H exhibited decreased Akt levels at both the mRNA and pro-
tein level (Bralten et al., 2011). Furthermore, expression ofmutant IDH1
in LN-319 glioblastoma cells caused a decrease in Akt phosphorylation,
suggesting that mutant tumors may exhibit less of a glycolytic meta-
bolic phenotype compared to IDH1 wild-type tumors (Birner et al.,
2014). Importantly, the majority of tumors harboring both IDH mu-
tations and 1p/19q co-deletion exhibit activation of PI3K/Akt; thus,
the role of Akt on glucose metabolism in mutant IDH tumors may
also rely on external factors (i.e. additional oncogenic mutations,
tumor microenvironment).

Lactate dehydrogenase A (LDHA) is commonly upregulated in cancer
cells downstream of HIF1α and Myc signaling (Kim et al., 2007; Dang
et al., 2008; Cairns et al., 2011); this enzyme helps maintain glycolysis
via NAD+ regeneration (Metallo & Vander Heiden, 2013). One recent
study observed that IDH mutant gliomas and tumor-derived brain
tumor stem cells silence LDHA expression through promoter hyperme-
thylation (Chesnelong et al., 2014). In addition, one study identified that
AML patients with IDH1 or IDH2 mutant tumors exhibited lower LDH
activity compared to wild-type IDH1 or IDH2 tumors, suggesting a
common phenotype between IDH mutants mediated by αKG/2HG
(Chou et al., 2011). An analysis of gene expression in IDH1 mutant and
IDH1 wild-type glioma samples demonstrated that factor inhibiting
HIF-1 (FIH-1/HIFAN) was upregulated in IDH1 mutant tumors (Mustafa
et al., 2014). FIH-1 inhibits the activity of HIF1α by preventing its
transactivation in an αKG-dependent manner (Mahon et al., 2001),
andHIF1α levels are known to be decreased in IDH1mutant gliomas, en-
hancing tumorigenesis (Koivunen et al., 2012). This phenotype is
thought to result from increased EglN activity fueled by 2HG-αKG isom-
erization (Tarhonskaya et al., 2014). Putatively as a consequence of
HIF1α suppression, IDH1 mutant gliomas expressed high levels of
LDHB relative to LDHA as compared to IDH1wild-type gliomas or normal
brain tissue (Mustafa et al., 2014). Acting as the final step in converting



Fig. 2. Biochemical pathways involved in intermediarymetabolism. Glycolysis and glucose entry into the TCA cycle is regulated by the activity of lactate dehydrogenase (LDHA and LDHB),
pyruvate dehydrogenase (PDH), and pyruvate carboxylation (PC). IDH1 and IDH2 are cytosolic and mitochondrial enzymes, respectively, that are critical for the metabolism of glucose-
and glutamine- derived carbons. NADPH produced by either IDH1 or IDH2 is critical formaintaining the redox state in subcellular compartments. AcCoA: acetyl-coenzyme A,αKG: alpha-
ketoglutarate, Cit: citrate, D-2HG: D-2-hydroxyglutarate, Fum: fumarate, ICT: isocitrate, Lac: lactate, Mal: malate, Oac: oxaloacetate, Pyr: pyruvate, Suc: succinate.
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glucose to lactate, LDHA silencing may act to mitigate aerobic glycolysis.
Although both isoforms of LDH (LDHA and LDHB) can metabolize the
conversion of pyruvate to lactate, the LDHB isoform is more sensitive
to substrate inhibition by pyruvate and ismore capable of converting lac-
tate to pyruvate (Dang, 2013).

