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Abstract

Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of
oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have
a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides.
Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in
medicine and agriculture.

Here we describe “photodynamic vaccination” (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as
whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against
other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent
attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their
use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g.
Si-phthalocyanines; and (i) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three
different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in
cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and
in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further
processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine
candidates are being prepared accordingly for experimental trials.

We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose
bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular
basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for
PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for
this difference is under study.

The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal
chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and
veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the
necessary studies to move the project toward product development.
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Background

Photosensitizers (PS)

These are ring compounds whose soluble form is light-
excitable to produce cytotoxic reactive oxygen species
(ROS) [1]. Naturally occurring PS include tetrapyrroles,
e.g. corrins, chlorins and porphyrins — intermediates in
the biosynthesis of vitamin B12, chlorophyll and heme [2].
The stoichiometry of these intermediates is stringently
regulated by necessity to minimize their phototoxicity.
Many plants produce PS as secondary metabolites for self-
protection, e.g. psoralen and hypericin [3]. Other PS are
chemically synthesized: the fluorescein analogues, rose
bengal and cyanosine, and phthalocyanines (PC). Natural
and synthetic PS include Food and Drug Administration
(FDA)-approved drugs, cosmetic, food and fabric dyes.

PDT-generated singlet oxygen ('0,) and -cell
susceptibility

PDT has been used to eliminate tumors, pathogens and
pests with cytotoxic ROS that is produced by illumination
of targets treated with PS, e.g. porphyrins, PC and rose
bengal, at their respective excitation wavelengths [4]. PDT
initially generates singlet oxygen (*O,) and/or hydroxyl
radicals, leading to the production of additional ROS, in-
cluding peroxides and superoxides. 'O, is highly reactive
and destructive, but too short-lived (2—3 ps) to cross the
cell membrane. 'O, is produced by plants during photo-
synthesis, but not by non-photosynthetic mammals, in-
sects and Leishmania. Cells from the latter group are thus
most susceptible to oxidative damage by 'O, because they
lack mechanisms of detoxification. 'O, has the potential
for strategic deployment to inflict maximal destruction of
specific cell types with minimal collateral damage.

PDT, especially using 'O, generating PS for non-
photosynthetic cells, is unlikely to select for resistance,
since neither light nor PS alone is cytotoxic. Their use in
combination produces ROS inactivating multiple targets,
minimizing the likelihood of selecting resistant traits. In
support of this concept, no resistant Leishmania were
selected after six consecutive cycles of PDT, i.e. induced
uroporphyrinogensis plus light (see below) [5, 6]. Few
survivors emerged after each PDT cycle as aporphyric
cells, resulting from reduced uptake of the inducer and/
or heightened efflux of uroporphyrin I (URO). These
phenotypes are not stable traits, since populations from
the survivors after each of the six PDT cycles remain
equally sensitive to the same PDT. Total inactivation of
Leishmania by PDT is achievable when using two differ-
ent PS, i.e. URO and PC (see below).

Cellular uptake and subcellular targeting of PS for effective
PDT

The effectiveness of PDT is a function of light intensity
delivered at a wavelength specific to the PS and its
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quantum yield [4]. Under physiological conditions, PDT
is critically dependent on the uptake of PS by the target
cells. The best example to illustrate this is the all-or-
none phototoxicity of the 'O, generating URO, depend-
ing on its presence in the cytosol or in the extracellular
milieu [5, 6]. URO is highly water-soluble, but not taken
up by cells, like Leishmania. These cells are thus light-
insensitive and remain fully viable, as indicated by their
active motility when bathed in URO-containing milieu
[5]. This changes dramatically for uroporphyrinogenic
Leishmania, which are transgenically modified to express
the 2°¢ and 3" enzymes in the heme biosynthetic path-
way, rendering them inducible with the product of the
1** enzyme in this pathway, ie. delta-aminolevulinate
(ALA) for cytosolic accumulation of URO [5-7]. During
ALA-induced uroporphyrinogenesis, these mutants
cease flagellar motility abruptly when examined under
dim light for microscopy as URO begins to form in the
cytosol [5, 6]. Clearly, intracellular delivery of PS even in
a minute amount is sufficient to sensitize cells to photo-
inactivation.

