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Supplemental Methods 
 

I. Biospecimen Collection and Processing  
 
Sample inclusion criteria 
Biospecimens were collected from newly diagnosed patients with invasive breast 
adenocarcinoma undergoing surgical resection and had received no prior treatment for their 
disease (chemotherapy or radiotherapy). The targeted accrual was 800 ductal, 200 lobular, and a 
mixture of 100 other breast cancer subtypes. Institutional review boards at each tissue source site 
reviewed protocols and consent documentation and approved submission of cases to TCGA. 
Cases were staged according to the American Joint Committee on Cancer (AJCC) staging 
system. Each frozen primary tumor specimen had a companion normal tissue specimen which 
could be blood/blood components (including DNA extracted at the tissue source site) (n=684), 
adjacent normal tissue taken from greater than 2 cm from the tumor (n=76), or both (n=65). 
Three cases had a qualifying metastatic tumor in addition to the primary tumor. Each tumor 
specimen weighed at least 60 mg. Specimens were shipped overnight from 18 tissue source sites 
(TSS) using a cryoport that maintained an average temperature of less than -180°C. Each tumor 
and adjacent normal tissue specimen (if available) were embedded in optimal cutting temperature 
(OCT) medium and a histologic section was obtained for review. Each H&E stained case was 
reviewed by a board-certified pathologist to confirm that the tumor specimen was histologically 
consistent with breast adenocarcinoma and the adjacent normal specimen contained no tumor 
cells. The tumor sections were required to contain an average of 60% tumor cell nuclei with less 
than 20% necrosis for inclusion in the study per TCGA protocol requirements. 
 
Sample Processing 
RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a 
modification of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA 
column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter step 
generated RNA preparations that included RNA <200 nt suitable for miRNA analysis. DNA was 
extracted from blood using the QiaAmp blood midi kit (Qiagen). 

Each specimen was quantified by measuring Abs260 with a UV spectrophotometer or by 
PicoGreen assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm 
high molecular weight fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler 
(Applied Biosystems) was utilized to verify tumor DNA and germline DNA were derived from 
the same patient. Five hundred nanograms of each tumor and normal DNA were sent to Qiagen 
for REPLI-g whole genome amplification using a 100 µg reaction scale. Only specimens 
yielding a minimum of 6.9 µg of tumor DNA, 5.15 µg RNA, and 4.9 µg of germline DNA were 
included in this study. RNA was analyzed via the RNA6000 nano assay (Agilent) for 
determination of an RNA Integrity Number (RIN), and only the cases with RIN >7.0 were 
included in this study. 

At the time of the data freeze, 1,377 breast adenocarcinoma cases were received by the BCR 
and 72% passed quality control. The biospecimens included in this report come from 825 breast 
carcinoma cases included in batches 47, 56, 61, 72, 74, 80, 85, 93, 96, 103, 109, 117, 120, 124, 
136, 142, 147, 155, 167, 177, 185 and 202. 
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II. Clinical data and quality improvement  
 

Additional quality assurance (QA) was performed on selected data elements, in addition to the 
QA already performed by the TCGA Biospecimen Core Resource (BCR). The clinical data was 
taken from the November 2011 data archive. The clinical calls of biomarkers were supplemented 
with molecular data, and the stages of the cancer cases were mapped to the current staging 
standard. When clinical calls for ER, PR, and HER2 were available, they were used. Molecular 
data was only used when HER2 clinical calls were not available. In addition, certain data fields 
were made binary to facilitate cross-analysis with molecular data. These results are shown in 
Supplemental Table 1.  
 
Clinical data QA of biomarkers and cancer stage 
Clinical guidelines for determining estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2) statuses for breast cancers have been 
established. According to the current clinical guideline jointly issued by the American Society of 
Clinical Oncology (ASCO) and the College of American Pathology (CAP)1, effective January 
2010, a breast tumor is called ER or PR positive if the corresponding nuclear staining is >= 1%. 
Prior to 2010 there was no universal standard and local hospitals used their own thresholds such 
as 5% or 10% for their clinical practices. Since the year of diagnosis of all breast cancer cases 
collected in this study ranged from 1988 to 2011, determining the clinical status for ER and PR 
followed a mixture of the thresholds. The situation is further complicated by the subjective 
nature of the percentage calls, adding additional discrepancies among different pathologists.  

For HER2, following the current ASCO/CAP guideline2, a breast tumor with an 
immunohistochemistry (IHC) value of 0 or 1+ is called “Negative”, IHC level 3+ is called 
“Positive”, and level 2+ is called “Equivocal”. Florescence in situ hybridization (FISH) is used to 
determine the final status of “Equivocal” cases where a case is called “Positive” if the FISH ratio 
is >=2.2, and “Negative” if the FISH ratio is <=1.8. Studies have shown a high concordance of 
the negative calls by IHC (0 and 1+) and FISH (97% or 99%) and the concordance of the 
positive calls by IHC (3+) and FISH is also high, at about 90%3,4. 

A number of issues were identified for ER and PR status from the original clinical dataset 
clinical_patient_public_brca.txt. Note that here an issue does not necessarily mean a problem; 1) 
for ER/PR nuclear staining percentage level of <10%, there were cases called “Positive” (10 for 
ER and 33 for PR), or “Negative” (41 for ER and 61 for PR); 2) there were cases with higher 
staining level that were not called “Positive” (6 for ER and 7 for PR); 3) hundreds of cases did 
not have staining levels but had “Positive” or “Negative” clinical statuses (506 for ER and 519 
for PR); 4) dozens of cases did not have a clinical status (38 for ER and 41 for PR). 

