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Targeting cGAS/STING signaling-mediated 
myeloid immune cell dysfunction in TIME
Vijay Kumar1*  , Caitlin Bauer1 and John H. Stewart IV1,2,3* 

Abstract 

Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens 
and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate 
in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express 
several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tis-
sue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic 
double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic 
dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-
dependent cytokines and chemokines’ generation. The present article discusses tumor-supportive changes occurring 
in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing 
cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling 
modulation as critical tumor immunotherapy to alter TIME.
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Introduction
The tumor immune microenvironment (TIME) molec-
ular milieu supports chronic inflammation and asso-
ciated carcinogenesis through immunosuppressive 
cytokines (TGF-β, IL-10, IL-4, IL-6, IL-13, and IL-33), 
reactive oxygen species (ROS), reactive nitrogen species 

(RNS), angiogenic factors [vascular endothelial growth 
factor (VEGF) and hypoxia-inducible factor (HIF-1α)], 
and carcinogenic inflammatory pathway stimulating 
transcription factors (TFs), including nuclear factor-
kappa B (NF-κB) and signal transducer and activator 
of transcription-3 (STAT-3) [1–5]. Tumor-associated 
macrophages (TAMs), neutrophils (TANs), and mye-
loid-derived suppressor cells (MDSCs) are major MICs 
involved in generating tumor-supportive immunosup-
pressive cytokines, ROS, RNS, and angiogenic factors 
[6–10]. The interactions between these TFs enhance 
chronic tumoral inflammation and suppress antitumor 
immune responses, thereby supporting tumor growth, 
progression, and metastasis [11]. Furthermore, another 
TF, interferon regulatory factor 4 (IRF4), is strongly 
associated with the anti-inflammatory and immuno-
suppressive M2 macrophage  (CD163+) phenotype that 
supports tumor growth [12, 13]. Thus, the immuno-
suppressive tumor supportive TIME comprises anti-
inflammatory myeloid immune cells (MICs), including 
M2 macrophages, N2 neutrophils, and MDSCs, along 
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with tolerogenic dendritic cells (tDCs), and increased 
number of regulatory T  (Tregs) and B cells  (Bregs) 
[14–19].

Macrophages are the most abundant immune cells, 
comprising ~ 50% of hematopoietic cells in different 
cancers [20–23]. Recently, a study has indicated that 
macrophages (12.3% of total cells and 34.1% of immune 
cells) are the highest number of immune cells in lung 
cancer or lung adenocarcinoma (LUAD) [13]. The high 
number of macrophages  (CD163+  macrophages, non-
classical monocytes, and intermediate monocytes) in 
LUAD is consistent with early findings indicating their 
crucial protumorigenic role in non-small cell lung can-
cer (NSCLC) niche [13, 24]. In LUAD, the prevalence of 
 CD163+ macrophages strongly correlates with immu-
nosuppressive or immunoregulatory  Tregs. Similarly, 
brain TIME of glioblastoma (GBM) and brain metasta-
sis (BrM) have a higher number of monocyte-derived 
macrophages (30.5%) and microglia (9.2%, residen-
tial brain macrophages) [25]. LUAD, GBM, and BrM 
TIME have increased  CD163+ M2-like macrophages. 
Different strategies (receptor-ligand interaction, intra-
cellular targeting, epigenetic modification, immuno-
metabolism, angiogenesis, and genetic modification) 
have been employed to therapeutically target MICs in 
TME as their accumulation modifies the T cell receptor 
(TCR)-modified/engineered T cells in different solid 
cancers [26–30]. For example, several clinical trials tar-
geting MICs broadly in many tumors have reported no 
results or were terminated earlier due to toxicity issues 
at different stages [30]. Among these drugs/molecules 
are modulators of colony-stimulating factor  1 recep-
tor (CSF1R), CC-chemokine receptor 2 (CCR2), CXC-
chemokine receptor 2 (CXCR2) and phosphoinositide 
3-kinase (PI3K) specifically in MICs [30]. These mol-
ecules worked well in single-arm phase-I and small 
phase-II clinical trials but not in large phase II and III 
clinical trials as they showed different toxicities. There-
fore, we must hunt for novel immune mechanisms 
involved in MIC dysfunction and their targeting in 
TIME.

In humans, monocytes are the primary source of type 
1 IFN production via the cGAS/STING (cyclic GMP-
AMP synthase (cGAS)—stimulator interferon genes 
(STING)) signaling pathway independent of gender [31]. 
cGAS/STING signaling pathway is crucial to recognize 
cytosolic dsDNA as a microbe or pathogen-associated 
molecular patterns (MAMP or PAMP) or death/damage-
associated molecular pattern (DAMP) [32]. cGAS cleaves 
the cytosolic dsDNA into cGAMP that STING recog-
nizes. The cGAMP-STING binding activates and recruits 
TANK  (TRAF (TNFR-associated factor)-associated 
NF-κB activator)-binding kinase 1 (TBK1) and interferon 
regulatory factor 3 (IRF3) to the STING moved from the 
ER compartment to the ER-Golgi intermediate compart-
ment (ERGIC) (Fig. 1). The STING binds with TBK1 and 
IRF3 to generate IRF3-dependent type 1 IFNs. Also, the 
STING activation stimulates the NF-κB-dependent pro-
inflammatory cytokine release in a non-canonical man-
ner (Fig.  1). Hence, cGAS/STING signaling-dependent 
type 1 IFN and NF-κB-dependent proinflammatory 
cytokine generation are critical in anti-infective and anti-
tumor immunity via controlling immune surveillance 
and immune homeostasis (Fig. 1) [33]. The cGAS/STING 
signaling pathway-mediated type 1 IFN and cytokine 
release have been detailed elsewhere [34–38]. The cGAS/
STING signaling is also crucial for antitumor effects 
of immune checkpoint inhibitors (ICIs), including the 
PD-1/PD-L1 axis inhibitors [39]. Therefore, it becomes 
critical to understand and discuss the role of cGAS/
STING signaling in the MIC compartment of the TIME 
and its impact on the tumor microenvironment (TME) or 
TIME.

MICs in cancer or TIME
MICs are primary innate immune cells that target 
DAMPs and MAMPs/PAMPs. Macrophages, neu-
trophils, and DCs are the primary phagocytic cells 
that phagocytose apoptotic or necrotic tumor cells to 
enhance antitumor immunity [40–42]. Under normal 
conditions, myelopoiesis generates MICs in the bone 
marrow (BM) (Fig.  2). However, tumor-associated 

Fig. 1 Schematic representation of cGAS/STING signaling in MICs. cGAS is a cytosolic PRR that recognizes and cleaves cytosolic dsDNA into 
CDN called cGAMP. The cytosolic dsDNA can be self-derived, including the mitochondrial DNA, produced during ER and genotoxic stress and 
mitochondrial stress and death. Also, MICs can get other cells’ DNA by phagocytosis, exosomes, and EVs along with pathogens. STING by serving 
as an adapter protein recognizes cGAMP. In addition to the cGAS-derived cGAMP, MICs can uptake extracellular cGAMP expelled from cancer cell 
in TIME through different transporters. This induces STING ERGIC movement. ERGIC localized STING interacts with the phosphorylated IRF8 (IRF8 
phosphorylation occurs as a result dsDNA recognition by cGAS/STING signaling pathway). This interaction induces STING polymerization and its 
interaction with TBK1 and TRAF6. The interaction between STING and TBK1 induces STING phosphorylation. The STING-bound phosphorylated TBK1 
induces IRF3 phosphorylation. Phosphorylated IRF3 induces transcription of ISGs, including type 1 IFN genes. Hence, cGAS/STING/IRF8/TBK1/IRF3 
axis is critical to produce type 1 IFNs and propagate type 1 IFN-mediated immune response, including the antitumor immunity. On the other hand, 
TBK1-mediated TRAF6 activation is critical for another canonical cGAS/STING signaling pathway involving NF-κB-dependent pro-inflammatory 
immune response. Thus, regulated cGAS/STING signaling critically maintains immune homeostasis and helps to clear cancer cells, whereas its 
dysregulation causes chronic inflammation that may lead to cancer development. Kindly see the text for details