Pyruvate dehydrogenase (PDH) is amajor point of entry for glucose-
derived pyruvate oxidation in the TCA cycle. PDHactivity is regulated by
its phosphorylation state and HIF1α stimulates expression of PDK1,
leading to inactivating phosphorylation of PDH (Semenza et al., 1994;
Kim et al., 2006; Papandreou et al., 2006; Rardin et al., 2009). Thus,
alteration of HIF1α expression in mutant IDH cells and tumors may
influence PDH activity and lead to changes in flux of glucose-derived
pyruvate into the mitochondria. In addition to mitochondrial acetyl-
CoA generated by PDH, cells need oxaloacetate (OAC) to maintain TCA
cycle flux. Cancer cells can obtain OAC through various mechanisms, in-
cluding glucose anaplerosis via pyruvate carboxylase or glutaminolysis,
and pyruvate carboxylase is required for cells growing in glutamine-
deprived conditions (Cheng et al., 2011). Furthermore, in vivo tracing
studies in an orthotopic model of human glioblastoma using 13C-
labeled glucose have indicated that pyruvate carboxylase and PDH are
highly active in GBM (Marin-Valencia et al., 2012). One recent study
demonstrated that IDH mutant overexpression in astrocytes results in
an increased fractional flux through pyruvate carboxylase and an in-
crease in PC expression, suggesting this pathway is critical for IDH
mutant cells to maintain TCA activity (Izquierdo-Garcia et al., 2014).
Consistent with this observation, we observed increased pyruvate
cycling through malic enzymes and PC in HCT116 cells harboring
heterozygous IDH1mutations (Grassian et al., 2014).

5. Glutaminolysis, reductive
carboxylation, and tricarboxylic acid metabolism

Glutamine is anothermajor contributor to TCAmetabolism in cancer
cells and enters this pathway at αKG. As such, glutamine–glutamate-
αKG metabolism represents a critical node in IDH mutant tumors.
Glutamine is converted to glutamate during the biosynthesis of nucleo-
tides, hexosamines, and asparagine; alternatively this reaction may be
catalyzed inmitochondria via glutaminase (GLS). Transaminases or glu-
tamate dehydrogenase (GLUD) can convert glutamate to the TCA inter-
mediate and IDH substrate/product αKG. These pathways are highly
active in most cancer cells as a result of oncogenic mutations or limited
glucose oxidation (Gaglio et al., 2011; Son et al., 2013). Hypoxic micro-
environments common to solid tumors promote glutamine flux into
TCA metabolism such that it becomes the predominant carbon source
for the glutaminolysis (Le et al., 2012; Fan et al., 2013; Grassian et al.,
2014) and reductive carboxylation pathways (Scott et al., 2011; Wise
et al., 2011; Metallo et al., 2012; Mullen et al., 2012).

Not surprisingly, much of the D-2HG produced by mutant IDH1 and
IDH2 in cells is derived fromglutamine (Grassian et al., 2014). Due to its
clinical prevalence and the availability of cell models more studies have
focused on the impact of mutant IDH1 on TCAmetabolism compared to
mutant IDH2. BeyondαKG generation,flux through both glutaminolytic
and reductive carboxylation pathways are significantly impacted by IDH
mutations. When oxygen is replete, evidence suggests that IDH flux
predominantly occurs in the oxidative direction, with minimal (but
some) exchange observable. Given the impact of mutant IDH1 on WT
activity it is not surprising that such cells become more reliant on the
glutaminolysis pathway. Recent studies have highlighted differences
in this pathwaywhen cells express or harbor IDH1mutations. For exam-
ple, a glioblastoma cell line and transformed astrocytes both exhibited
increased sensitivity to pharmacological or siRNA-mediated inhibition
of glutaminase (Seltzer et al., 2010). In addition, Chen et al. recently
observed that gliomas harboring IDH1 mutations overexpressed gluta-
mate dehydrogenase 1 and 2 (GLUD1 and GLUD2), and orthotopic
growth of mutant glioma lines were sensitive to GLUD1 or GLUD2
knockdown (Chen et al., 2014). We observed a similar increase in the
dependence of IDH1 mutant cells on glutaminolysis in our analysis of
a panel of HCT116 cells, providing evidence that these changes arise
due to a direct impact on metabolism rather than indirectly through
cell lineage-specific mechanisms (Grassian et al., 2014). Notably, this



58 S.J. Parker, C.M. Metallo / Pharmacology & Therapeutics 152 (2015) 54–62
dependence on oxidative glutamine metabolism was exacerbated by
culture under hypoxia, such that mutant IDH1 cells exhibited de-
creased growth and increased respiration under hypoxia (Grassian
et al., 2014).