The following issues were identified for HER2: 1) 199 cases had IHC_Level of 1+, with 
consistent IHC_Status of “Negative”. Most of them had a consistent FISH_Status value or null, 
but two of them were FISH “Positive”; 2) 68 cases had IHC_Level 3+ with matching IHC_Status 
of “Positive”, but 2 of the 10 with FISH_Status values were FISH “Negative”; 3) 7 cases were 
scored IHC_Level 1+, contradicting IHC_Status of “Positive”; 4) 29 cases were scored 
IHC_Level 2+ but were called IHC_Status “Positive” (3 cases) or “Negative” (26 cases), and 
only 10 of them had FISH results; 5) 302 cases were IHC_Level “Not Available”, but had values 
for IHC_Status, some also had FISH_Status.  

Cancer staging standards have also evolved. Currently the AJCC (American Joint 
Committee on Cancer) Cancer Staging Manual, 7th Edition (2010) is followed5. Prior to this, the 
6th Edition was released in 2002, thus the breast cancer cases collected for this study were staged 
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using a mix of standards. For AJCC pathologic stage fields of T, N, M, Stage, and 
AJCC_Edition, the main issues were: 1) Multiple AJCC_Editions were used due to the time span 
of the cases for study (1988-2011); 2) 278 cases did not report AJCC_Edition; 3) For some cases 
with an AJCC_Edition, the T, N, and M did not match the stage definition of that edition; 4) 
There was at least one case of inconsistent N value and positive node count. The identified issues 
were reported to BCR for possible follow-up corrections. Some errors were subsequently 
corrected, when and only when the corresponding TSS was able to identify the source of the 
error and issued a correction. For many cases, the TSS chose to retain the IHC_Status. This is an 
approach consistent with our analysis below.  

There were issues that could not be readily resolved due to the data collection criteria. 
There were also issues due to the data form design and their correction requires a revision of the 
data form. For example, the mixed ER/PR thresholds could be fixed by applying a consistent 
threshold for research purposes, if the numerical nuclear staining level (IHC_Level) values were 
available. However, the corresponding data fields were designed for bracketed values, with the 
lowest range of <10%, followed by 10-19%, 20-29%, and so on. Mapping to the 1% threshold, 
the current standard starting from 2010, is therefore impossible.  A case of 7% staining level 
could have been called “Positive” or “Negative” depending on whether a 5% or a 10% threshold 
was used. In addition, we do not know how reliable the ranges checked on the forms were since 
the clinical focus is always whether ER/PR is positive which impacts the clinical intervention. 
Therefore, we made a decision not to use the ER/PR IHC_Level field for the current analysis.  
 
Improvement of clinical calls of HER2 using molecular data 
In contrast to ER and PR, HER2 IHC status calls did not highly correlate with gene expression 
(AUC=0.8, data not shown), and this lower correlation has been previously reported6. Given the 
results from the QA analysis, we attempted to systematically determine HER2 clinical statuses 
based on the ASCO/CAP guideline, and explored the possibility of supplementing these calls 
with DNA copy number data (at 17q12.2064) derived from SNP chips (Affymetrix 6.0)  

A standard logistic model was developed for prediction of FISH status by copy number 
data using SAS. A total of 199 patients with FISH status (Negative=164, Positive=35) also had 
relative copy number values. The descriptive statistics on copy number by FISH calls are shown 
in Figure II.1.A. There was a significant prediction of FISH status by the predictor, χ 2(1) = 
105.3318, p < 0.001, Negelkerke R2 = 0.679. The prediction of FISH by Copy_Number 
followed, logit(Pr(Event = 1)) = -3.2 + 2.3405 * (Copy_Number), with B = 2.3405, exp (B) = 
10.386, χ 2 (1) = 18.8537, p < 0.0001. There was no significant difference between the observed 
and the predicted FISH status, Hosmer-Lemeshow χ 2 (8) = 4.8, p = 0.8. The overall 
classification rate was good with ROC curve shown in Figure II.1.B, with an AUC = 0.92.  

DNA copy number derived from SNP chips was a good predictor of FISH status, and this 
is consistent with a previous study where copy number was derived from aCGH7. We also 
developed a logistic model to predict HER2 clinical calls strictly following the ASCO/CAP 
guideline, and the results were of similar quality (AUC=0.912, data not shown), which suggests 
its high predictability by copy number as well. In addition, we modeled copy number prediction 
of the combined IHC_FISH calls following the ASCO/CAP guideline, supplemented by 
FISH_Status when IHC_Level was unavailable, which was further supplemented by IHC_Status 
when neither IHC_Level nor FISH_Status was available. The model was not as successful (data 
not shown), which was probably due to the less predictability by copy number for IHC_Status.  
We also tried to model FISH prediction by copy number from cases with IHC_Level = 2+ only, 
however the model was not as good probably due to the small sample size (data not shown).  
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A       B 

 
Figure II.1. Prediction of FISH status by HER2 copy number. (A) Descriptive statistics of 
HER2 copy number by FISH status. (B) ROC curve with AUC=0.92. 
 
HER2 final clinical status 
Based on the results of all these analyses, we derived the HER2_Final_Status in the following 
three steps. This field is shown as “HER2 Final Status” in Supplemental Table 1. 

Step 1. HER2 calls following the ASCO/CAP guideline. HER2 calls were made strictly 
following the ASCO/CAP guideline, resulting in 372 “Negative”, 85 “Positive”, 32 “Equivocal”, 
and 302 “NA” calls. 

Step 2. Supplementing with FISH results. For cases lacking of the IHC_Level, FISH calls 
were used resulting in 42 new calls (33 “Negative” and 9 “Positive”). 

Step 3. Supplementing with copy number calls. In using copy number to predict FISH 
status, we did not use established methods to find a single optimal cut-point for minimizing both 
false positive and false negative calls; instead, we took a more conservative approach using two 
cut-points, because our goal was to supplement FISH calls with copy number calls to achieve an 
overall low false-prediction rate which we chose to be 5%. Thus a cut-point for positive calls of 
Copy_Number >= 1.69, and a cut-point for negative calls of Copy_Number <= 0.55 were 
chosen, which yielded a 95.7% (22/23) prediction accuracy for positive calls and a 96.8% 
(149/154) prediction accuracy for negative calls, respectively.  