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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alterations in myelopoiesis occur in extramedullary 
organs that yield immunosuppressive MICs and cause 
subsequent tumor growth and metastasis (Fig.  2) 
[43–48]. The maintenance of tumor-induced immu-
nosuppression occurs via local endogenous GM-CSF 
signaling that drives hematopoietic stem and progeni-
tor cell (HSPC) myeloid commitment and differentia-
tion into potent immunosuppressive MICs (MDSCs, 
M2 macrophages, and N2 neutrophils) (Fig. 2) [45–47]. 
The spleen of tumor bearing mice have a higher num-
ber of  Linlo/–Sca-1+c-Kithi  (LSK) cells, which are early 
HSPCs and are highly heterogenic. For example, these 
LSK cells comprise different hematopoietic stem cell 
(HSC) and hematopoietic progenitor cell (HPC) pop-
ulation, which are in combined called HSPCs [45]. 
These LSK cells in the spleen of tumor bearing mice 
differentiate into FcγRloCD34+ common myeloid pro-
genitors (CMPs) and FcγRhiCD34+ granulocyte–mac-
rophage progenitors (GMPs). LSK cells in the spleen 
of tumor bearing mice highly express GM-CSF (a criti-
cal myeloid differentiation cytokine) that upregulates 
NF-κB but suppresses p38 mitogen activated protein 
kinase (MAPK) activity. Notably, LSK cells are absent 
in the spleen and BM of the control animals and mice 
subjected to extramedullary hematopoiesis (EMH) via 
repeated bleeding [45]. G-CSF is not critical for LSK 
HSPC differentiation. Circulating HSPCs move to the 
spleen of tumor bearing mice for EMH for generat-
ing immunosuppressive MICs along with local naïve 
LSK cells, which get educated to become immuno-
suppressive MICs. For example, splenic stromal cells 
of tumor-bearing mice induce LSK cell functional 
alteration to generate immunosuppressive MICs via 
soluble factors, including IL-6. Spleens of tumor bear-
ing mice over express  CCR2 ligand CCL2, along with 
the CXCR2 ligands CXCL2 and CXCL5 [45]. How-
ever, CXCR2 is not expressed of HSPCs or LSK cells, 
instead they express CCR2. Thus, HSPCs move to 
spleen via GM-CSF and CCR2/CCL2 axis and where 
they are primed to become immunosuppressive MICs 
to support tumor growth and metastasis via supporting 

immunosuppressive TIME. Similar findings (EMH 
induction generating immunosuppressive MICs) have 
been observed in patients with different cancers [45].

Furthermore, in prostate cancer TIME, a subset of 
immunosuppressive neutrophils overexpress cellular 
senescence markers with increased persistence [49]. 
These senescent-like neutrophils overexpress triggering 
receptor expressed on myeloid cells 2 (TREM2) and are 
more immunosuppressive and tumor-promoting than 
canonical immunosuppressive neutrophils [49]. Tumor 
cells increase immunosuppressive senescent-like neutro-
phil phenotype by secreting apolipoprotein-A (ApoEA) 
(Fig.  2). The secreted ApoEA binds to the TREM2-
expressing MICs to increase their senescence and immu-
nosuppressive function, correlating with poor cancer 
prognosis (Fig.  2). Furthermore, senescent neutrophils 
release a great amount of exosomes carrying piRNA-
17560, which induce overexpression of fat mass and 
obesity-associated protein (FTO) in breast cancer cells to 
increase the chemoresistance and epithelial to mesenchy-
mal transition (EMT) [50]. FTO stabilizes Zinc  (Zn2+) 
finger E-box-binding homeobox 1 (ZEB1) transcript and 
expression by lowering the N6-methyladenosine (m6A) 
RNA methylation to induce chemo-resistance and EMT. 
Therefore, the genetic deletion (SiRNA) and pharma-
cological inhibition (blocking ApoEA interaction with 
TREM2) of these senescent-like MICs, including neutro-
phils suppresses tumor progression in different mouse 
models of prostate cancers [49]. Hence, tumor-infiltrat-
ing myeloid immune cells (TIMICs) critically regulate 
tumor growth and metastasis [51].

Tumor-associated macrophages (TAMs) are essen-
tial in tumor immunity, progression, and cancer immu-
notherapy [16, 52]. TAMs influence cancer progression 
through M2 polarization which occurs when TAMs 
ingest microparticles (MPs) released by tumors in addi-
tion to the presence of IL-4, IL-13, prostaglandin E2 
(PGE2), M-CSF, vascular endothelial growth factor 
(VEGF), hypoxia-inducible factor-1 α (HIF-1α), and 
high lactate levels [53–55]. The resultant alteration in 
their phenotypic expression promotes tumor growth, 

(See figure on next page.)
Fig. 2 Aberrant Myelopoiesis during cancer and its impact on TIME MICs. Myelopoiesis takes place in the bone marrow under normal condition. 
However, cancer alters this process by inducing myelopoiesis in extramedullary organs, including spleen. During extramedullary myelopoiesis, 
circulating HSPCs or LSK cell move to spleen under the influence of immunosuppressive TIME. These LSK cells overexpress GM-CSF and differentiate 
into CLPs and GMPs. These GMPs differentiate into tumor-supportive MICs and move to the TME. GM-CSF and CCR2/CCL2 axis critically regulates the 
HSPC migration to the spleen for extramedullary myelopoiesis. Furthermore, GM-CSF release or increase in TIME increases immunosuppressive MICs 
population, including M2 macrophages, MDSCs, and N2 neutrophils that can be explained by extramedullary myelopoiesis. Tumors also exhibit 
cancer immunoediting to support immunosuppressive TIME. Cancer cells cleave tryptophan (Trp) to Kyn via IDO. Kyn exerts immunosuppressive 
activity inducing the generation of tolerogenic DCs,  Tregs increase, and antitumor T cell apoptosis. Furthermore, pro-inflammatory (IFN-γ and 
TNF-α) and anti-inflammatory cytokines (IL-10, TGF-β) induce IDO overexpression in TADCs that reprograms them to tDCs secreting Kyn via 
increased Trp metabolism. This further increases  Treg development, cytotoxic T cell apoptosis, and decreases T cell clonal expansion to support 
immunosuppressive TIME. Thus, TIME induces or follows different mechanisms to create an immunosuppressive environment for cancer growth, 
development, and metastasis. Details are mentioned in the text
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Fig. 2 (See legend on previous page.)
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metastasis, and cancer stem cell development. Differ-
ent phagocytosis-inhibiting molecules, including CD47 
(integrin-associated protein or IAP) overexpression, 
also suppress phagocytosis-mediated innate immune 
defense of macrophages and DCs in the TME [56–58]. 
The responsiveness of cancer patients to PD-1 blockers 
or ICIs correlates with type 1 IFN responses in MICs. 
Thus, the deficiency of type 1 IFNs responsive or secre-
tory MICs and the increase in the immunosuppressive 
TAMs in TIME are critical for poor cancer prognosis. For 
example, tumor PD-L1 (tPD-L1) engagement with MIC 
PD-1 (m-PD-1) activates Src homology region 2-contain-
ing protein tyrosine phosphatase 2 (SHP2) to antagonize 
type 1 IFN and STAT1 pathway to repress  Cxcl9  and 
impair  CD8+T cell recruitment to lung metastases [59]. 
TIME Pro-angiogenic TAMs with diverse markers are 
the characteristics of different cancers [60].  A detailed 
timeline of TAMs and their importance at the interface of 
the co-evolving cancer ecosystem have been discussed in 
detail elsewhere [61, 62].