IDH1 has been implicated in catalyzing the reductive carboxylation
of αKG to isocitrate, a pathway that facilitates conversion of glutamine
to biosynthetic intermediates under conditions of hypoxia ormitochon-
drial dysfunction (Scott et al., 2011; Metallo et al., 2012; Mullen et al.,
2012). As the IDH reactions in human cells involve the interplay of
NADH, NADPH, αKG, and isocitrate in two important cellular compart-
ments, the localization, interconnectivity (i.e., via NAD(P)H shuttling),
regulation, and function of the reductive carboxylation pathway is still
actively investigated. In vitro enzyme studies have demonstrated that
mutant/wild-type heterodimers of both IDH1 and IDH2 are unable to
catalyze the reductive carboxylation reaction (Leonardi et al., 2012).
Given the demonstrated role of IDH1 in this reaction, mutant IDH1
cells exhibit a strong defect in the conversion of glutamine to isocitrate,
citrate, and acetyl-CoA under various conditions. Indeed, the extent that
heterozygous mutant IDH HCT116 cells and IDH1-R132C HT1080
fibrosarcoma cells activate this pathway under hypoxia was compro-
mised when compared to cells with IDH2 mutations or wild-type IDH
(Grassian et al., 2014). Changes in glutaminemetabolismunder hypoxia
were also observed in an additional study that employed HCT116 IDH1-
R132H cells (Reitman et al., 2014). Furthermore, IDH1 mutant cells ex-
hibited increased sensitivity to inhibitors of respiration, conditions
known to promote reductive carboxylation (Mullen et al., 2012; Fendt
et al., 2013; Gameiro et al., 2013). This sensitivity could be due to the
cells' inability to synthesize acetyl-CoA through reductive carboxylation
or alternatively due to their increased dependence on respiration under
hypoxia. TCA metabolism is coupled with cellular respiration. As noted
above, we observed increased sensitivity to ETC/respiration inhibitors
and changes in oxygen consumption rates in IDH1 mutant HCT116
cells under hypoxia (Grassian et al., 2014). More recently, Chan et al.
and other studies have demonstrated that D-2HG produced by mutant
IDH inhibits complex IV (also known as cytochrome c oxidase, COX)
of the ETC (da Silva et al., 2002; Wajne et al., 2002; Latini et al., 2005;
Chan et al., 2015). This mechanism induced mutant IDH leukemia cell
lines (patient-derived and engineered) to become sensitive to Bcl-2 in-
hibitors, initially identified as a target in a shRNA screen (Chan et al.,
2015).

In addition to fatty acid and cholesterol synthesis, acetyl-CoA is an
important building block for phospholipids, amino acids, and protein
acetylation (Kaelin & McKnight, 2013). Interestingly, N-acetylated
amino acids including N-acetyl-aspartyl-glutamate (NAAG) and N-
acetyl-aspartate (NAA) were significantly decreased in human glioma
cells expressing IDH1-R132H (Reitman et al., 2011). These results sug-
gest that mutant IDH tumors may exhibit perturbed acetyl-CoA metab-
olism, potentially due to changes in pathway fluxes fueling acetyl-CoA
pools. In addition to differences in acetyl-CoA metabolism, IDH mutant
tumors exhibited a significantly altered phospholipid profile compared
to wild-type IDH tumors. Specifically, pools of the phospholipid metab-
olites phosphoethanolamine and glycerophosphocholine were signifi-
cantly perturbed in mutant IDH versus wild-type IDH tumors
(Esmaeili et al., 2014). Several of the oncogenic signaling pathways al-
tered in IDHmutant tumors also impact fatty acid synthesis and uptake.
For example, ATP-citrate lyase (ACL) acts as the major supplier of cyto-
solic AcCoA for fatty acid synthesis and is a major Akt substrate, and Akt
also induces other fatty acid synthesis enzymes (i.e. FAS, ACC) via
mTORC1 activation of SREBP-1 (Berwick et al., 2002; Porstmann et al.,
2008; Ru et al., 2013). In addition to de novo synthesis, fatty acids and
cholesterol can be scavenged from extracellular sources, and PI3K/Akt
signaling can upregulate expression of the LDL receptor—supplying
cells with cholesterol—via SREBP-1 (Guo et al., 2011). Of note, IDH1 is
a transcriptional target of SREBP-1a and to a lesser extent SREBP-2, pur-
portedly to supply NADPH for reductive biosynthesis in the cytosol
(Shechter et al., 2003).
In part due to a lack of isogenic or cell-based models, fewer studies
have addressed the impact of heterozygousmutations in IDH2 on inter-
mediary metabolism. Generally, cells expressing IDH2-R172 accumu-
late more or similar amounts of D-2HG than those with mutant IDH1,
though IDH2-R140Q mutants produce the least (Ward et al., 2010). In
vitro enzyme studies and ectopic expression of mutants has indicated
that differences in gene expression and compartment localization/
conditions may influence the differential D-2HG production by IDH1-
R132 mutants versus IDH2-R172 mutants (Ward et al., 2013). In addi-
tion to effects on D-2HG accumulation, some evidence indicates that
the intermediarymetabolismof cellswithmutant IDH1 versus IDH2 dif-
fers as well. As noted above, detectable and significant effects on TCA
metabolismwere observed in an isogenic HCT116 cell panel cultured
under normoxia and hypoxia. In contrast, the profile of glucose and
glutamine-driven TCA metabolism in cells with either IDH2-R172
or IDH2-R140Q mutations was similar to that of parental cells cultured
normally or in the presence of exogenous D-2HG (Grassian et al., 2014).
No in vitro growth defect was observed under hypoxia, and the cells
readily used the reductive carboxylation pathway for de novo lipogen-
esis. Similar trends were observed when comparing HT1080 (IDH1-
R132C) fibrosacroma and SW1353 (IDH2-R172S) chondrosarcoma
cells.