Using this approach, we only supplemented “NA” or “Equivocal” calls from the 
preceding steps with FISH or copy number information but not correcting any inconsistent 
“Positive” or “Negative” calls. The final HER2 clinical calls for cases that have copy number 
data were: 642 “Negative”, 114 “Positive”, 10 “Equivocal”, and 15 “Not Performed”. In the 466 
data freeze set, there were only 10 cases that did not have a “Positive” or “Negative” HER2 call. 
  
AJCC Stages mapping to 7th Edition 
A script was developed to map the mixed editions to the current AJCC 7th Edition so that 
analyses could be performed based on a self-consistent staging system. Here are the main results: 
1) Out of the 278 cases for which no edition information was available, 108 were recognizable as 
6th or 7th Edition and were converted to 7th Edition; 2) There were 40 5th Edition cases; 15 of 
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which were converted to 7th edition. Specifically, those cases with no positive nodes (N0), 
positive ipsilateral internal mammary nodes (N3), or tumor stage T3 (stage not affected by nodal 
status) could be converted; 3). The remaining samples were either 6th Edition which were all 
converted, or already the 7th Edition. 
 
Categorization of T and N 
Clinical data fields of pathologic stages T and N were made binary for use in molecular data 
analysis. T was coded as T1 and T_Other, corresponding to smaller tumor size (<= 2 cm) and 
larger tumor size (> 2 cm), respectively, and TX was coded as null for missing value. N was 
coded as Negative corresponding to N0, and Positive corresponding to N1-N3, respectively. M 
was coded as Positive for M1, and Negative for others, respectively, and missing values were 
allowed. 

 
Summary 
For ER and PR, we found a limited number of cases with inconsistencies between clinical 
statuses and nuclear staining levels, and about 5% cases with missing clinical calls. For HER2, 
there were also a limited number of cases showing inconsistencies between IHC statuses, IHC 
levels, and/or FISH statuses, but most importantly, about 40% of the cases could not be directly 
mapped to the current ASCO/CAP guideline due to missing values, likely because of historical 
reasons. We were able to correct some of the inconsistencies.  

Tissue Source Site provided calls were used for clinical ER and PR status.  For HER2, 
copy number can predict FISH status very well. Therefore, we were able to strictly follow the 
current ASCO/CAP guideline for a consistent new clinical status call, supplementing with FISH 
calls, and further supplementing with FISH calls predicted by the copy number data. Such 
adjustments were only made to cases that were previously either Equivocal or NA from the 
preceding steps. For AJCC stages, we focused on converting staging calls to be consistent with 
AJCC Edition 7 where possible (Supplemental Table 1). 

Clinical data can be found in Supplemental Table 1 and from the DCC Data portal 
(http://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) or from the manuscript associated webpage 
(http://tcga-data.nci.nih.gov/docs/publications/brca_2012/). 
 

III. Exome Sequencing  

Whole genome amplified or genomic DNA provided by the TCGA BCR was used for exome 
sequencing at the Washington University Genome Institute.  Libraries were constructed using 
ligation of Illumina adaptors to sheared whole genome amplified DNA. A Solid Phase 
Reversible Immobilization (SPRI) bead cleanup procedure was conducted to select size fractions 
between 300 and 500bp. Hybridizations were performed using customized versions of the 
Agilent SureSelect All Exome v2.0 kit or Nimblegen SeqCap EZ Human Exome v2.0. qPCR 
was used to determine the quantity of captured library necessary for loading on an Illumina Hi-
Seq 2000 in order to produce greater than 10Gbp of sequence. As the throughput of the 
sequencing instrument increased, sample barcoding and multiplexing techniques were employed 
to efficiently utilize the output of sequencers. At least 70% coverage at 20x depth of the ~34 
Mbp CDS target8 and at least 90% genotype concordance with SNP array data were required for 
each sample to pass quality control. 
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Alignment, De-duplication, and BAM file generation. 
Tumor and normal samples for 507 breast cancer cases were sequenced and aligned 
independently. For each sample, filter-passed reads were aligned to the NCBI build 37 (hg19) 
human reference sequence (GRCh37-lite) using BWA9 v0.5.9. BAM files were generated using 
SAMtools10 r963; duplicates were marked with Picard (http://picard.sourceforge.net) v1.46. 
BAM files for QC-passed samples were submitted to the dbGAP database.  
 
Mutation Detection and Annotation 
Mutation detection and annotation were performed at the Washington University Genome 
Institute as follows. Somatic single nucleotide variants (SNVs) detected by VarScan 211 and 
SomaticSniper12; somatic insertion/deletions (indels) were detected by VarScan 2 and GATK13 
IndelGenotyper v2.0. Putative somatic mutations were filtered to remove sequencing and 
alignment artifacts and manually reviewed in IGV. Review-passed variants were annotated using 
transcripts from NCBI build 37c and Ensembl release 58. In the event that multiple transcripts 
could be used to annotate a variant, the transcript with the greatest effect was used. Only “tier 1” 
coding variants in exons, noncoding RNA genes, or splice sites were reported.  
 
Background Mutation Rate Calculation 
Somatic mutations from the MAF file were filtered to remove (1) sites in dbSNP14 build 132, 
which likely represent mis-called germline variants; (2) mutations in noncoding RNA genes; and 
(3) redundant mutations in double-normal samples that were reported for both tumor-normal and 
tumor-adjacent comparisons. The background mutation rate was computed as the number of non-
silent SNVs per covered megabase. A base was considered sufficiently covered if it had at least 8 
reads in the tumor sample and at least 6 reads in the normal sample with mapping quality of 20 
or higher. By these calculations, 22,689 non-silent SNVs were detected in 16,055 megabases of 
covered sequence, for a background mutation rate of 1.413 mutations per megabase. 
 