Notably, MDSCs are not present in healthy individu-
als at steady state [63, 64]. Instead, they are derived from 
monocytes and neutrophils exposed to chronic inflam-
matory conditions, including cancer, to suppress the 
exaggerated inflammation to prevent collateral tissue or 
organ damage [64]. This immunosuppressive function 
of MDSCs in the TIME is the primary means by which 
tumors evade antitumor immune responses [14, 64, 65]. 
Thus, MICs exert a proinflammatory antitumor immune 
response to remove or kill tumor cells at a premalignant 
stage. However, different immune evasive mechanisms, 
including escape from tumor immune surveillance and 
cancer immunoediting by tumor cells, transform these 
proinflammatory antitumor M1 macrophages and N1 
neutrophils to tumor-supportive immunosuppressive 
M2 macrophages, N2 neutrophils, PMN-MDSCs, and 
M-MDSCs (Fig. 2) [66–69]. The detailed functional states 
of MICs, including classical and pathological activation 
states and the later stage involving MDSCs activation, 
have been discussed elsewhere [48]. For example, MIC-
induced cancer cell lipid peroxidation (LPO) comprises 
an effective mechanism that governs their pathologi-
cal activation stage in TIME. Neutrophil myeloperoxi-
dase (MPO) induces tumor cell ferroptosis to create a 
tumor suppressive TIME for tumor growth and metas-
tasis, including glioblastoma [70]. The neutrophil-MPO-
mediated ferroptosis of cancer cells in the hyperactivated 
transcriptional coactivator with PDZ-binding motif-
driven mouse model of glioblastoma (GBM) involves 
the accumulation of iron  (Fe2+)-dependent lipid perox-
ides [70]. Furthermore, neutrophil and MPO-dependent 
GBM cell necrosis and ferroptosis have been observed in 
patients with GBM and predicts poor survival [70]. The 

intratumoral glutathione (GSH) peroxidase 4 overexpres-
sion or acyl-CoA synthetase long chain family member 4 
depletion inhibits necrosis and aggressiveness of tumors. 
Necrosis is associated with cancer progression via angio-
genesis and proliferation of endothelial cells, induces vas-
culature, and increases migration, invasion, and cell–cell 
interactions [71]. Whereas ferroptosis has a dual role in 
tumor pathogenesis and metastasis that depends on sev-
eral factors (cytosolic and TME lactate, arginine, iron (Fe) 
level, Hippo signaling, intracellular and TME ROS level, 
cytosolic glutathione (GSH) level, and peroxisome activa-
tion) [72, 73]. Additionally, ferroptosis of immune cells 
comprising TIME also influences their anti or pro-tumor 
functions [72–74].

Furthermore, the increased metabolism of trypto-
phan (Trp), an essential amino acid, to kynurenine 
(Kyn) metabolites by indoleamine-pyrrole 2,3-dioxyge-
nase (IDO) decreases the antigen presentation capacity 
of TIME DCs due to the development of tDCs (Fig.  2) 
[75–77]. IFN-γ (a type II IFN) is a major IDO inducer 
in DCs in the inflammatory environment to prevent 
hyperinflammatory tissue/organ damage [78–80]. IFN-γ 
also induces tumor-repopulating cells (TRCs) to enter 
dormancy by an IDO1-Kyn-aryl hydrocarbon recep-
tor (AhR)-p27 dependent pathway in TME with TRCs 
expressing high levels of IDO1 and AhR [81]. The 
induction of the IDO1-Kyn-AhR axis by p27 prevents 
IFN-γ-induced STAT1 signaling-mediated tumor cell 
apoptosis and activates the dormancy program in TRCs 
[81, 82]. Thus, IFN-γ exerts antitumor and protumori-
genic effects depending on the TIME [67, 82]. Addition-
ally, TNF-α induced IDO expression promotes cancer 
progression (Fig. 2) [80]. The induction of tDCs restricts 
 CD4+ and  CD8+ T cell antitumor function, support-
ing the long-term immunosuppression in TME [76, 78, 
83]. The increased Kyn metabolites and Trp depletion 
in the TIME also induce T cell apoptosis,  Treg expan-
sion, prevent T cell clonal expansion, and the concur-
rent dampening of inflammatory T helper 1 (Th1)- and 
Th17-mediated antitumor function (Fig.  2) [76, 84]. 
3-hydroxy-l-kynurenamine (3-HKA), a Kyn metabo-
lite produced by Trp metabolism, also induces an anti-
inflammatory phenotype among DCs by inhibiting 
IFN-γ-induced STAT1/NF-κΒ pathway-mediated TNF-α, 
IL-6, and IL12p70 release [84]. This further suppresses 
 CD8+T cell-based antitumor immunity. As immunosup-
pression progresses, other immunosuppressive cytokines 
take over the IDO induction, including TGF-β and IL-10 
(Fig. 2) [78, 85]. Notably, there are two IDO genes, IDO1 
and IDO2 (much less studied and is weakly responsive 
to IFNs). We have discussed IDO as IDO1 here. Only 
some epithelial cells, DCs and macrophages express 
IDO, whereas lymphoid cells (T and B cells rarely express 
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IDO 1) [85]. Interestingly, dsDNA-mediated STING 
activation in  CD11b+DCs releases type 1 IFNs (IFN-α 
and -β), which induce IDO expression in marginal zone 
(MZ)  CD19+DCs in the spleen, activating  Tregs to pro-
mote dominant regulatory responses [86]. Interestingly, 
tumor draining lymph nodes (TDLNs) have an increased 
amount of  CD19+ plasmacytoid DCs  (CD19+pDCs) 
expressing IDO that gives them a function phenotype 
of tDCs, creating a local immunosuppressive TIME by 
suppressing the host antitumor immunity, including the 
T cell immunity and directly activating the mature  Tregs 
[87]. Furthermore, IDO expression and activity in pDCs 
suppresses the  Tregs polarization to inflammatory Th17 
cells in TDLNs, which may exert antitumor immunity-
depending on tumor stage and type [88, 89]. Therefore, 
IDO can be elevated as an early innate immune response 
to suppress to local inflammation in premalignant lesions 
that further increases at later stages of tumorigenesis 
associated with activated MICs and lymphoid cells [85]. 
However, the mechanism behind cGAS/STING and 
type 1 IFN-mediated IDO upregulation in MICs is yet to 
explore. Hence, understanding the cGAS/STING sign-
aling pathway in TIME MICs is critical as it is control-
ling inflammatory and tolerogenic immunosuppressive 
mechanisms by controlling different mechanisms. For 
example, STING activation-mediated antitumor immune 
response works in immunogenic tumors but not in 
tumors with low antigenicity [85, 90].

cGAS/STING signaling in TIME MICs
Monocytes, bridging innate and adaptive immunity, sig-
nificantly affect tumor immunity, growth, angiogenesis, 
and metastasis [91, 92]. They exert this effect through 
different PRRs involved in immunity, phagocytosis of 
tumor cells, and releasing various cytokines, growth fac-
tors, and chemokines regulating cancer growth. cGAS/
STING signaling pathway activation in monocytes also 
contributes to their immune function in TME or TIME 
(Fig.  1). There are ten known IRFs (IRF1-IRF10), which 
play critical roles in immunity through different mecha-
nisms as discussed elsewhere [93–95]. Out of them, IRF8 
(independent of its role in monocyte differentiation) is 
critical to STING-mediated innate immune responses 
among monocytes [96]. For example, in unstimulated 
monocytes/macrophages, IRF8 remains inactive by 
sequestering its IRF-associated domain, which prevents 
its interaction with STING. The cytosolic dsDNA rec-
ognition by the cGAS/STING signaling pathway phos-
phorylates the serine 151 of the IRF8, which initiates 
the interaction between the IRF-associated domain and 
STING (Fig. 1) [96]. The IRF8 and STING interaction is 
crucial for STING polymerization and TBK1-mediated 
STING and IRF3 phosphorylation (Fig.  1). The IRF8 

overexpression in TAMs decreases tumor mass and 
improves patient survival in renal cell carcinoma (RCC) 
[97]. However, a contradictory finding suggests that IRF8 
overexpression in TAMs of RCC and other cancer [kid-
ney renal clear cell carcinoma (KIRC), lung squamous 
cell carcinoma (LUSC), and skin cutaneous melanoma 
(SKCM), breast invasive carcinoma (BRCA), bladder 
urothelial carcinoma (BLCA), and liver hepatocellular 
carcinoma (LIHC)] patients is responsible for increased 
cytotoxic or  CD8+ T cell (CTL) exhaustion (PD-1 over-
expression) due to increased antigen presentation [98]. 
The IRF8 overexpression in TAMs increases their antigen 
presentation potential to CTLs causing their exhaustion 
and worse survival outcome in ccRCC patients [98]. The 
IRF8-deficient TAMs are defective in producing CXCL9, 
a chemoattractant for CTLs in the TME or TIME [99, 
100]. Thus, in addition to playing a critical role in the 
cGAS/STING signaling pathway, IRF8 also controls anti-
gen presentation potential of TAMs. It will be interesting 
to understand the factors controlling IRF8 expression in 
TAMs and its function (cGAS/STING signaling activa-
tion and antigen presentation) for tumor immunothera-
pies to adjunct currently available ICIs.