Cellular uptake of PS varies with their chemical
structures. PC have been chemically modified to en-
hance such bioavailability. Modifications of their co-
ordinating metals, side-chains and/or axial ligands
increase cationicity for affinity to the negatively
charged cell surface and solubility for persistence in the
milieu [8, 9]. Figure 1 shows some PS, which are local-
ized to different subcellular sites of Leishmania. ALA-
induced cytosolic accumulation of URO was discussed
earlier (Fig. 1B, B’). The hydrophobic/lipophilic hyperi-
cin (A, A’) and aluminum phthalocyanine (Al-PC) (C,
C’) are taken up rapidly. These PS become associated
immediately with and remain bound constantly to cel-
lular membranes with undiminished fluorescence, but
are transferrable from sensitized cells to the mem-
branes of untreated cells [10]. How these phenomena
are related to the expected turnover of cellular mem-
branes is a question of interest for investigation. In con-
trast, the amino-PC [9] is endocytosed by Leishmania into
their endosome-lysosome vacuolar system [11]. Other Si-
or Zn-PC analogues [8] are either not taken up at all by
Leishmania or are taken into the endosome-lysosome sys-
tem or mitochondria [12].

[lumination of the PC-sensitized Leishmania with
red light (~600 nm excitation wavelength) at low flu-
ence (1-2 J cm?) generates enough 10, to inactivate
them [11, 12]. The inactivated cells lose their flagellar
motility and viability, but remain intact structurally
for hours before disintegration. In many instances,
Leishmania differ from mammalian cells in their re-
sponse to different PS for PDT. Elucidation of these
differential mechanisms is of interest for optimizing
the utility of PS for targeted PDT.
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Fig. 1 Photosensitization of Leishmania promastigotes with different photosensitizers. A-D, Phase contrast; A-D", Fluorescence images taken
under Cy5 or porphyrin filters. Under each image are the name, structure and cellular localization of the photosensitizer used. Cells were exposed
to each photosensitizer overnight in the dark and imaged under live conditions as previously described [6, 7, 10-12]

o/\/\N/

N .

PDT in clinical use: PDT of cutaneous leishmaniasis (CL)
and post-treatment immune clearance of infection

PDT is an accepted clinical regimen for treating solid
tumors and skin diseases, and for removing diseased
tissues [4]. PDT begins with PS-sensitization of the tar-
get tissues with a PS or an inducer of endogenous PS,
ie. ALA to transiently up-regulate cellular porphyrin
biosynthesis. The sensitized target is then illuminated to
generate ROS for its destruction. Clinical PDT is thus
limited to superficial and localized targets, e.g. solid tu-
mors accessible to PS-sensitization and to the subsequent
photo-inactivation by illumination from an external light
source. Targets several centimeters below the skin are
still PDT-treatable by using PC excitable with deep-
penetrating red light.

PDT has been explored for treating infectious diseases
of the skin [1], including cutaneous leishmaniasis (CL).
Various PS have been assessed for PDT of experimental
and clinical CL using different light sources: LED, laser
and sun light (see [11]). PDT has the potential to
shorten the often protracted duration of simple CL be-
fore spontaneous healing. The ultimate cure of all infec-
tious diseases is thought to depend on post-therapeutic
immune clearance, since no drug is expected to reach all
individual pathogens in any given infection, regardless of
the dosages used and the frequency of applications. The
“post-PDT immune clearance” of CL foretells the potential

of photodynamic vaccination (PDV) for both immuno-
prophylaxis and -therapy.

Photodynamic vaccination (PDV)

Prophylactic vaccination is the best preventive measure
against infectious diseases, especially zoonosis, which
cannot be controlled readily because of its persistence in
animal reservoirs (Cf. [13]). Here we describe PDV using
PDT-inactivation of Leishmania for vaccination. The
evolution of Leishmania for intra-antigen-presenting
cells (APC) parasitism and their sensitivity to PDT via
PS accumulation are exploited for developing strategies
to optimize the efficacy and safety of PDV.

PDT-inactivation of Leishmania for vaccination against
leishmaniasis

Background

Lasting immunity after cure of leishmaniasis and
“leishmanization” Development of effective prophylac-
tic vaccines for this disease has long been considered as
feasible from the lasting or life-long immunity seen after
spontaneous healing of simple CL and after chemothera-
peutic cure of visceral leishmaniasis (VL) (Cf. [14]). In-
fection of healthy individuals with lesion-derived live
parasites in a hidden place is the crudest form of vaccin-
ation for simple CL. This is known as “leishmanization”
[15] and has been practiced for millennia in the endemic
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sites of the Middle East and Central Asia. The vaccinees
develop lasting immunity after self-healing and are thus
immune for life from the potentially facial disfiguring
CL. The lasting immunity results from a T cell-mediated
response to Leishmania naturally occurring vaccines, adju-
vants and other immune-stimulating factors. The resi-
dence of Leishmania in APC makes these molecules
readily available for processing and presentation, account-
ing very likely for the effective elicitation of cell-mediated
immunity and the post-therapeutic immune clearance.