Identification of Significantly Mutated Genes 
Significantly mutated genes were identified using the MuSiC package 
(http://gmt.genome.wustl.edu/genome-music). Briefly, the non-silent mutation rate in each gene 
is compared to the background mutation rate using three tests: a convolution test (CT), a Fisher’s 
combined P-value test (FCPT), and a likelihood ratio test (LRT). Fisher’s combined p-value test 
(FCPT): FCPT combines P-values from different mutation types into a statistic, χc , according to 
Fisher’s method: 

 
where pi is the p-value obtained via binomial distribution for the i-th mutation type, and k 

the number of mutation types for a gene. The final p-value for the entire gene is calculated as the 
probability of observing a value no less than χc, based on a χ2 distribution with 2k degrees of 
freedom.  

 
The LRT constructs a likelihood ratio-based statistic (χl) for a gene, 
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where Mi, Ci, Ri and ri are mutation number, coverage, BMR, and maximum likelihood 

estimate (MLE) of MR, respectively, for the i-th mutation type of a gene, k is the number of 
mutation types, and L() is the likelihood of observed mutation number for the i-th mutation 
types, defined as the point probability of observing Mi mutations given a coverage of Ci and a 
MR of Ri or ri. The final P-value for the entire gene is calculated as the probability of observing a 
value no less than χl, based on an approximate χ2 distribution with k degrees of freedom. 
The CT calculates a summarized log statistic of joint binomial point probability 

 
where Mi, Ci, Ri, k and L() are referred to as the same as in the LRT method. 

 
To include a gene on the SMG list, a maximum FDR of 5% by both CT and LRT was 

required. In supplemental table 2, FDR values for CT and LRT are provided if this criterion was 
met for a given gene in a given subgroup. 
 

IV. mRNA Gene Expression Profiling 
 

Microarray processing 
Agilent custom 244K whole genome microarrays were hybridized and processed as previously 
described8. Raw data (level 1), probe-level data (level 2), and gene-level data (level 3) were 
deposited at the DCC. 
 
Identification of the intrinsic gene expression-based subtypes. Agilent microarray data for 
522 tumors, 3 metastatic tumors, and 22 tumor-adjacent normal were combined and gene-median 
centered. The matrix was hierarchically clustered with an intrinsic subtype list compiled from 
four previous breast microarray studies15-18. Using this cluster, we analyzed the sample 
relationships by SigClust19 and identified 13 classes. Samples were also subtyped by the 50-gene 
PAM50 predictor20. High concordance was seen between the SigClust and PAM50 subtypes 
calls. For simplicity, the PAM50 subtype calls were used for all analyses. 
 

V. miRNA Expression Profiling 
 
Library construction and sequencing 
Two micrograms of total RNA per sample are arrayed into 96-well plates, with controls as 
described below. RNA entering library construction is required to have at least a minimum 
quality on the BCR submission documentation. Total RNA is mixed with oligo(dT) MicroBeads 
and loaded into a 96-well MACS column, which is then placed on a MultiMACS separator 
(Miltenyi Biotec, Germany); the separator’s strong magnetic field allows beads to be captured 
during washes. From the flow-through, small RNAs, including miRNAs, are recovered by 
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ethanol precipitation. Flow-through RNA quality is checked for a subset of 12 samples using an 
Agilent Bioanalyzer RNA Nano chip. 

miRNA-Seq libraries are constructed using an plate-based protocol developed at the 
British Columbia Genome Sciences Centre (BCGSC). Negative controls are added at three 
stages: elution buffer is added to one well when the total RNA is loaded onto the plate, water to 
another well just before ligating the 3’ adapter, and PCR brew mix to a final well just before 
PCR. A 3’ adapter is ligated using a truncated T4 RNA ligase2 (NEB Canada, cat. M0242L) 
with an incubation of 1 hour at 22oC. This adapter is adenylated, single-strand DNA with the 
sequence 5’ /5rApp/ ATCTCGTATGCCGTCTTCTGCTTGT /3ddC/, which selectively ligates 
miRNAs. An RNA 5’ adapter is then added, using a T4 RNA ligase (Ambion USA, cat. 
AM2141) and ATP, and is incubated at 37oC for 1 hour. The sequence of the single strand RNA 
adapter is 5’GUUCAGAGUUCUACAGUCCGACGAUCUGGUCAA3’.  

When ligation is completed, 1st strand cDNA is synthesized using Superscript II Reverse 
Transcriptase (Invitrogen, cat.18064 014) and RT primer (5'-
CAAGCAGAAGACGGCATACGAGAT-3’). This is the template for the final library PCR, into 
which we introduce index sequences to enable libraries to be identified from a sequenced pool 
that contains multiple libraries. Briefly, a PCR brew mix is made with the 3’ PCR primer (5’-
CAAGCAGAAGACGGCATACGAGAT-3’), Phusion Hot Start High Fidelity DNA polymerase 
(NEB Canada, cat. F-540L), buffer, dNTPs and DMSO. The mix is distributed evenly into a new 
96-well plate. A Biomek FX (Beckman Coulter, USA) is used to transfer the PCR template (1st 
strand cDNA) and indexed 5’ PCR primers into the brew mix plate. Each indexed 5’ PCR 
primer, 5'-
AATGATACGGCGACCACCGACAGNNNNNNGTTCAGAGTTCTACAGTCCGA-3’, 
contains a unique six-nucleotide ‘index’ (shown here as N’s), and is added to each well of the 
96-well PCR brew plate. PCR is run at 98°C for 30 sec, followed by 15 cycles of 98°C for 15 
sec, 62°C for 30 sec and 72°C for 15 sec, and finally a 5 min incubation at 72oC. Quality is then 
checked across the whole plate using a Caliper LabChipGX DNA chip. PCR products are 
pooled, then are size selected to remove larger cDNA fragments and smaller adapter 
contaminants, using a 96-channel automated size selection robot that was developed at the 
BCGSC. After size selection, each pool is ethanol precipitated, quality checked using an Agilent 
Bioanalyzer DNA1000 chip and quantified using a Qubit fluorometer (Invitrogen, cat. Q32854). 
Each pool is then diluted to a target concentration for cluster generation and loaded into a single 
lane of an Illumina GAIIx or HiSeq 2000 flow cell. Clusters are generated, and lanes are 
sequenced with a 31-bp main read for the insert and a 7-bp read for the index.  
 