Furthermore, cGAS/STING signaling in TAMs differs 
from normal macrophages by another mechanism [101]. 
In TAMs, protein phosphatase 2A (PP2A), with its spe-
cific B regulatory subunit Striatin 4 (STRN4), negatively 
regulates STING-dependent acute type I IFN production. 
Mice with PP2A deletion, specifically in macrophages, 
show reduced tumor growth and development. It is due 
to a decreased accumulation of immunosuppressive 
macrophages and increased production of type 1 IFNs 
with increased IFN-activated macrophages and  CD8+T 
cell accumulation [101]. The STING activation involves 
Hippo serine/threonine kinase MST1/2 as STING ago-
nists induce PP2A dissociation from MST1/2 in normal 
macrophages that are not seen in TAMs [101]. In TAMs 
STRN4 mediates PP2A binding to Hippo kinase MST1/2 
for its dephosphorylation, stabilizing yes-associated pro-
tein/transcriptional coactivator with PDZ-binding motif 
(YAP/TAZ) to antagonize STING activation. For exam-
ple, in human GBM patients, their TAMs overexpress 
YAP/TAZ, which is absent in normal macrophages [101]. 
Furthermore, the deficiency of PP2A/STRN4 in mac-
rophages reduces YAP/TAZ expression and sensitizes 
tumor-conditioned macrophages to STING activation. 
Thus, PP2A/STRN4-YAP/TAZ axis is a newly explored 
mechanism for the immunosuppressive activity of TAMs 
via STING activity suppression, and its specific target-
ing in TAMs can sensitize tumors for immunotherapy 
via STING-dependent type I IFN release and increased 
 CD8+T cell activity.
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Although IRF8 deficiency alters DC and macrophage 
compartment in TIME, strategies to overexpress IRF8 
in TAMs and DCs should be carefully used depending 
on the tumor type and their TIME. For example, many 
cancer types, including all desmoplastic small round 
cell tumors, Ewing sarcomas, synovial sarcomas, undif-
ferentiated pleomorphic sarcomas, and all epithelial 
malignancies show a negative IRF8 expression [102]. 
 ER−breast cancers (BCs) and triple -negative breast 
cancers (TNBCs) also offer little to no IRF8 expression, 
indicating that impaired cGAS/STING signaling sup-
ports tumor growth and metastasis due to decreased 
antitumor  CD8+T cell infiltration [102, 103]. The 
decreased IRF8 expression in tumors (BC and pancre-
atic cancer) impairs the conventional DC (cDC) subset 
cDC1 (human  CD141+DCs and mouse  CD103+DCs) 
development, which decreases the  CD8+T cells-based 
antitumor immune response [104]. The decrease in 
cDC1s in the absence of IRF8 can be attributed to their 
reprogramming to cDC2-like cells expressing CD11b 
and signal regulatory protein alpha (SIRPα, recog-
nizes CD47, a “do not eat me signal” expressed on all 
human tumor cells), which release IL-1β and IL-6 
or cDC3 cells in humans [105–107].cDC1s and their 
progenitors decrease systemically in cancer patients 
due to a decreased IRF8 expression in cDC progeni-
tors in response to the granulocyte colony-stimulating 
factor (GCSF) released from local cancer cells. The 
increased IRF8 expression in NSCLCs increases their 
senescence via inhibiting AKT (protein kinase B or 
PKB) signaling and promoting p27 protein accumula-
tion [108]. The uptake of dsDNA of dying senescent 
lung cancer cells may activate cGAS/STING signaling 
in TIME MICs to generate a proinflammatory antitu-
mor immune response and the activation of  CD8+T 
through increased antigen presentation. However, anti- 
and proinflammatory cytokine and type 1 IFN release 
from monocytes, along with their death and survival, 
depends on the concentration and binding strength 
of the STING ligands [109]. Thus, the low availability 
of STING ligands at premalignant stages may induce 
anti-inflammatory cytokine (IL-10 and IL-19) release. 
The proinflammatory cytokine release occurs due to 
positive regulatory (PR)/SET domain 1 (PRDI-BF1 or 
PRDM1) or B-lymphocyte-induced maturation pro-
tein-1 (BLIMP-1) upregulation in TIME monocytes/
macrophages without their death to support tumor 
growth via promoting M2 polarization. Human pDCs 
also recognize cytosolic dsDNA via cGAS to activate 
STING-dependent type 1 IFNs and proinflammatory 
cytokines [110]. Interestingly, the STING activation 
in human pDCs blocks TLR9-mediated IFN produc-
tion via IRF7 activation [111]. Also, STING activation 

in human pDCs activates the suppressor of cytokine 
signaling (SOCS) molecules, SOCS1 and SOCS3, that 
impede IFN production.

Tumor MPs (T-MPs) released from the tumor or can-
cer cells stimulate cGAS/STING and TBK1-STAT6 
signaling pathways in TIME macrophages to reprogram 
them to immunosuppressive tumor-supportive M2 mac-
rophages [53]. Also, T-MPs induce M1 macrophages’ 
apoptosis in the TIME or TME [53]. In patients with 
TNBC treated with chemotherapy or radiotherapy, 
T-MPs tend to be higher in PD-L1, resulting in an immu-
nosuppressive environment and tumoral growth [112]. 
Furthermore, T-MPs alter M2 polarization through 
simultaneous TBK1 and STAT6 activation and suppres-
sion of the serine-threonine kinase (AKT)/mammalian 
target of rapamycin (mTOR) signaling and impair  CD8+T 
cell differentiation and function due to cGAS/STING-
mediated M2 macrophage polarization [112]. However, 
abundant cytosolic STING ligands induce the release of 
type I IFNs and proinflammatory cytokines (IL-1β and 
TNF-α) from macrophages, causing their apoptosis as 
indicated by a high caspase 3 (CASP3) and Poly [ADP-
ribose] polymerase 1  (PARP-1) expression [109]. Hence, 
inducing tumor cell senescence or death (increasing 
IRF8 expression or radiotherapy) may increase the sig-
nal strength of cGAS/STING signaling in TIME MICs 
(macrophages and DCs) by phagocytosing the cytosolic 
dsDNA to create a proinflammatory and cytotoxic TIME. 
For example, STING agonist (di-amidobenzimidazole 
or diABZI) with radiotherapy and DNA damage repair 
inhibitors (DDRis) increases the survival of experimen-
tal mice with pediatric high-grade gliomas (pHGGs) 
[113]. We need future studies in this direction, and future 
therapies must consider MIC-specific STING levels and 
other regulatory factors to optimize immunotherapies.

TME regulates cGAS/STING signaling in MICs 
via cGAMP transport
Cancer or tumor cells develop different strategies to 
modify infiltrated MICs, including the release of different 
immunoregulatory factors (cytokines, chemokines, and 
metabolites) [114–117]. Furthermore, cancer cells also 
generate different DAMPs, which modify the TIME by 
activating different pattern-recognition receptors (PRRs) 
expressed on local or infiltrated immune cells [118]. Can-
cer cells express different transporters, including ATP-
binding cassette (ABC), lactate, glucose, and amino acid 
transporters through which they transport different mol-
ecule in and out to support their survival, growth, pro-
liferation, and metastasis [119, 120]. Thus, cancer cells 
can also transport cGAMP to avoid endogenous STING 
activation as a survival and growth strategy but immune 
cells also express some channels or transporters, which 
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can uptake the external cGAMP/CDN to activate inter-
nal STING-dependent type I IFN as antitumor immune 
function.