Leishmania vaccine availability, efficacy and safety
Vaccines are still under development for both human and
canine leishmaniasis. “Leishmanization” is effective, but
unacceptable unless accomplished without a full-blown
leishmaniasis. The extensive literature on the use of cul-
tured Leishmania as the vaccine sources has been exhaust-
ively reviewed recently (see Supplemental Table 1 in [16]).
Live vaccines using avirulent strains, drug-crippled para-
sites and genetically attenuated mutants have been exam-
ined in experimental animal models. Most extensively
studied are inanimate vaccines from the following
materials: (1) whole-cells of cultured Leishmania killed or
inactivated by chemical or physical means, e.g. formalini-
zation, heating/autoclaving and irradiation; (2) soluble or
insoluble fractions of cultured Leishmania or their
secretory products; and (3) recombinant products of im-
munologically active Leishmania antigens. Prophylactic ef-
ficacy has been shown for most of them against
experimental leishmaniasis in animal models, but few have
reached the stages of clinical trials. Of note from these tri-
als are the findings that inanimate vaccines from categories
(2) and (3) are safe and immunogenic [17-19], but are
only partially effective at best against human and canine
leishmaniasis. The only whole-cell vaccine examined in
category (1) is ineffective, but proven safe, i.e. autoclaved
promastigotes at a dose of ~200 ug (100—400 ug) ([20]; F.
Modabber, personal communication). This dosage is
equivalent to ~4 x 10’ promastigotes, comparable to the
number used as leishmanin (up to 2 x 10’ promastigotes/
dose in phenol or merthiolate) in Montenegro skin test for
delayed type hypersensitivity (DTH) [21]. These chemically
or physically inactivated promastigotes have been injected
into several hundred thousands of people. The continuing
use of leishmanin test for DTH attests to the safety of
whole-cell Leishmania when inactivated appropriately.
Here we exploit PDT as a new modality of Leishmania
inactivation for assessing the safety and efficacy of their
use for vaccination.

Three schemes of PDT-inactivated Leishmaina for
vaccination

The application of PDT in two steps (PS-sensitization
followed by photo-inactivation) offers three different ways
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to inactivate Leishmania for vaccination, as depicted
diagramatically in Fig. 2.

Scheme 1 uses the uroporphyrinogenic Leishmania
transfectants [5-7], which have the wildtype efficiency
for entry into APC and differentiation/replication in
their phagolysosomes [22] (Events 1-4). The 1* PDT
step is the addition of ALA to the infected APC, resulting
in porphyrinogenesis of both the intra-phagolysosomal
Leishmania transfectants and their host APC (Event 5).
The latter become aporphyric shortly afterward, since they
possess a complete heme biosynthetic pathway, thereby
rapidly exhausting the excessive porphyrins produced; In
contrast, the transgenic Leishmania produce URO, which
persists and accumulates in their cytosol because of their
deficient heme biosynthesis pathway, lacking the down-
stream URO-utilizing enzymes (Event 6). Light-exposure
of these infected APC excites URO in the uroporphyric
Leishmania for their selective inactivation (Event 7) and
eventual lysis to release antigens into the phagolysosomes
and cytosol of the viable host APC (Event 8).

Scheme 2 is similar to Scheme 1, except that the uro-
porphyrinogenic Leishmania are doubly pre-PS-sensitized
for the 1°° PDT step with ALA for URO accumulation in
the cytosol and Si-PC for uptake into endosomes [11, 12].
These doubly PS-sensitized Leishmania infect APC in the
dark, as described for Scheme 1 (Events 1-4). Subsequent
light-exposure of these infected cells for the step 2 PDT
produces the same outcome (Event 6), also as described
for Scheme 1, except that the changes in the protocol re-
duce the events to 6 from 8 in Scheme 1.

Scheme 3 is similar to Schemes 1-2, except that uro-
porphyrinogenic Leishmania are doubly PS-sensitized
and photo-inactivated to complete both PDT steps as
described for Scheme 2 before use for loading APC
(Event 1). The changes of the protocol simplify the
events to 4 from 6 to 8 for schemes 1-2. This scheme of
APC-loading involves no replicative cycle of Leishmania
in the host APC (Events 2-4).