Preprocessing, alignment and annotation 
Briefly, the sequence data are separated into individual samples based on the index read 
sequences, and the reads undergo an initial QC assessment. Adapter sequence is then trimmed 
off, and the trimmed reads for each sample are aligned to the NCBI GRCh37-lite reference 
genome. Below we describe these steps in more detail.  

Routine QC assesses a subset of raw sequences from each pooled lane for the abundance 
of reads from each indexed sample in the pool, the proportion of reads that possibly originate 
from adapter dimers (i.e. a 5’ adapter joined to a 3’ adapter with no intervening biological 
sequence) and for the proportion of reads that map to human miRNAs. Sequencing error is 
estimated by a method originally developed for SAGE21.  
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Libraries that pass this QC stage are preprocessed for alignment. While the size-selected 
miRNAs vary somewhat in length, typically they are ~21 bp long, and so are shorter than the 31-
bp read length. Given this, each read sequence extends some distance into the 3' sequencing 
adapter. Because this non-biological sequence can interfere with aligning the read to the 
reference genome, 3’ adapter sequence is identified and removed (trimmed) from a read. The 
adapter-trimming algorithm identifies as long an adapter sequence as possible, allowing a 
number of mismatches that depends on the adapter length found. A typical sequencing run yields 
several million reads; using only the first (5’) 15 bases of the 3’ adapter in trimming makes 
processing efficient, while minimizing the chance that an miRNA read will match the adapter 
sequence.  

The algorithm first determines whether a read sequence should be discarded as an adapter 
dimer by checking whether the 3’ adapter sequence occurs at the start of the read. For reads 
passing this stage, the algorithm then tries to identify an exact 15-bp match anywhere within the 
read sequence. If it cannot, it then retries, starting from the 3' end, and allowing up to 2 
mismatches. If the full 15bp is not found, decreasing lengths of adapter are checked, down to the 
first 8 bases, allowing one mismatch. If a match is still not found, from 7 bases down to 1 base is 
checked, with an exact match required. Finally, the algorithm will trim 1 base off the 3’ end of a 
read if it happens to match the first base of the adapter. This is based on two considerations. 
First, it is preferable to get a perfect alignment than an alignment that has a potential one-base 
mismatch. Second, if only 1 base of adapter was found in the read sequence, the read is likely too 
long to be from a miRNA and the effect of the trimming on its alignment would not affect this 
sample’s overall miRNA profiling result. 

After each read has been processed, a summary report is generated containing the number 
of reads at each read length. Because the shortest mature miRNA in miRBase v16 is 15 bp, any 
trimmed read that is shorter than 15bp is discarded; remaining reads are submitted for alignment 
to the reference genome. BWA9 alignment(s) for each read are checked with a series of three 
filters. A read with more than 3 alignments is discarded as too ambiguous. For TCGA 
quantification reports, only perfect alignments with no mismatches are used. Based on 
comparing expression profiles of test libraries (data not shown), reads that fail the Illumina 
basecalling chastity filter are retained, while reads that have soft-clipped CIGAR strings are 
discarded.  

For reads retained after filtering, each coordinate for each read alignment is annotated 
using the reference databases (Table V.1), and requiring a minimum 3-bp overlap between the 
alignment and an annotation. In annotating reads we address two potential issues. First, a single 
read alignment can overlap feature annotations of different types; second, a read can have up to 
three alignment locations, and each alignment location can overlap a different type of feature 
annotation. By considering heuristically determined priorities (Table V.1), we resolve the first 
issue by giving each alignment a single annotation. We resolve the second by collapsing multiple 
annotations to a single annotation, as follows.  

If a read has more than one alignment location, and the annotations for these are 
different, we use the priorities from Table V.1 to assign a single annotation to the read, as long as 
only one alignment is to a miRNA. When there are multiple alignments to different miRNAs, the 
read is flagged as cross-mapped22, and all of its miRNA annotations are preserved, while all of 
its non-miRNA annotations are discarded. This ensures that all annotation information about 
ambiguously mapped miRNAs is retained, and allows annotation ambiguity to be addressed in 
downstream analyses. Note that we consider miRNAs to be cross-mapped only if they map to 
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different miRNAs, not to functionally identical miRNAs that are expressed from different 
locations in the genome. Such cases are indicated by miRNA miRBase names, which can have 
up to 4 separate sections separated by "-", e.g. hsa-mir-26a-1. A difference in the final (e.g. ‘-1’) 
section denotes functionally equivalent miRNAs expressed from different regions of the genome, 
and we consider only the first 3 sections (e.g. ‘hsa-mir-26a’) when comparing names. As long as 
a read maps to multiple miRNAs for which the first 3 sections of the name are identical (e.g. hsa-
mir-26a-1 and hsa-mir-26a-2), it is treated as if it maps to only one miRNA, and is not flagged as 
cross-mapped.  

From the profiling results for a tumor type, for a minimum of approximately 100 
samples, we identify the depth of sequencing required to detect the miRNAs that are expressed in 
a sample by considering a graph of the number of miRNAs detected in a sample as a function of 
the number of reads aligned to miRNAs. For the current work, a library from a sequenced pool 
was required to have at least 750,000 reads mapped to miRBase annotations. For any sequencing 
run that fails to meet this threshold, we sequence the sample again to achieve at least the 
minimum number of miRNA-aligned reads.  

Finally, for each sample, the reads that correspond to particular miRNAs are summed and 
normalized to a million miRNA-aligned reads to generate the quantification files that are 
submitted to the DCC. Quantification files include information on variable 5’ and 3’ read 
alignment locations, which can reflect isoforms, adapter trimming and RNA degradation.  
 