MDSCs are another class of immunosuppressive 
innate immune cells or MICs. It is interesting to under-
stand the role of cGAS/STING signaling in their immu-
nological function affecting TIME. cGAMP levels in 
TIME suppress cancer metastasis by decreasing MDSCs 
via STING activation, which stimulates cytotoxic anti-
tumor  CD8+T-cells producing IFN-γ [121]. Addition-
ally, cGAMP-mediated STING activation in MDSCs 
inhibits ROS and RNS production, inhibiting immuno-
suppressive TIME. The ABCC1 transporter (an ATP-
dependent cGAMP exporter) exports cGAMP that can 
be taken up by TIME immune cells, including MDSCs 
and macrophages [122]. The solute carrier family 19 
member 1 (SLC19A1, a folate transporter) is a recently 
mentioned importer of cGAMP and other cyclic dinu-
cleotides (CDNs) in MICs [123–125]. Human SLC19A1 
(hSLC19A1) cavity binds two CDN or cGAMP molecules 
at a time for their import [124].

An alternatively spliced STING isoform known as 
plasmatic membrane STING (pmSTING) is localized 
in the plasma membrane with its C-terminus outside 
the cell due to the lack of one transmembrane domain 
in its N-terminus compared with canonical STING. The 
pmSTING recognizes extracellular CDNs and cGAMPs 
to activate STING signaling-dependent type 1 IFN and 
associated cytokine release to exert antitumor action 
(Fig.  1) [126]. Also, MICs express another cGAMP or 
CDN transporter called leucine-rich repeat-containing 
8A (LRRC8A)/SWELL1, containing a volume-regulated 
anion channel (VRAC) subunit along with different tis-
sue-specific cancer cells [127, 128]. LRRC8A forms com-
plexes with LRRC8C and LRRC8E depending on their 
expression for cGAMP or CDN export and import [129, 
130].

Diverse cell stress conditions (ER stress, cancer chem-
otherapy, and radiotherapy) activate LRRC8 channels 
to initiate cGAMP transport in adjacent cells, includ-
ing MICs in TIME, which can stimulate the STING-
dependent type 1 IFN release to exert antitumor immune 
function. Hence, extracellular CDNs and cGAMPs can 
activate STING signaling externally and through their 
import to MICs to generate type 1 IFNs and proinflam-
matory cytokines. However, not all LRRC8 VRACs medi-
ate cGAMP; for example, LRRC8D inhibits cGAMP 
transport [129]. Interestingly, LRRC8A/LRRC8D het-
erodimer imports the anticancer drug cisplatin in can-
cer cells to kill them. The cGAS localized to the plasma 
membrane via Phosphatidylinositol 4,5-bisphosphate 
(PIP2) also interacts with VRACs (LRRC8A) to open 
them independently of its enzymatic activity [131]. The 

serum proteins (cGAS and TNF-α) activate LRRC8A/
LRRC8E VRACs to transport cGAMP in resting cells, 
and heat-inactivated or proteinase K-treated serum fails 
to open them [131]. Thus, VRAC activation can enhance 
the efficacy of anticancer drugs and antitumor immunity 
via cGAMP transport to MICs. Notably, TME cGAMP or 
its administration in the TME only triggers STING acti-
vation and IFN-β production in MICs and B cells but not 
in NK cells [132]. The type 1 IFNs produced by MICs in 
response to the tumor-derived cGAMP primes NK cells 
to exhibit antitumor cytotoxic action [133]. For example, 
impaired type 1 IFN signaling in NK cells abolishes their 
antitumor cytotoxic function along with altering their 
homeostasis and development [134, 135]. The details of 
type 1 IFNs-mediated NK cell development, function, 
and homeostasis are discussed elsewhere [136, 137]. 
The cGAMP-induced enhancement of chimeric antigen 
receptor (CAR)-NK cell-based immunotherapy against 
pancreatic cancer has a bright future [138].

The ectopic STING expression negatively correlates 
with tumor-infiltrating  CD33+ cells and decreases the 
percent of nasopharyngeal carcinoma (NPC)-induced 
HLA-DR−CD11b+CD33+ MDSCs [139]. Addition-
ally, exogenous STING expression in MDSCs takes over 
their immunosuppressive potential as indicated by the 
increased proliferation of  CD4+  and  CD8+  T cells. Fur-
thermore, STING inhibits MDSCs differentiation under 
physiological conditions [139].  CD33+ immature MDSCs 
are associated with an increased risk of cancer recur-
rence, such as in gastric cancer [140] and CRC [141], 
indicating only mature MDSCs are responsive to STING 
stimulus, including cGAMP. STING also influences 
tumor-associated MDSC induction by altering gene 
expression. For example, NPC STING-TBK1 signaling 
can upregulate the SOCS1, which interacts with the SH2 
domain of the STAT3 to inhibit STAT3 phosphorylation 
at S727 and Y705 [139]. Notably, STAT3 is active in 70% 
of solid tumors, and its SH2 domain is critical in forming 
functional STAT3 dimers [142]. Therefore, STAT3 inhibi-
tors are critical to explore MIC or STING-inspired can-
cer immunotherapies.

The antitumor effect of ICIs also depends on the anti-
tumor activity of MIC’s cGAS/STING signaling pathway. 
For example, cGAS-deficient mice fail to exert the anti-
tumor effects of the ICIs blocking PD-1/PD-L1 interac-
tion [143]. Conversely, depleting PD-L1 in cancer cells 
sensitizes them to chemotherapy and the inhibitor of 
DNA-PK (a critical kinase for non-homologous end join-
ing (NHEJ) pathway) [144]. Furthermore, PD-L1 deple-
tion downregulates molecules involved in homologous 
recombination DNA repair pathway. Thus, DNA released 
from dying tumor cells can be taken up by MICs to acti-
vate the cGAS/STING pathway [144]. In human DCs, 
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inhibiting PD-L1 can increase the antitumor action of 
 CD8+T-cells in a cGAS-dependent manner against PD-
L1-expressing tumor cells [145, 146]. Another checkpoint 
critical to cancer control is DNA damage checkpoint 
kinase Chk2. Changes in Chk2 expression can alter the 
antitumor immune response depending on the cancer 
type. For example, Chk2 expression levels are higher 
in BC than in lung cancer, indicating its more substan-
tial effect on the cell cycle in BC [147]. In addition, chk2 
checkpoint inhibition accumulates cytosolic DNA that 
activates the STING pathway to induce type 1 IFN and 
NF-κB-dependent proinflammatory antitumor immune 
response in AT-rich interactive domain-containing pro-
tein 1A (ARID1A)-deficient tumors [148]. Hence, MIC-
mediated tumor immunity or TIME relies on active 
cGAS/STING signaling from its pathogenesis to anti-
tumor effects of different chemotherapies, ICIs, and 
radiotherapies.

Targeting MIC‑specific cGAS/STING signaling 
in cancer or TME
Given that the cGAS/STING pathway is a natural 
immune regulator disrupted by traditional cancer ther-
apies, modulating it through targeted therapies has 
excellent potential to develop adjunct therapies against 
cancer. Therefore, creating conditions that upregulate 
this pathway should reinstate tumoral IFN responses 
[149]. Notably, intratumoral STING activation also nor-
malizes/reprograms tumor vasculature when adminis-
tered along with VEGF receptor 2 (VEGFR2) blockers/
antagonists by inducing expression of vascular stabiliz-
ing genes (e.g., angiopoietin 1 or Angpt1, platelet-derived 
growth factor receptor-beta or Pdgfr-β, and type IV col-
lagen alpha protein or Col4a) [150]. Currently, we do not 
know about the cGAS/STING activation in MICs and its 
impact on angiogenesis in TME. However, cGAS/STING 
activation in endothelial cells is involved in the VEGF-
A-dependent angiogenesis in an immune-independent 
manner that involves cGAS translocation to the nucleus 
via importin-β pathway [151]. The translocated cGAS 
in the nucleus regulates miR-212-5p-ARPC3 cascade 
to modulate VEGF-A-mediated angiogenesis by modu-
lating cytoskeletal dynamics and VEGFR2 trafficking 
from trans-Golgi network (TGN) to plasma membrane 
through a regulatory feedback loop [151]. cGAS deficient 
animals show a defective VEGF-A-dependent angio-
genesis, including in malignant glioma. However, it will 
be a novel approach to study the impact of MIC cGAS/
STING signaling-dependent regulation of neoangiogen-
esis in the TME.