In the context of analyzingflux changes in heterozygous IDHmutant
tumors versus thosewithWT IDH1 and IDH2 it is important to consider
that a heterozygous mixture of homo- and heterodimers will exist
within cells. Notably, the binding affinity of IDH1-R132 and IDH1-WT
monomers was not significantly different, suggesting that a diversity
of homo- and hetero- IDH1 dimers exists in IDH1 mutant tumors (Jin
et al., 2011). In contrast, IDH2-R172 weakly binds IDH2-WT, indicating
that there is a greater enrichment of WT–WT homodimers in mutant
IDH2 tumors (Jin et al., 2011). Furthermore, differences in substrate
availability for the IDH reaction are likely significant when comparing
metabolism in the cytosol/peroxisome (IDH1) and mitochondrial
matrix (IDH2). The ability to resolve such differences remains a chal-
lenge, as it is unclear to what extent reductive carboxylation is cata-
lyzed in the mitochondria versus cytosol (Metallo & Vander Heiden,
2013). While defects in this pathway arise in mutant IDH1 cells but
notmutant IDH2 cells, the expression of severalmitochondrial enzymes
(e.g. transhydrogenase, αKG-dehydrogenase complex) influences re-
ductive carboxylation flux (Mullen et al., 2012; Gameiro et al., 2013).
Despite the observed in vitro differences in metabolism and growth,
HCT116 cells containing either IDH1 or IDH2 mutations panel grew
significantly slower as xenografts when compared to parental cells
(Grassian et al., 2014). These findings highlight the importance of mi-
croenvironment on metabolism and the impact of IDH mutations as
well as the need for better cell/tumor models.

6. Other metabolic pathways

Beyond glucose, glutamine, and acetyl-CoA metabolism, αKG and
2HG can influence a number of other metabolic pathways. As noted
above, D-2HG may inhibit (or promote the activity of) other members
of the αKG-dependent dioxygenase family. These enzymes catalyze
diverse functions that include various metabolic reactions beyond de-
methylation (Rose et al., 2011; Losman & Kaelin, 2013). For example,
the activity of several proline and lysine hydroxylases are perturbed in
the context of IDHmutations, leading to compromised collagenmatura-
tion and impacts on extracellular matrix (ECM) processing. Notably, a
significant impact on ECM was observed in an IDH mutant knock-in
model (Sasaki et al., 2012b). The dioxygenase family also includes
enzymes involved in fatty acid metabolism, RNA modifications, and
carnitine biosynthesis (Rose et al., 2011; Losman & Kaelin, 2013). Fur-
thermore, αKG is a substrate for a large number of enzymes outside of
dioxygenases, including transaminases. Notably, BCAT1 expression is
high in glioblastoma and suppressed by ectopic mutant IDH1 overex-
pression, suggesting that αKG or D-2HG levels influence branched
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chain amino acid (BCAA)metabolism (Tonjes et al., 2013). The activities
of aspartate aminotransaminase (AST) and glutamate dehydrogenase
(GDH), enzymes that utilize aKG as a substrate, were decreased in
IDH1mutant U87 cells due to changes in expression (AST) or posttrans-
lational modifications (GDH) (Chaumeil et al., 2014). More focused,
functional characterization of these pathways may highlight additional
metabolic perturbations in IDH mutant tumors.