Unsupervised consensus clustering  
Normalized read count data for 697 tumor samples were extracted from Level 3 data archives on 
the TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/). The set of 
isoform.quantification.txt files, which give read counts at base pair resolution, was processed to 
sum up read counts at mature and star strand resolution (corresponding to miRBase v16 MIMAT 
accessions). Read counts for each sample were normalized to RPM, i.e. to reads per million 
reads aligned to miRBase mature or star strands. Mature and star strands were ranked by RPM 
variance across the samples, and the most variant 25% (306 MIMATs) were used as input to 
unsupervised consensus clustering with the NMF v0.5.02 package23 in R v2.12.0, using the 
default Brunet algorithm and 50 and 200 iterations respectively for the rank survey and the main 
run. A seven-cluster result was selected by considering profiles of cophenetic score and average 
silhouette width for clustering solutions having between 3 and 15 clusters; comparing silhouette 
plots for favorable solutions; comparing core/non-core cluster members with clinical covariate 
tracks (below); and preferring a result set with fewer, larger clusters. Silhouette results were 
generated from the consensus membership matrix using the ‘cluster’ v1.14.1 R package. 
Silhouette width profiles were generated for samples ordered as in the NMF heatmap, and 
atypical, or ‘non-core’ members in each cluster were identified using a silhouette width threshold 
set to a fraction (e.g. 0.90) of the maximum width in each cluster. Asymptotic association p-
values for covariate contingency tables were calculated using R’s chi-square test. 
 
Table V.1. Priorities for resolving annotation ambiguities for aligned reads.  

Priority Annotation type Database 
1 
2 
3 
4 

mature strand 
star strand 
precursor miRNA 
stemloop, from 1 to 6 bases outside the mature strand, between the 

miRBase v16 
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5 
 

mature and star strands 
"unannotated", any region other than the mature strand in miRNAs 
where no star strand is annotated 

6 
7 
8 
9 
10 
11 
12 

snoRNA 
tRNA 
rRNA 
snRNA 
scRNA 
srpRNA 
Other RNA repeats  

UCSC small 
RNAs, 
RepeatMasker 

13 
14 
15 
16 
17 

coding exons with zero annotated CDS region length 
3' UTR 
5' UTR 
coding exon 
intron 

UCSC 
knownGenes 
 

18 
19 
20 
21 
22 
23 
24 
25 
26 

LINE  
SINE 
LTR 
Satellite 
RepeatMasker DNA 
RepeatMasker Low complexity 
RepeatMasker Simple Repeat 
RepeatMasker Other 
RepeatMasker Unknown 