Extrinsic phagocyte (macrophages and DCs)-depend-
ent STING signaling is crucial to dictating the immu-
nogenicity of dying tumor cells in the TME to activate 

potent antitumor T cells [152]. Tumor cell escape mac-
rophage-mediated phagocytosis via increasing the CD47 
expression, which recognizes signal regulatory protein-α 
(SIRPα, a phagocytosis inhibitory receptor) [153]. Com-
bining temozolomide (a chemotherapeutic agent) and 
CD47 blocking agents, including antagonistic anti-CD47 
monoclonal antibody (mAb) increases type 1 IFN pro-
duction by activating cGAS/STING signaling in myeloid 
antigen-presenting cells (APCs)/MICs in different can-
cers [154–156]. Furthermore, combining cGAMP with 
the antagonistic anti-CD47 mAb increases the phago-
cytic clearance of tumor cells and induces systemic anti-
tumor immune responses, which depends on STING 
and type I IFN signaling [153]. STING-agonist loaded 
with CD47/PD-L1 targeting nanoparticles also potenti-
ate antitumor MIC-based immunity and radiotherapy 
efficacy in glioblastoma [157]. CD47-SIRPα serves as an 
innate immune checkpoint and bridges innate and adap-
tive immunity in cancer [58, 158]. Tumor cells overex-
press CD47 in response to the chronic DNA damage to 
evade immune response, including phagocytosis [159]. 
Notably, chemotherapy without CD47 blocking strategy 
enhances CD47 expression on tumor cells via induc-
ing IL-18 release from macrophages, which increases 
L-amino acid transporter 2 (LAT2) in tumor cells [160]. 
LAT2 increases glutamine and leucine uptake in tumor 
cells, increasing mTORC1 signaling and Myc-depend-
ent CD47 upregulation on tumor cells [160]. Thus, the 
macrophage-tumor axis is crucial in tumor immunity or 
TIME. Hence, chemotherapy with phagocytosis check-
point inhibitors (PCIs) increases antitumor immunity by 
improving cGAS/STING signaling in MICs of TME or 
TIME (Table 1).

Also, high-standard human-specific cGAS small mol-
ecule inhibitors with macrophage activity have been 
developed with potential use in cGAS/STING signaling-
mediated inflammatory diseases [161]. Recently, a pep-
tide nanotube (PNT) loaded with the STING agonist 
called Cyclic diguanylate monophosphate (c-di-GMP) 
has been developed, which has limited efficacy due to 
its poor membrane permeability and low bioavailabil-
ity [162]. The c-di-GMP-PNT treatment’s nanocompos-
ite induces a STING-dependent type 1 IFN, IL-6, IL-1β, 
and TNF-α release from macrophages, initiating a 
potent antitumor  CD4+ and  CD8+T cells-based immune 
response (Table 1). Further studies have shown the effi-
cacy of STING agonism in non-tumor cells and MICs 
in poorly immunogenic tumors, including the B16F10 
melanoma model [163]. Another STING agonist called 
ADU-S100 (S100), in combination with ICIs, increases 
survival and durable protection in a poorly immunogenic 
tumor through type 1 IFN generation-dependent man-
ner, independent of TNF-α generation (Table 1) [164]. A 
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more robust and effective technique than S100 has been 
developed recently to selectively induce the DC-specific 
STING activation in the TIME for priming antitumor T 
cell response [165]. The technique incorporates cGAMP 
with non-infectious virus-like particles (VLPs, cGAMP-
VLPs) that specifically activates TIME cDC1s STING 
signaling pathway upon intratumoral injection (Table 1). 
The cDC1 STING signaling activation in the TIME 
with cGAMP-VLPs at a 1000-fold lower dose than S100 
increases the differentiation of circulating antitumor T 
cells, decreases  Tregs in the TIME, and works synergisti-
cally with PD-1 blockers (Table 1) [165]. It is important 
to note that S100 eliminates TIME cDC1s but cGAMP-
VLPs act on cDC1’s STING to exert antitumor action.

In the immunogenic MC38 model of murine colon 
cancer (CC), vital STING signaling in tumor cells can 
partially bypass the requirement for STING-dependent 
activity from immune cells, including MICs. Notably, 
cGAS/STING signaling is crucial for the efficacy of ICIs 
in different tumors [39, 163]. Also, radiation-induced 
type 1 IFN-dependent antitumor immunity in immuno-
genic tumors depends on detecting cytosolic DNA by 
the STING signaling in TIME DCs [90]. Additionally, the 
exogenous cGAMP induction in the TIME promotes the 
efficacy of radiation therapy. However, the non-canonical 
NF-κB activation downstream to cGAS/STING signal-
ing pathway in tumor-associated DCs (TADCs) during 
radiation therapy decreases type 1 IFNs level [166]. Thus, 
explicitly inhibiting non-canonical NF-κB activation 
downstream to cGAS/STING signaling during radiation 
therapy in TADCs enhances the antitumor efficacy of 
radiation therapy.

Cancer vaccines can utilize STING to improve their 
efficacy in PD-1-resistant cancers. Notably, nuclear 
PD-L1 silencing increases STING promotor activity. Spe-
cifically, PD-L1 binds to the STING promotor region, 
thus being a regulatory factor in STING expression and 
cancer growth [167]. STINGVAX, a cancer vaccine com-
prising CDNs (activating TBK1/IRF3, NF-κB, and STAT6 
signaling pathways) and GM-CSF, has shown promis-
ing results in different murine tumor models (Table  1). 
Notably, GM-CSF use in cancer needs a caution due to its 
controversial role in tumorigenesis and antitumor activ-
ity [168–170]. Specifically, mice treated with STINGVAX 
upregulate PD-L1 and increase DC activation (Table  1) 
[171]. DCs uptake nanoparticles (NPs) from the vaccine 
and activate the STING pathway [143]. Cancer thera-
pies (cGAMP treatment) via cGAS/STING pathway 
reprogram MICs (M2 to M1 macrophages or N2 to N1 
neutrophils) to inhibit tumoral advancement [172–175]. 
Infusions with ONP-302 activate the cGAS/STING path-
way in MICs, activating NK cells and increasing PD-1/
PD-L1 expression in the TIME [176]. STING-targeting 

vaccines can be administered to supplement traditional 
therapies to enhance the antitumor response. For exam-
ple, co-treatment with radiotherapy and a STING acti-
vating nano vaccine enhance tumoral response compared 
to either treatment independently. Specifically, treating 
established murine tumors in this manner increases the 
number of antitumor  CD8+ T cells in primary tumors 
[177].

Cancer vaccines also activate the antitumoral proper-
ties of the cGAS/STING pathway utilizing tumor-derived 
MPs and DNA signaling. For example, MPs can facilitate 
antigen transfer from macrophages to DCs, thus serving 
a differential role in cancer immunity [178]. Specifically, 
cell-free anticancer vaccines can utilize tumor-derived 
MPs to transfer DNA fragments to DCs. Furthermore, 
the cytosolic DNA in DCs triggers cGAS/STING sign-
aling-dependent type 1 IFN release, further supporting 
DC maturation and tumor antigen presentation to  CD4+ 
and  CD8+ T cells [179]. In addition, engineered cancer 
therapies can utilize the STING pathway to overcome 
challenges associated with traditional cancer vaccines. 
For example, therapeutics developed with microfab-
ricated polylactic-co-glycolic acid (PLGA) particles 
stay at the injection site and release STING agonists at 
pre-programmed time points through pulses, mimick-
ing multiple injections. This technique seems promis-
ing in different cancers in mice in terms of inducing a 
robust antitumor immune response inhibiting tumor 
growth and metastasis to prolonged survival (Table  1) 
[180]. The microfabricated PLGA particles encapsulating 
the STING agonist stay at the injection site and release 
STING agonists at pre-programmed time points through 
pulses that mimic injections. This technique has shown 
promise in multiple mouse cancers by inhibiting tumor 
growth, reducing metastasis, and prolonging survival 
[180]. The STING agonist encapsulated in the microfab-
ricated PLGA is not MIC-specific, but modulates  CD4+, 
 CD8+, and NK cells (increased antitumor action) along 
with repolarizing M2 macrophages to M1 macrophages 
and inducing DC maturation to serve as potent APCs to 
activate antitumor T cells (Table 1) [180]. Also, zymosan: 
adenovirus (Zym:Ad) conjugate encoding IRF3 repolar-
izes M2 macrophages to antitumor M1 macrophages in 
the TME and increases systemic antitumor immunity 
(Table 1) [181].