Cell-mediated immunity depicted for PDT vaccination

Diagrammatic illustration Figure 3 depicts the elicit-
ation of cell-mediated immunity by all three PDV
schemes based on experimental evidence described in
the subsequent paragraphs. PDT selectively inactivates
intracellular Leishmania, resulting in the eventual re-
lease of their contents into the viable host APC (Event
1). The materials released from photolysed Leishmania
are expected to include antigenic vaccines and other pu-
tative immune stimulating factors, as depicted in the
foregoing sections. Several pertinent issues are of inter-
est to mention here. APC in schemes 1-2 remain un-
scathed and viable after PDT [22]. This is expected,
since these host APC are not PS-sensitized at the time
of illumination, and since the 'O, produced is limited to
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Fig. 2 Diagramatic illustration depicting three different schemes of Leishmania-based photodynamic vaccination in vitro. Transgenic:alad/pbgd,
Porphyrinogenic Leishmania transfected with two mammalian cDNAs encoding the 2" and 3 enzymes in heme biosynthetic pathway,
rendering them susceptible to delta-aminolevulinate (ALA)-induced neogenesis of uroporphyrin (URO); PC, Si-phthalocyanine photosensitizer

[6, 11, 12]; Light, lllumination; Blue and red lightening symbols, Blue (400-500 nm wavelength) and red (~600 nm wavelength) for excitation of URO
and PG, respectively. Scheme 1: In-antigen presenting cell (APC) single PS-sensitization/photo-inactivation [22]. 1-2, Phagocytosis of porphyrinogenic,
but untreated Leishmania by APC; 3, Fusion of Leishmania-containing phagosome with lysosome; 4, Leishmania differentiation into amastigotes and
their replication in the phagolysosomes; 5, Exposure of the parasitized APC to ALA, resulting in porphyrinogenesis of both APC and phagolysosomal
amastigotes; 6, Removal of ALA, resulting in disappearance of porphyrins from APC and persistence of URO in amastigotes; 7-8, lllumination of these
APC resulting in selective lysis of URO-loaded amastigotes, releasing vaccines into phagolysosomes and cytosol. Scheme 2: Same as Scheme 1, except
that porphyrinogenic Leishmania are doubly PS-sensitized with ALA and PC in the dark before use for infecting APC [35]. 1-4, as described for Scheme
1, except that the Leishmania are pre-loaded with URO and PC, hence no further ALA treatment; 5-6, lllumination of the infected cells with blue and
red light to excite URO and PC, lysing amastigotes with singlet oxygen and other ROS generated for releasing vaccines in APC. Scheme 3: Same as
Schemes 1-2, except that Leishmania are pre-PS-sensitized and pre-photo-inactivated before use for vaccine delivery to APC [12]. 1-4, Uptake of
oxidatively photo-inactivated Leishmania by APC, lysosome-phagosome fusion and their lysis to release vaccines as described
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1. Processing/presentation of
Leishmania-delivered vaccines

CD8+

MHC Class I

CD8+

Fig. 3 Diagrammatic depiction of processing and presentation of Leishmania-delivered vaccines by antigen-presenting cells. 1, Leishmania-released
vaccines represented as dots and lines in phagolysosomes and cytosol and relevant organelles: RER, Golgi and proteasome stacks; 2, Antigen
presentation by lysosomal pathway via MHC Class Il for activation of CD4+ T cells; 3, Antigen presentation by proteosomal pathway via MHC

Class | for activation of CD8+ T cells; Bottom, Combination of both pathways shown in 2 and 3

the PS-sensitized Leishmania, as these ROS are too
short-lived to cross multiple membranes to cause oxida-
tive damage to the host APC. The endogenous anti-
oxidants of APC are expected to protect themselves
from other ROS generated secondarily from PDT. In
addition, PDT may contribute positively to the APC
functions in two ways: (1) Antigen processing by PDT-
generated 'O, and/or other ROS via oxidative modifica-
tions of the APC proteases involved and/or the Leish-
mania-released antigens as their substrates, e.g. 'O,
oxidation of their aromatic amino acid residues [23]; and
(2) PDT-activation of ROS signal pathways favourable

for the elicitation of immunity [24]. Clearly, the selective
PDT-inactivation of intracellular Leishmania relieves
their host APC of immunosuppression caused by the in-
fection [22]. The subsequent processing of Leishmania
vaccine antigens is predicted to follow the conventional
lysosomal pathway (Event 2) and/or proteosomal path-
way (Event 3) for co-presentation with MHC Class II
and Class I molecules to activate CD4+ and CD8+ T
cells, respectively (Events 2-3). The latter pathway is
envisioned to proceed via cross presentation of Leish-
mania antigens, which are translocated from phagolyso-
somes to the cytosol. Other Leishmaina-derived factors
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may further participate in the step of co-stimulation (not
shown).

Experimental evidence The cell-mediated immunity
depicted (Figs. 2 and 3) is based on the experimental
outcome from the PDV schemes carried out in different
experimental models, as briefly summarized below:

Scheme 1 was applied to immunization of Syrian
Golden hamsters, eliciting a Thl response for prophy-
laxis against Indian kala-azar produced by challenges
with virulent Leishmania donovani [25]. The vaccination
produces lasting immunity, as shown by the analysis of
hepatosplenomegaly, parasite loads and cytokine profiles.
Significantly, the immunity is adoptively transferable by
splenic T cells from immunized animals to naive ham-
sters, indicating that the immunity is cell-mediated and
requires no antigen stimulation from persistent para-
sites, if any, at least in the recipients.