UCSC 
RepeatMasker  

 
VI. DNA Methylation Profiling 

 
Array-based DNA methylation assay: We used the Illumina Infinium DNA methylation 
platforms, HumanMethylation27 (HM27) BeadChip and HumanMethylation450 (HM450) 
BeadChip (Illumina, San Diego, CA) to obtain gene promoter and gene body DNA methylation 
profiles of 802 TCGA breast cancer samples and 122 adjacent non-tumor breast tissue samples. 
The Infinium HM27 array targets 27,578 CpG sites located in proximity to the transcription start 
sites of 14,475 consensus coding sequencing (CCDS) in the NCBI Database (Genome Build 36). 
The Infinium HM450 array targets 482,421 CpG sites and covers 99% of RefSeq genes, with an 
average of 17 CpG sites per gene region distributed across the promoter, 5’UTR, first exon, gene 
body, and 3’UTR. It covers 96% of CpG islands, with additional coverage in island shores and 
the regions flanking them. The assay probe sequences and information on each interrogated CpG 
site on both Infinium DNA methylation platforms can be found in the MAGE-TAB ADF (Array 
Design Format) file deposited on the TCGA Data Portal.  
 We performed bisulfite conversion on 1 µg of genomic DNA from each sample using the 
EZ-96 DNA Methylation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s 
instructions. We assessed the amount of bisulfite converted DNA and completeness of bisulfite 
conversion using a panel of MethyLight-based quality control (QC) reactions as previously 
described24. All the TCGA samples passed our QC tests and entered the Infinium DNA 
methylation assay pipeline.  
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 Bisulfite-converted DNA was whole genome amplified (WGA) and enzymatically 
fragmented prior to hybridization to BeadChip arrays. With respect to the Illumina Infinium 
HM27 platfom, the amplified and fragmented DNA molecules anneal to a locus-specific DNA 
oligomers (50 mers) covalently attached to a specific bead type. The HM27 platform utilizes the 
Infinium I chemistry. Each interrogated CpG locus can hybridize to methylated (CpG) or 
unmethylated (TpG) oligo bead types. DNA methylation-specific primer annealing is followed 
by single-base extension using labeled nucleotides [cy5 (red) or cy3 (green)]. Both methylated 
(M) and unmethylated (U) bead types for a specific CpG locus incorporate the same labeled 
nucleotide, as determined by the base immediately preceding the cytosine being interrogated by 
the assay, and are subsequently detected in a single color channel. Fluorescence intensities of the 
M and U bead types for each CpG locus were measured using the Illumina BeadArray Reader. 
The mean signal intensities for replicate M and U probes for each CpG locus were extracted 
from Illumina GenomeStudio software.  
 With respect to the Illumina Infinium HM450 platform, the oligomer probe designs 
follow the Infinium I and II chemistries, in which locus-specific base extension follows 
hybridization to a methylation-specific oligomer. The Infinium I probes are used in the HM27 
platform and terminate complementary to the interrogated CpG site for methylated loci, or 
complementary to the TpG for unmethylated alleles. The Infinium type II probes terminate 
immediately 3’ to the interrogated CpG (or TpG) site. A matched oligomer-template DNA 
molecule hybrid will allow for the incorporation of a cy3- or cy5-labeled nucleotide immediately 
adjacent to the interrogated CpG (or TpG) site for Infinium I probes, or at the targeted CpG for 
the Infinium II probes. However, if the probe and template are mismatched, then primer 
extension will not occur. After labeled nucleotide incorporation, the intensities of both cy3 and 
cy5 are obtained after scanning each hybridized array. BeadArrays are scanned using the 
Illumina iScan technology, and the raw data are extracted using the R-based methylumi 
package25 to calculate the beta value DNA methylation score for each probe and sample.  
 The level of DNA methylation at each CpG locus is scored as beta (β) value calculated as 
(M/(M+U)), ranging from 0 to 1, with values close to 0 indicating low levels of DNA 
methylation and beta values close to 1 indicating high levels of DNA methylation.  
 The detection P values provide an indication of the quality of DNA methylation 
measurement and are calculated as previously described. We determined that data points with a 
detection P value >0.05 are not significantly different from background measurements, and 
therefore were masked as “NA” in the Level 2 and 3 in HM27 and Level 3 in HM450 data 
packages, as detailed below.  
 TCGA data packages: The data levels and the files contained in each data level package 
are described below and are present on the TCGA Data Portal website (http://tcga-
data.nci.nih.gov/tcga/). Please note that with continuing updates of genomic databases, data 
archive revisions become available at the TCGA Data Portal.  
  HM27: Level 1: Level 1 data contain the non-background corrected signal intensities of 
the M and U probes and the mean negative control cy5 (red) and cy3 (green) signal intensities. A 
detection P value for each data point, the number of replicate beads for M and U probes as well 
as the standard error of M, U, and control probe signal intensities are also provided. It is 
important to note that for some CpG targets, both M and U measurements will be cy3, and for 
others both will be cy5. To resolve ambiguities regarding this subtlety of the Infinium DNA 
Methylation assay, we have labeled the cy3 and cy5 values deposited to the DCC as “Methylated 
Signal Intensity” and “Unmethylated Signal Intensity”. The information of which dye is used for 
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each CpG locus is supplied in the MAGE-TAB ADF file deposited in the DCC. Level 2: Level 2 
data files contain the β-value calculations for each probe and sample. Data points with detection 
P values >0.05 were not considered to be significantly different from background, and were 
masked as “NA”. Level 3: Level 3 data contain β-value calculations, HUGO gene symbol, 
chromosome number and genomic coordinate for each targeted CpG site on the array. In 
addition, we masked data points with "NA" from the probes that 1) contain known single 
nucleotide polymorphisms (SNPs) after comparison to the dbSNP database (Build 130), 2) 
contain repetitive sequence elements that cover the targeted CpG locus in each 50 bp probe 
sequence, 3) are not uniquely aligned to the human genome (NCBI build 36.1) at 20 nucleotides 
at the 3’ terminus of the probe sequence, 4) span known regions of small insertions and deletions 
(indels) in the human genome (dbSNP build 130).  
 HM450: Level 1: Level 1 data contain raw IDAT files. IDAT files are the direct output 
from the scanning software - Illumina iScan Control. Level 2: Level 2 data contain background 
corrected signal intensities of the M and U probes. Level 3: Level 3 data files contain β-value 
calculations and masked data points with "NA" from the probes that are annotated as having a 
SNP within 10 base pairs of the interrogated locus (HM27 carryover or recently discovered, 
dbSNP build 131). The genomic characteristics for each probe are available for download via 
Illumina (www.illumina.com).  
 
The following data archives were used for the analyses described in this manuscript.  

S. No Archive Name Platform 
1 jhu-usc.edu_BRCA.HumanMethylation27.Level_3.1.0.0.tar.gz HM27 
2 jhu-usc.edu_BRCA.HumanMethylation27.Level_3.2.0.0.tar.gz HM27 
3 jhu-usc.edu_BRCA.HumanMethylation27.Level_3.3.0.0.tar.gz HM27 
4 jhu-usc.edu_BRCA.HumanMethylation27.Level_3.4.0.0.tar.gz HM27 
5 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.1.1.0.tar.gz HM450 
6 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.2.1.0.tar.gz HM450 
7 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.3.1.0.tar.gz HM450 
8 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.4.1.0.tar.gz HM450 
9 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.5.1.0.tar.gz HM450 
10 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.6.1.0.tar.gz HM450 
11 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.7.1.0.tar.gz HM450 
12 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.8.1.0.tar.gz HM450 
13 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.9.1.0.tar.gz HM450 
14 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.10.1.0.tar.gz HM450 
15 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.11.1.0.tar.gz HM450 
16 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.12.1.0.tar.gz HM450 
17 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.13.1.0.tar.gz HM450 
18 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.14.1.0.tar.gz HM450 
19 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.15.1.0.tar.gz HM450 
20 jhu-usc.edu_BRCA.HumanMethylation450.Level_3.16.1.0.tar.gz HM450 