Interestingly, researchers have designed a masked type 
I IFN-Fc (ProIFN) with its natural receptor connected by 
a cleavable linker, an easy target of tumor-associated pro-
teases [182]. ProIFN has a high serum half-life, improved 
tumor targeting via an enhanced DC cross-priming, and 
significantly increased  CD8+T cell infiltration and effec-
tor function in the TME. Furthermore, these type 1 
IFNs induce granzyme B (Gzm-B) expression in  CD8+T 
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cells by STAT3 activation to increase their cytotoxic 
action against tumor cells [183]. However, type 1 IFNs 
may protect tumors expressing IFN-αR1 via  Serpinb9, 
an IFN-inducible gene encoding Serpin B9 or protein-
ase inhibitor-9 (PI-9, a serine protease), an endogenous 
Gzm-B inhibitor against ionizing radiation therapy [184, 
185]. Thus, blocking IFN-αR on tumor cells or an adjunct 
treatment with Serpin B9 inhibitor (anti-Serpin B9 ther-
apy) can increase cytotoxic  CD8+T cells against tumor 
cells and ICI’s antitumor action [186, 187]. Hence, these 
approaches are helpful in tumors where a direct cGAS/
STING signaling pathway activation cannot produce type 
1 IFNs.

The systemic or direct intratumoral CDN or STING 
activators help tumor clearance in preclinical models but 
fail to induce antitumor immune memory [188–191]. 
On the other hand, tumor treating fields (TTFields), an 
approved therapy for GBM and malignant mesothe-
lioma, induces cGAS/STING signaling and absent in 
melanoma-2 (AIM-2)-dependent type 1 IFN and proin-
flammatory cytokine-based antitumor immunity in syn-
geneic mouse GBM model developed using KR158 and 
GL261 glioma cells (Table  1) [192]. TTFields-treated 
GBM cells also generate antitumor immune memory 
via STING- and AIM2-dependent signaling pathways in 
DCs to promoting cytotoxic T cell activation and clonal 
expansion (Table  1) [192, 193]. Notably, robust post-
TTFields activation of adaptive immunity in patients 
with GBM via a type 1 IFN-based trajectory has been 
reported. Still, the authors have not indicated the STING 
activation in the GBM cells. Hence, TTFields in GBM 
patients work by stimulating specifically cGAS/STING 
in MICs but not in GBM cells as they have methylated 
STING. Therefore, TTFields and DNMT combination 
can be a better treatment approach for GBM patients.

Extracellular vesicles (EVs) are crucial in carcino-
genesis and metastasis [194] and should be explored in 
context of cancer vaccines and the cGAS/STING path-
way among MICs. Modified EVs can deliver therapeu-
tic agents such as chemotherapies or nucleic acids with 
high efficiency and specificity for cancer vaccines [195]. 
EVs are prevalent in the TIME and play a key role in 
cancer advancement [194]. For example, TNBCs release 
EVs, promoting monocyte differentiation to proinflam-
matory macrophages, causing increased T cell infiltra-
tion and an improved prognosis [196] A subset of EVs 
known as exosomes is an exciting avenue to explore 
concerning cancer vaccines, as they are secreted by 
nearly all cell types and facilitate communication 
between innate immune and invading cells to regulate 
innate immunity [197]. Irradiated, but not unmodified, 
tumor-derived exosomes have already shown promise 
as a cancer vaccine in mice. Tumor-derived exosomes in 

irradiated mouse BC cells can transfer dsDNA to DCs, 
thus activating DCs and STING for type 1 IFN produc-
tion (Table 1). The irradiated tumor-derived exosomes 
also increase antitumor  CD8+T cell responses in  vivo 
[198]. Additionally, EVs derived from activated  CD4+T 
cells (T-EVs) carrying IFN-γ sensitize TAMs via STING 
activation (without cGAS and cGAMP involvement) 
to repolarize them to antitumor M1 macrophages in 
TIME [199]. Hence, T-EVs are another option to repo-
larize immunosuppressive TAMs to antitumor M1 
macrophages to enhance the antitumoral function of 
cGAMP.

Recently ExoSTING, engineered EVs loaded with 
external CDN, has increased CDN potency to elicit a 
potent antitumor immune response via activating APCs 
(Table 1) [200]. Intratumoral ExoSTING stays within the 
TME and enhances  CD4+T cell-dependent Th1 immu-
nity and  CD8+T cell-dependent cytotoxicity, generat-
ing systemic antitumor immunity. However, ExoSTING 
does not induce a systemic proinflammatory immune 
response at therapeutic doses, leaving an enhanced ther-
apeutic window. Further research is warranted into how 
EV-based STING agonists and vaccines can advance 
cancer immunotherapy. Additionally, a STING agonist 
(di-ABZI) and IDO inhibitor (1-methyl-d-tryptophan or 
1-MT) combination inhibits tumor progression in the 
murine CRC via recruiting  CD8+T cells and DCs and 
inhibiting immunosuppressive MDSCs (Table  1) [201]. 
Another STING agonist, SHR1032, is tumor protective 
in murine CRC by stimulating the type 1 IFNs, TNF-α, 
and IL-6 release in the TME (Table  1) [202]. Addition-
ally, STING agonism in breast cancer gene-1 (BRCA-1) 
deficient BC mouse model reprograms M2 macrophages 
to antitumor M1 macrophages, enhances the antitumor 
function of DCs, and synergizes the anticancer effects of 
PARP-inhibitors (PARP-Is) [203, 204].

MICs are critical to STING-based cancer therapy at 
the TIME. STING activating therapies can suppress 
MICs in humans and mice by inhibiting Myc signaling 
and altering metabolic processes and cell cycle. These 
anticancer responses are due, in part, to MIC repolari-
zation and T-cell activation and are strengthened when 
injected directly into the tumor [205]. This antitumor 
effect involves Myc inactivation, which was previously 
difficult to achieve. Manganese (II) ions  (Mn2+) promote 
DC and macrophage maturation and tumor-specific anti-
gen presentation, potentiate  CD8+T cell differentiation, 
activation, NK cell activation, and memory  CD8+T cell 
differentiation. Combining  Mn2+ with ICIs synergisti-
cally boosts antitumor immunity and decreases ICIs dose 
[206]. In addition,  Mn2+ activates the cGAS/STING sign-
aling pathway via activating the TBK1 phosphorylation 
for immunomodulation (Table 1) [207]. Therefore  Mn2+ 
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has been used in several ways to target cancer. For exam-
ple, the cancer metalloimmunotherapy comprising CDN 
STING agonists and  Mn2+, assembled into an NP called 
CDN-Mn2+ particle or CMP induces antitumor immu-
nity in many murine tumor models [208].

Furthermore, bovine serum albumin (BSA)/ferri-
tin-based nanoagonist incorporating  Mn2+ amplifies 
cGAS/STING signaling, and β-lapachone activates 
cGAS/STING signaling in DCs to elicit robust T cell-
dependent adaptive antitumor immunity [209]. Addi-
tionally,  Mn2+ coordination micelle (ABZI (STING 
agonist) + naphthalocyanine (ONc) in maleimide-mod-
ified Pluronic F127 (malF127) or ONc-Mn-A-malF127) 
also forms a novel cancer metalloimmunotherapy 
to stimulate STING in the TME via capturing  in 
situ  tumor antigen (Table  1) [210]. Thus, ONc-Mn-
A-malF127 creates a nanoplatform for increasing the 
efficacy of anticancer therapy with metalloimmuno-
therapy and photo-induced immunogenic cell death 
(ICD)-based immunotherapy with an abscopal solid 
effect.