Scheme 2 was used for immunization of BALB/c mice
against CL produced by challenges with Leishmania
amazonensis. The observed prophylactic protection is
significant, albeit incomplete, as indicated by comparing
immunized mice versus the control groups. Immunization
delayed the emergence of lesions for several weeks and
significantly reduced the lesion size and their parasite
loads by 10-fold versus the controls (Unpublished data.
See legend to Fig. 4, Experimental-in-brief). The vaccin-
ation is considered effective, considering that BALB/c
mice are known to bias toward Th2 with extreme levels of
genetic susceptibility to cutaneous leishmaniasis.

Scheme 3 PDV used PDT-inactivated Leishmania,
which were transfected to express ovalbumin (OVA) as a
marker antigen or surrogate vaccine [12]. The cell-
mediated immune responses to OVA delivered by PDT-
inactivated transfectants were examined in in vitro and
in vivo mouse models. APC loaded with the PDT-
inactivated Leishmania were shown to deliver OVA,
which was effectively processed for MHC Class I presen-
tation of its specific peptide for activation of CD8+ T cell
line [12]. In the in vivo studies, BL57 mice were immu-
nized three times, each with ~10° PDT-inactivated
OVA-Leishmania. Splenic T cells of these immunized
mice were activated in response to CD4+ and CD8+ T
cell-specific OVA peptides that increased proportionally
with the number of immunizations (Unpublished data.
See legend to Fig. 4, Experimental-in-brief). Most signifi-
cantly, T cell activation is 6-fold higher with OVA deliv-
ered by PDT-inactivated Leishmania than that delivered
by conventional means.

The safety of Leishmania PDT-inactivation for vaccination
increases in the order of Schemes 1 to 3. Leishmania were
singly and doubly PDT-inactivated for Scheme 1 and
Schemes 2-3, respectively. They were completely inacti-
vated by both PDT steps of PS-sensitization followed by
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double photo-inactivation before loading APC in Scheme
3 (see Fig. 4 and text for further discussion).

PDT-inactivation of Leishmania for vaccine delivery
against other infectious and malignant diseases

The utility of PDT-inactivated Leishmania for delivery of
add-on vaccines against other diseases is feasible, as in-
dicated by the favourable outcome of the immune re-
sponses seen in vitro and in vivo to OVA delivered by
this means. The successful delivery of OVA is significant,
considering its expression at minuscule amount against
a background of Leishmania proteins in overwhelming
quantity and diversity in ~10° cells used for the delivery.
This is taken to indicate that Leishmania creates no
antigen-overload for vaccine delivery at least for OVA as
a well-known T cell antigen.

Leishmania are naturally endowed with favourable at-
tributes, making these parasites highly deployable as a
universal vaccine carrier [22]. Many Leishmania species
can be cultured safely as promastigotes in serum-free,
chemically defined media [26] and scaled up for expan-
sion [27]. The biosynthetic machineries of Leishmania
are capable of high capacity transcription, translation
and correct post-translational modification of foreign
proteins. A number of efficient vectors are available for
their abundant expression episomally or chromosomally
as add-on vaccines in Leishmania - a favourable milieu
of adjuvanticity and antigenicity conducive to elicit cell-
mediated immunity.

Efficient delivery of add-on vaccines by Leishmania is
due to their surface coat, consisting of unique lipid-
saccharide-protein complexes [28]. In natural infection,
they are known to protect Leishmania against the lytic
humeral factors abundant in the animal body fluids
and to target them to the phagolysosomes of APC.
This mode of parasitism is further facilitated by the
secretory products of Leishmania, e.g. nucleoside di-
phosphate kinase [29]. Full deployment of these mo-
lecular attributes by Leishmania is expected to protect
the payload of add-on vaccines for homing to APC
when using non-sensitized or PS-sensitized Leish-
mania for vaccine delivery according to Schemes 1-2
(Fig. 2). Notably, Leishmania PDT-inactivated accord-
ing to Scheme 3 are no longer viable, but remain
OVA-delivery competent. The integrity of their surface
coat may account for this, since it is unaffected by the
'0,, which is generated in and limited to the cytosol
of PDT-inactivated Leishmania.