7. Redox metabolism

In addition to the aforementioned TCA intermediates, the reactions
catalyzed by IDH1 and IDH2 require NADPH as a cofactor (Fig. 2). The
pyridine nucleotide cofactor NADP(H) is critical for important cellular
processes supporting redox homeostasis and biosynthesis of lipids and
nucleotides (Pollak et al., 2007). NADP(H) exists as either the oxidized
(NADP+) or reduced (NADPH) form, and the ratio of this redox couple
heavily influences cellular physiology. The regeneration rate of reduced
NADPH is extraordinarily high in proliferating cancer cells such that the
pool turns over in approximately 20 min (Fan et al., 2014; Lewis et al.,
2014). Classically, NADPH was thought to be regenerated primarily by
the oxidative pentose phosphate pathway (PPP); however, recent evi-
dence suggests that several other enzymes are also major contributors
(Pollak et al., 2007; Fan et al., 2014; Lewis et al., 2014). These enzymes
include malic enzymes (ME), isocitrate dehydrogenases (IDH), alde-
hyde dehydrogenases (ALDH), and methylene tetrahydrofolate dehy-
drogenases (MTHFD) (Pollak et al., 2007; Tibbetts & Appling, 2010;
Lunt & Vander Heiden, 2011). Importantly, many of these enzymes
have isoforms that exist in specific organelles (e.g., ME1 is cytosolic
while ME2 and ME3 are mitochondrial), and since NADP(H) cannot
transport directly across subcellular organelle membranes the mainte-
nance of redox homeostasis in each organelle is distinctly regulated.

Mutation in either IDH1 or IDH2 deactivates the NADPH-production
capacity of these enzymes; thus, mutant IDH cells may need to reroute
flux through compensatory NADP + -dependent enzymes or suffer a
decrease in available NADPH. In order to prevent oxidative damage
from reactive oxygen species (ROS) generated during proliferation
cells mustmaintain pools of reduced glutathione (GSH), themost abun-
dant cellular antioxidant (Balendiran et al., 2004). Reduced glutathione
can either be synthesized de novo or regenerated from oxidized gluta-
thione (GSSG) via NADPH and glutathione reductase. A reduction in
NADPH availability could lead to an increase in oxidative stress by de-
creasing GSH pools. In fact, one study of clonally selected cells overex-
pressing wild-type or IDH1-R132H glioma cells indicated that NADPH
levels were decreased relative to wild-type IDH1 cells (Shi et al.,
2014). Consequently, ROS and GSH levels were increased and de-
creased, respectively, in cells expressing mutant IDH1 (Shi et al.,
2014). Furthermore, mutant IDH1 cells exhibited increased sensitivity
to temozolomide (TMZ) and cis-diamminedichloroplatinum (CDDP),
which can induce oxidative stress in tumor cells (SongTao et al., 2012;
Shi et al., 2014). A similar sensitivity was observedwhen cells ectopical-
ly expressing mutant IDH1 or IDH2 were exposed to radiation (Li et al.,
2013). These data provide some indication that oncogenic IDH1
perturbs NADPH homeostasis; however, the extent that these findings
correlate with survival and treatment responsiveness remains unclear
(Dubbink et al., 2009; Houillier et al., 2010). Ultimately, additional mo-
lecular studies are required to elucidatewhether this increased sensitiv-
ity to oxidative stress is due to an inability to compensate metabolically
or because of orthogonal effects of the mutation on cell physiology/
epigenetics.