The biodegradable STING agonists comprising poly 
(beta-amino ester) (PBAE) NPs loaded with CDNs 
have decreased the amount of CDN needed to stimu-
late STING for potent antitumor immunity in com-
bination with PD-1 blockers [211]. Furthermore, 
STING-NPs increase the cGAMP’s potency to acti-
vate the STING-dependent antitumor immunity in the 
TME and lymph nodes (LNs) in different cancers [212]. 
Also, cGAMP-NPs stimulate STING more strongly 
than cytosolic cGAMP, reprogram M2 macrophages 
to antitumor M1 macrophages, and increase IFN-γ 
producing antitumor T cells [213, 214]. The extracel-
lular matrix (ECM)-degrading nanoagonist (dNAc) 
with a second near-infrared (NIR-II) light-controlled 
system also activates STING-dependent type 1 IFN 
release during mild photothermal-augmented chemo-
dynamic-immunotherapy in a mouse model of breast 
cancer [215]. The dNAc, upon NIR-II photoactiva-
tion, releases different immunogenic tumor antigens, 
including dsDNA activating tumoral DCs to stimulate 
antitumor T cell immunity through STING activation. 
In addition, the STING activation in DCs upregulates 
IL-15Rα expression in type 1 IFN-dependent manner, 
increasing NK cell number and their antitumor func-
tion [216, 217]. Hence, cGAS/STING signaling in DCs 
activates NK and T cell-mediated antitumor immu-
nity. Furthermore, another study has shown that the 
targeted STING activation in APCs (macrophages and 
DCs) in the TME under spatiotemporal ultrasound 
stimulation increases systemic antitumor immunity 
and improves the ICI’s therapeutic efficacy [218]. 
Thus, MIC-based cGAS/STING signaling targeting is 

a novel immune-based approach to target tumors and 
increase antitumor immunity.

Future perspective and conclusion
Tumor cell and MIC-specific cGAS/STING activation 
are essential for inducing an initial antitumor immune 
response. However, the chronic cGAS/STING sign-
aling pathway activation in tumors induces immu-
nosuppressive TIME and cancer cell survival and 
metastasis. Furthermore, radiotherapy alone enhances 
the immunosuppressive action of MDSCs via DNA 
damage-induced cGAS/STING signaling after its ces-
sation through enhancing suppressive inflammation in 
tumors by recruiting myeloid cells (M-MDSCs) in part 
via chemokine receptor 2 (CCR2, a receptor for CCL2, 
CCL7, and CCL12) signaling pathway resulting tumor 
radioresistance [219, 220]. However, STING activation 
in tumor MDSCs in response to cytosolic mitochon-
drial DNA (mtDNA) restores their immunostimulatory 
function by releasing antitumor type 1 IFNs and proin-
flammatory cytokines [221]. The pancreatic ER kinase 
(PKR)-like endoplasmic reticulum (ER) kinase (PERK) 
expression in MDSCs in TME or TIME via nuclear fac-
tor erythroid 2–related factor 2 (NRF2) activity-medi-
ated mitochondrial homeostasis determines the STING 
signaling-dependent antitumor type 1 IFNs release [222]. 
Notably, the PERK inhibition in cancer cells induces 
parapotosis that stimulates type I IFN production in 
response to released ATP and HMGB1 in DCs indepen-
dently of STING activation.

Conversely, the STING activation primes CCR2-
dependent tumor trafficking of common-monocytic 
precursors and their intra-tumor commitment into 
monocytic-lineage inflammatory  Ly6C+CD103+  DCs 
[223]. Although human T cells express high STING lev-
els and in the presence of TCR-engage signaling, cGAS/
STING signaling activation switches T cells to produce 
type 1 IFN. Still, STING activation/agonism impedes 
their antitumor function [224]. This indicates MIC-spe-
cific cGAS/STING targeting is more crucial for develop-
ing tumor immunotherapy than T cell-specific one.

We should be careful using systemic STING agonist 
monotherapy in different cancers as STING activation 
alone, as a tumor therapy, has indicated the emergence 
of tumor resistance in clinical trials [225]. The develop-
ment of tumor resistance with the systemic STING ago-
nist (cGAMP) monotherapy involves IL-35 released by B 
cells (regulatory B cells or  Bregs) in an IRF-3-dependent 
manner, suppressing antitumor NK cells in the TME 
[226, 227]. The STING-dependent tumor resistance can 
be overcome by combining the STING agonist CDN 
with an IL-2 superkine (half-life-extended IL-2) and 
H9-mouse serum albumin (H9-MSA) or CDN/H9-MSA 
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against resistant tumors, which are either MHC 1-defi-
cient or positive [228]. The CDN/H9-MSA approach has 
induced a more potent and prolonged NK cell-dependent 
antitumor immune response than STING agonist-based 
monotherapy, causing a long-term remission from cancer 
in different animal models.

Tumors should be checked for clathrin-associated 
adaptor protein complex-1 (AP-1) levels in TME and 
associated MICs as it controls STING signaling termi-
nation [229]. For example, AP-1 sorts phosphorylated 
STING into clathrin-coated transport vesicles for the 
endolysosomal system delivery to degrade it by recogniz-
ing the cytosolic STING CTT [229, 230]. Hence, it will 
aid in research to understand the impaired cGAS/STING 
signaling in the TME and MICs. Also, in human MICs, 
the cGAS/STING-mediated cytosolic DNA detection 
induces their death by increased potassium  (K+) efflux 
[231]. This  K+ efflux occurs in response to the transport 
of activated STING to the lysosome, causing membrane 
destabilization and lysosomal cell death (LCD).

Furthermore, the increased  K+ induces NLPR3 activa-
tion and IL-1β release associated with MIC death [231, 
232]. It will be interesting to observe this finding in 
TIME. Also, transmembrane protein 203 (TMEM203) 
is a binding partner of STING and regulates its down-
stream proinflammatory signaling in macrophages upon 
cGAMP recognition [233]. Hence, it will be novel to 
investigate the role of TMEM203 in TIME macrophages 
of different solid cancers as it regulates intracellular  Ca2+ 
levels, which is crucial in apoptosis [234, 235].

Furthermore, the loss of Golgi-to-lysosome STING 
cofactors, but not ER-to-Golgi cofactors, selectively acti-
vates the tonic IFN signaling in cells [236]. For example, 
post-Golgi trafficking impairment extends STING Golgi-
dwell time to increase type 1 IFN-dependent immune 
signaling. However, its prolonged increase may create a 
chronic inflammation predisposing to cancer develop-
ment. Trans-Golgi coiled-coil protein GCC2 and several 
Rab GTPases are key regulators of post-Golgi traffick-
ing of the STING. Thus, investigating GCC2 and Rab 
GTPases in TIME MICs defective in STING-depend-
ent antitumor IFNs and cytokine production will help 
develop new cell-specific cGAS/STING signaling target-
ing therapeutics. For example, cancer cells without GCC2 
and Rab14 induce T-cell and IFN-dependent antitumor 
immunity and inhibit tumor growth in vivo.

On the other hand, STING agonist DMXXA exerts 
antitumor effects by decreasing tumor vessel size and 
increasing the proportion of tumor-specific T cells in 
the TME   [237]. However, this effect was reduced by 
anti-CD40 antibodies or IL-2-based immunotherapies. 
A recent study has indicated the activation of CD11b 
integrin (comprised of integrin αM (ITGAM) and β2 

(CD18) integrins) on TAMs in pancreatic ductal adeno-
carcinoma (PDAC) via its agonist called GB1275 (LA1 
or ADH503)  activates STING and STAT1-depend-
ent increased type 1 IFN and CXCL9,  10, and  11,  but 
decreased  IL-1α and  IL-1β release [238]. The GB1275-
mediated CD11b targeting in TAMs also induces  CD8+ T 
cells to their proliferative effector phenotypes that fur-
ther enhances the antitumor activity. Notably, CD11b 
activation in TAMs inhibits NF-κB activation and 
decreases NF-κB/IL-1 gene signature by ubiquitination-
mediated p65 degradation to alter their protumor phe-
notype to antitumor [238]. The CD11b stimulation in 
TAMs activates STING-dependent type 1 IFN generation 
by an axis called focal adhesion kinase (FAK)/sirtuin-3 
(SIRT3)/ reactive oxygen species (ROS). The ROS over 
production induces mitochondrial damage that releases 
mitochondrial DNA (mtDNA) in the cytosol to activate 
cGAS/STING signaling and STAT1 dependent antitumor 
immunity. Thus, different new regulatory pathways are 
coming up to control cGAS/STING signaling pathway-
dependent immune responses in MICs. Hence, cGAS/
STING signaling in MICs is critical to understand differ-
ent solid tumors’ TIME, and STING agonists should be 
used cautiously with other immunotherapies.
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