Uroporphyrinogenic Leishmania are being evaluated
for their ability to serve as a carrier of candidate vac-
cines for trials against other infectious and malignant
diseases [30—33]. PDV with PDT-inactivated Leishmania
transfectants will follow Schemes 1-3 (Fig. 2) to obtain
safety and efficacy data. In vitro vaccination of DCs will
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Fig. 4 Safety and efficacy evaluations of PDT-inactivated Leishmania prepared under different conditions for immuno-prophylaxis and therapy.
Horizontal:- [1] and [2], Single PS-sensitization with ALA (+ALA) for uroporphyrin (URO) or Si-PC-loading (PC) followed by single photo-inactivation
with blue or red light illumination for generation of cytotoxic 'O, (Symbol as shown), respectively [6, 7, 10-12]; [3], Double PS-sensitization/double
photo-inactivation using a combination of [1] and [2] conditions [35]; [4-5], Singly or doubly PDT-inactivated Leishmania from [1-3B] stored frozen

at —20 °C and lyophilized, respectively. See legend to Fig. 2 for other abbreviations used. Vertical: [A-B], PS-sensitization/photo-inactivation of Leishmania
under the conditions as described in [1-5]. [C], Safety evaluations of the samples examined by microscopic observation for promastigote flagellar
motility, for growth after inoculation into culture medium for 2 weeks, and lesion development after injection to BALB/c mouse ear dermis or tail base
for ~60 days; [D], Efficacy evaluation in vitro and/or in vivo briefly summarized from published, on-going or planned studies. See text for [1D] and [2D]
efficacy. Experimental-in-brief: see [25] for [1D in vivo]; see [12] for [2D in vitro]; [2D in vivo]: Groups of BL57 mice (~30 gm, 15/group) were immunized
id. with 10° photo-inactivated OVA transfectants/10 ul PBS/ear for 3 times 1-week apart. Control groups were simultaneously and similarly immunized
with un-treated, PC-sensitized, light-exposed, freeze-thawed OVA-transfectants, and 1 ug OVA. Splenic cells were collected from four mice from each
group 2-weeks after 1-3 immunization for in vitro activation with OVA CD4- and CD8-specific peptides for ~4 days. Proliferation of CFSE-labeled
lymphocytes was assayed flow cytometrically, providing the results briefly described in the text; [3D in vivo]: Female BLAB/c mice (~30 g) were
immunized exactly as described for [2D in vivo], except that doubly PS-sensitized Leishmania were used. Controls included 6 groups using untreated,
single PS-sensitized, light-exposed samples. Day 3 after immunization, photo-inactivation of Leishmania was carried out in situ at ~5 J/cm? using
LumaCare LC-122 white light probe. Mice were each challenged at the tailbase with 107 parasites. Lesion size was measured weekly in all groups.
Experiments were terminated after ~10 weeks when parasite loads were determined by limiting dilution method. Preliminary results obtained were
briefly described in the text. Abbreviations: CanVL, canine leishmaniasis; Li, Leishmania infantum; Lt, Leishmania tropica

be pursued, as described [33, 34]. This presents a new
approach by using a eukaryotic vehicle for safe and ef-
fective vaccine delivery.

Safety versus efficacy evaluation of five Leishmania
PDT-inactivation formats

Figure 4 summaries the available data of Leishmania,
which are PS-sensitized [A] and photo-inactivated [B]
with or without additional treatments in different ways
[1]-[5] for assessing their safety [C] and efficacy [D].
The safety is assessed after PDT inactivation of Leish-
mania by three different ways: microscopy for flagellar

motility, cultivation for growth (2 weeks) and inocula-
tion of mouse ear or tail base for lesion development
(~2 months). Not all preparations were assessed by all
criteria mentioned and the assessments for some sam-
ples are on-going or planned. The available results are
briefly discussed below:

1. Single PDT of Leishmania by ALA-induced
uropoprhyrinogensis [1] or PC-loading [2] alone
inactivated ~95 % of these cells, as determined by the
criteria described [C]. Interestingly, PDV based on
protocol [1] elicited adoptively transferable cell-mediated
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immunity and produced no visible pathology of the
vaccination sites in hamster [25].

2. Double-PDT of Leishmania with a combination of
Protocols 1-2 [3] resulted in no viable cells, as assessed
by all three criteria [C], indicative of a complete
inactivation [35]. Immunization of BALB/c mice
according to [3] is protective, although incomplete
due to their inherent sensitivity to CL, as already
discussed.

Products [4] and [5] prepared by freezing and
lyophilization of PDT-inactivated Leishmania [1-3B], re-
spectively, were undertaken to facilitate their storage
and transport and to increase their safety at the expense
of their efficacy. Although still on-going, lyophilized
samples [5] appear to have some prophylactic activities
against CL challenges after immunization of BALB/c
mice.

From the available data, the double-PDT inactivation
of Leishmania by method [3] provides the best vaccination
format for use with optimal safety and efficacy. The other
regimens are being optimized for further safety versus effi-
cacy evaluation.