An in vivo knock-in model of IDH1-R132H exhibited increased
NADP+/NADPH ratio, decreased GSH, and decreased ascorbate in
whole brains, consistent with a decrease in NADPH production and
redox control capacity (Sasaki et al., 2012a). However, intracellular
ROS levels in total brains of IDH1-R132H knock-in mice were signifi-
cantly reduced relative to IDH1-WT knock-in brains (Sasaki et al.,
2012a). Inhibition of IDH1-R132H may increase total ROS levels and,
along with reduced NADPH and GSH levels, increase oxidative stress
in these tumors and lead to cell death. High levels of ROS can damage
lipids, proteins, and DNA and can lead to the activation of apoptosis
and disruption of the cell cycle (Finkel & Holbrook, 2000). In addition,
high levels of mitochondrial ROS may contribute significantly to mito-
chondrial dysfunction, as mtDNA is more readily damaged than nuclear
DNA (Kim et al., 2015). Mutation of mtDNA has been observed to
contribute to tumorigenicity in several cancer types (Sabharwal &
Schumacker, 2014); to this end, mutant IDH2 cells in particularmay ex-
hibit compromisedmitochondrial NADPH homeostasis, whichmay lead
to increased mtDNA mutation and mitochondrial dysfunction.

8. Allelic inhibitors of mutant isocitrate dehydrogenase 1 and 2

Given the distinct, gain-of-function activity caused by IDH muta-
tions, several efforts have identified selective pharmacological agents
that targetmutant IDH1 and IDH2 enzymes. One of the first compounds
(AGI-5198) to be discovered specifically inhibited IDH1-R132H and
IDH1-R132C mutant enzymes, reduced 2HG levels in glioma cells, and
impaired growth of IDH1 mutant but not IDH1 WT glioma xenografts
(Rohle et al., 2013). AGI-5198 suppression of 2HG levels did not
completely ameliorate theDNAhypermethylation phenotype inmutant
IDH1 glioma cells, suggesting that mutant IDH1-mediated epigenetic
dysregulation is not easily reversed (Rohle et al., 2013). Since AGI-
5198 was discovered, several other inhibitors have been identified
that reduce D-2HG production in both in vitro and in vivo models
(Popovici-Muller et al., 2012; Zheng et al., 2013). Shortly after the dis-
covery of AGI-5198, medicinal chemistry optimization yielded the first
inhibitor of IDH2-R140Q (AGI-6780) that reversed the hematopoietic
differentiation induced by IDH2-R140Q in TF-1 erythroleukemia cells
(Wang et al., 2013). Several additional inhibitors of the IDH2-R172K
and IDH2-R140Q, the two highest frequency IDH2 mutations, have
recently been discovered, including IDH2-C100 and AG-221, a deriva-
tive of AGI-6780, which both exhibit efficacy in cell and in vivo models
(PatentWO 2013102431) (Yen et al., 2013). In aggressive IDH2mutant
primary AML xenografts models, AG-221 treatment reduced 2HG levels
N90%, reversed histone and DNA hypermethylation, and conferred
significant survival benefits to mice (Yen et al., 2013).

Clinical data from Phase I/II trials are emerging at a rapid rate, pro-
viding encouraging results for AML. As we continue to gain a better ap-
preciation of the response of solid and blood tumors to these inhibitors,
alternative approaches worth investigating are combinatorial treat-
ments that target the metabolic deficiencies in IDH mutant tumors.
While resistance to changes the epigenetic state of IDH mutant cells
may emerge, these tumors are unlikely to regain the wild-type IDH1
or IDH2 activity that was originally lost tomutation. Therefore, pharma-
cological inhibition of the specific metabolic pathways on which IDH1
or IDH2 mutant cells are critically dependent may prove efficacious.

9. Conclusion

The discovery, functional characterization, and clinical development
of therapies surrounding oncogenic IDH mutations highlight the great
potential impact of advanced scientific technologies on medicine. In
order to fully exploit themetabolic and physiological defects of IDHmu-
tant tumors additional studies are required to identify and target such
biochemical pathways in cellular and preclinical models. Improved bio-
logical models are still required, since patient-derived IDH mutant
tumor cells grow slowly, ectopic expression of mutant enzymes is un-
stable and ineffective at producing high D-2HG levels, and isogenic,
engineered cell lines lack appropriate biological context. Ultimately,
molecular level analyses of how IDHmutations impact the metabolism,
epigenetics, and oncogenic development of tumors will lead to addi-
tional insights into the pathogenesis of other transforming events
(e.g. SDH and FH-deficient tumors) and inborn errors of metabolism
(L-2HG and D-2HG aciduria).
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