Photodynamic insecticides (PDI)

Background

History PDT to control insect pests was first mentioned
in the early 1900’s (see [36]). From 1980’s t0o1990’s, The
American Chemical Society published several sympo-
sium volumes on “Light-activated pesticides” [37-39].
Since then, follow-up publications have been limited and
were summarized in the reviews [36, 40, 41]. Different
dyes were used in experimental and/or field trials as PDI
against various insects, mainly mosquito larvae and
Mediterranean fruit flies. Industrial interests (PhotoDye
International, Inc) included aerial spray of dye mixtures
(xanthenes) or “SureDye”” (Red Dye #28 and Yellow Dye
#8) (http://www.cdpr.ca.gov/docs/emon/pubs/ehapreps/
suredye.htm) in attempt to control the latter pest. The
work in the past decades showed some effectiveness of
PD], but this area of research has not gained attention.

Preamble PDI has the potential as an effective measure
to control disease-transmitting vectors and other harm-
ful insects. Development of resistance by insect pests to
insecticides is a recurrent scenario [42], calling attention
to different approaches, like PDT, which is unlikely to
elicit resistance. The potential of PDI to control different
insect pests are briefly discussed below.

Phytophagous insects cause substantial losses in crops
and livestock despite the use of genetically modified
(GM) insect-resistant plants [43]. Phloem/xylem sap-
feeding insects cause additional damage by transmitting
plant diseases. These vectors are PDT-targetable, since
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they engorge voluminous plant saps amenable to PS-
loading and are translucent to light for photo-inactivation.
The use of 'O,-generating PS for PDT has the poten-
tial to discriminate these and other phytophagous in-
sects for selective killing, sparing their photosynthetic
and 'O,-resistant host plants.

Many animal biting insects feed on blood and transmit
serious diseases, accounting for substantial morbidity
and mortality of domestic animal and human popula-
tions worldwide. Application of PDI to control such
insect vectors is highly desirable, e.g. Anopheles mosqui-
toes, which transmit malaria and Aedes spp., which
transmit Chikungunya, Dengue and Zika fever, causing
epidemics in the tropical/subtropical world today. The
only new non-PDI approach to control these vectors is
to release GM mosquitoes based on Wolbachia- or
male-induced infertility [44, 45]. For PDT of female
mosquitoes and other blood feeders (phototropic and
day-light active species), PS is deliverable via the blood-
stream of susceptible hosts or the use of suitable baits
to sensitize the insects for sun light inactivation. The
larval stages of all mosquitoes (and also black flies) are
aquatic and thus are receptive to water-soluble PS for
PDT [46, 47].

PS-sensitization of all insects is possible by direct
spraying for their uptake via surface contact and/or sys-
tematically via the hosts, as used for the current insecti-
cides. Direct incorporation of PS into the drinking and
food sources of insects will deliver them into the digest-
ive tracts for sensitization of cells therein. In either case,
accessibility of PS-sensitized cells to light is necessary to
generate cytotoxic ROS for target destruction. Nocturnal
and darkness-loving insects are less amenable to PDT
unless a light-emitter is provided with the PS for their
excitation.

Summarized below are some observations from our
preliminary studies of few insects on their uptake of se-
lected PS and susceptibility to PDI.

Screening of PS for their PDI against selected insects

Exposure of the 4™ instar mosquito larvae (Culex pipiens
quinquefasciatus) and adult sand flies (Phlebotomus
dubosqi) [48] to rose bengal (RB) and cyanosine (CY)
overnight resulted in the accumulation of these red dyes
that are visible in the gut of the larvae (Fig. 5a) and of
both female and male flies (Fig. 5b, ). Their uptake of the
other PS examined is less clear, including aluminum-
phthalocyanine (Al-PC), protoporphyrin IX (PROTO) and
Nile blue sulfate (NB). Only RB- and CY-sensitized larvae
lost their viability after light exposure based on their mo-
bility (not shown). The sand fly response to the PDI is in-
conclusive due to a high mortality of the control group,
pending further investigation. This is also true for PDI of
the plant-sucking insects, e.g. aphids, suggestive of a need
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Fig. 5 Uptake of rose bengal by selected insects and their photo-inactivation. a Culex pipiens quinquefasciatus 4th instar larvae exposed to rose
Bengal (10 ug/ml) (~20 larvae/5 ml water/well in 6-well plate) in dark for ~24 hours followed by exposure to white light for ~6 h at ~2500 lux;
b-c Phlebotomus duboscgi female (b) and male (c) adult flies (~20 flies/screened paper cup) fed with 5 % sucrose solution and 500 ul of 5 mg/ml
rose bengal in a cotton ball for ~20 h in the dark followed by exposure to ~2500 lux of white light for 3 h. Duplicate samples were prepared and
kept in the dark as controls. Rose bengal is taken up by the flies of both sexes. Phototoxicity is evident for the mosquito larvae, but inconclusive
for the flies. The tests were done in Petr Volf's lab

Uptake of PS by mosquito cells in vitro
Since the uptake of PS by mammalian and Leishmania

to use membrane-feeding techniques instead of using cut
or potted plants [49, 50].

Our observations as described are preliminary, but rep-
resent the first study of PDI on sand flies, showing their
uptake of PS used. The mosquito larvicidal activities of the
PDI seen are consistent with the results of an early work
(see [36]) and the reports using marigold alpha-terthienyl
as the PS and different mosquito species [46, 47].

cells is a prerequisite for their sensitization for PDT, we
have begun to assess this with insect cells, e.g. Aedes
albopictus clone C6/36 (ATCC CRL-1660). Figure 6
shows the uptake of RB and CY by these mosquito cells,
rendering them sensitive to photo-inactivation. Un-
treated cells ([1]-None) are adherent (1A-DIF) and

Dark
[A] DIF [B]DAPI+TxR

LS 2o PN
» 7

[2] Cyanqsinc ~ [1]None

[3] Rose l}cngal

[A] DIF

Light

[BIDAPI+TXR  [C] Dye structure

Fig. 6 Uptake of cyanosine and rose bengal by mosquito cells of the C6/36 line and their photosensitivity in vitro. The insect cells were exposed
to both dyes overnight and illuminated with white light under conditions similar to those described for mammalian and Leishmania cells [10-12, 22].
Images were captured first under differential interference (DIF) [A] and then under the filter sets for DAPI and Texas red [B]. [C] Chemical structure of
cyanosione and rose Bengal. Uptake of both dyes by the cells after incubation in the dark overnight (Dark, A2-3, B2-3) and cellular disintegration after
light exposure for 4 h (Light, A2-3, B2-3) in contrast to the untreated controls (Dark and Light, A1, B1). Work done by Shin-Hong Shiao
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non-fluorescent (1B DAPI + TxR), irrespective of illu-
mination (1 Dark and Light). Cells exposed to CY [2]
and RB [3] show cytoplasmic fluorescence (2B, 3B
DAPI-txR), indicative of dye uptake. Sensitized cells
remain adherent and intact (Dark, 2A, 3A-DIF), but
become disintegrated after light-exposure (Light, 2A,
3A-DIF). These results are consistent with the larvicidal
activities of RB and CY observed, providing a cellular
basis for their PDT activities. Notably, the mosquito
cells were not sensitized for PDT with the following PS:
Al-PC [10], PC3-4 [11], NB and a porphyrin analogue
[51]. Insect cells are thus similar to other cells in their
requirement of PS uptake for susceptibility to PDT, but
require different PS for PDI.

The preliminary data point to the feasibility of screen-
ing additional PS for PDT of cells from different insects,
both harmful and beneficial, and from other life forms in
their environments. Such in vitro screening of PS for ac-
tivities has the potential to identify PDI, which discrim-
inate harmful pests from beneficial insects and other
friendly organisms for selective killing of the former. Of
further interest is to elucidate the mechanisms of differ-
ential PS-uptake by cells of different origin, providing
clues for designing PS with specificity for PDI targeting.

Conclusions

PDT-inactivation of Leishmania offers the versatility and
flexibility to balance safety versus efficacy for vaccination
against leishmaniasis and as potential carriers of vac-
cines against other infectious and malignant diseases
(PDV). The development of this new approach will
benefit from governmental and public acceptance and
support. The ingenuity of the new leadership [52] is
needed for novel regulation that will ensure the safety of
vaccines with no barrier to disrupt innovation. The ad-
vocacy groups also call attention to rectify the existing
barriers between science and cures, e.g. fasterCures
(http://www.fastercures.org/). Development of vaccines
including PDV will further benefit from effective mea-
sures against the anti-vaccination movement [53].

PDI represents an alternative approach to control in-
sect pests. It is still in its early infancy of development
despite the idea first emerged almost 100 years ago.
Many PS for PDI are innocuous compounds, which have
long been used among our everyday household products.
Their application as PDI is not expected to select for re-
sistance in contrast to the chemical pesticides in current
use. PDI has the potential to complement the GM ap-
proaches in the field of agriculture and medicine. It will
be particularly suitable for development in places where
the population is sensitive to GM organisms.

The lynchpin between PDV and PDI is the PS for light
excitation to generate cytotoxic ROS. The expertise in
medicinal chemistry is essential for synthesis and design
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of novel PS. This depends on the input of biologists to
elucidate the mechanisms of their cellular/molecular activ-
ities. New PS need to be assessed by expert clinicians, veter-
inarians, entomologists, cancer researchers, microbiologists
and immunologists, hence the consortium of collaborators
enlisted.
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