 
Unsupervised clustering analysis of DNA methylation data 
Statistical analysis and data visualization were carried out using the R/Biocoductor software 
packages (http://www.bioconductor.org). The following filtering steps were adopted for selection 
of probes for unsupervised clustering analysis. We first removed probes that are designed for the 
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sequences on X and Y chromosomes. As we observed batch and platform specific methylation 
patterns, we filtered the probes based on the following criteria. 1. We selected probes that were 
represented on both HM27 and HM450 platforms (N=25,014). 2. We removed probes that 
contain any “NA”-masked data points (probes selected, N= 20,847). 3. In order to filter-out 
probes with high batch effects, we applied ANOVA (logit (Beta)~Batch) and removed probes 
with above median F statistics. In this step, we tried to retain probes with high biological effect 
by simultaneously selecting for probes with high within batch standard deviation (probes 
selected, N= 10,422). 4. Further, we filtered-out probes with platform specific methylation 
patterns by applying t-tests (logit(Beta)~platform) and removed 90% of probes with highest t-
statistics. As in the previous step, we simultaneously selected probes with high within platform 
standard deviation (probes selected, N= 1,042). Finally, we selected a union of the probes (batch 
and platform effect filtered) with an above median standard deviation of betas calculated 
separately for each platform (N=574).  
 We used recursively partitioned mixture model (RPMM) for the identification of breast 
cancer subgroups based on the Illumina Infinium DNA methylation datasets. RPMM is a model-
based unsupervised clustering approach well-suited for beta-distributed DNA methylation 
measurements which lie between 0 and 1, and implemented as the RPMM R/Bioconductor 
package26. 
 We performed RPMM clustering on 802 breast cancer samples and the above-mentioned 
574 probes. A fanny algorithm (a fuzzy clustering algorithm) was used for initialization and 
level-weighted version of Bayesian information criterion (BIC) as a split criterion for an existing 
cluster as implemented in the RPMM package. The DNA methylation β-values for 466 data-
freeze breast cancer samples and 122 adjacent normals were represented graphically using a 
heatmap, generated by the R package Heatplus. Ordering of the samples within a RPMM class in 
the heatmaps was obtained by using the R package seriation. A non-parametric Pearson χ2 test 
with Yates continuity correction was used to assess the significance of association of various 
categorical covariates with DNA methylation clusters. Fisher’s exact test was performed on 
covariates in which samples were less than five in any cell in the contingency table. 
  

VII. SNP Based Copy Number Analysis  
 

DNA from each tumor or germline-derived sample was hybridized to the Affymetrix SNP 6.0 
arrays using protocols at the Genome Analysis Platform of the Broad Institute27. From raw .CEL 
files, Birdseed was used to infer a preliminary copy-number at each probe locus28. For each 
tumor, genome-wide copy number estimates were refined using tangent normalization, in which 
tumor signal intensities are divided by signal intensities from the linear combination of all 
normal samples that are most similar to the tumor8 (and Tabak B and Beroukhim R. Manuscript 
in preparation). This linear combination of normal samples tends to match the noise profile of the 
tumor better than any set of individual normal samples, thereby reducing the contribution of 
noise to the final copy-number profile. Individual copy-number estimates then undergo 
segmentation using Circular Binary Segmentation29. As part of this process of copy-number 
assessment and segmentation, regions corresponding to germline copy-number alterations were 
removed by applying filters generated from either the TCGA germline samples from the ovarian 
cancer analysis or from samples from this collection. 

Segmented copy number profiles for tumor and matched control DNAs were analyzed 
using Ziggurat Deconstruction, an algorithm that parsimoniously assigns a length and amplitude 
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to the set of inferred copy number changes underlying each segmented copy number profile29. 
Analysis of broad copy number alterations was then conducted as previously described28. 
Significant focal copy number alterations were identified from segmented data using GISTIC 
2.030. NMF consensus clustering of copy number data was performed using the presence or 
absence of amplifications or deletions in regions identified by GISTIC 2.0 analysis.  

For correlations between copy number alterations in breast and ovarian tumors, 
thresholded gene level copy number values were calculated using GISTIC 2.031.  These values 
were calculated using the maximum copy number change in each gene or miRNA.  Log2 copy 
number values were thresholded as followed: values < -1 are set to -2, values between -1 and -
0.3 are set to -1,   values between -0.3 and 0.3 are set to 0, values between -1 and -0.3 are set to 
1, and values > 1 are set to 2.  Tumors where all gene level thresholded copy number changes 
equaled 0 were excluded from the analysis.  Pearson R correlations were calculated for all 
possible pairs of ovarian and breast tumors. 

 
Altered Genome Fraction 
Basal-like tumors are characterized by high genomic instability reflected by extensive genomic 
re-arrangements. Copy number DNA alterations are more frequent and typically smaller than in 
any other subtypes. Similar pattern of alterations have been observed before in serous ovarian 
carcinoma, and this again remarks the similarity between these two cancer types. 
To quantify this similarity in terms of number of copy number alterations, we compute the 
fraction of the genome that is altered for each sample, and compare the distribution of these 
values across breast cancer subtypes and ovarian cancer. 

Given the segmented data for each sample, such that probes within the same segment 
have the same copy number level (log2-ratios), we determined the percentage of mega-bases 
(MB) that have copy number level above a given threshold T (gain) or below a given threshold –
T (loss). Genomic regions are thus defined altered if the corresponding level is above T or below 
-T, by contrast regions with level in the interval [-T,T] are considered diploid. For this analysis 
we select T = 0.15. Altered genome fraction distributions show remarkably similarities between 
Basal-like and serous ovarian tumors with both tumor types having over 70% of the samples 
with more than 40% of the genome in a non-diploid status (Fig. VII.1). 

 
 
Fig. VII.1: Altered Genome Fraction distribution across breast cancer subtypes and ovarian 
carcinoma. 
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Curtis et al Copy Number Classifications 
For assigning Curtis et al. subtype (1 through 10) to each TCGA sample, we first obtained the set 
of 754 features (39 gene copy, 715 gene mRNA), originally used in the Curtis et al. study to 
classify the validation samples (Table S4232). Each feature in the Curtis classifier had previously 
been assigned a scaled weighting for each of the ten subtypes. After first standardizing our 
TCGA datasets (mRNA features standardized to standard deviations from the median across the 
cancer sample profiles; gene copy features standardized to log2 fold relative to normal), we 
computed the Pearson’s correlation between each TCGA sample profile (copy+mRNA) and each 
of the ten Curtis subtype profiles. For a given TCGA sample, the Curtis subtype having the 
highest correlation was assigned to that sample. 
 

VIII. Reverse Phase Protein Array (RPPA)  
 

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 nmol/L Hepes (pH 7.4), 
150 nmol/L NaCl, 1.5 nmol/L MgCl2, 1 mmol/L EGTA, 100 nmol/L NaF, 10 nmol/L NaPPi, 
10% glycerol, 1 nmol/L phenylmethylsulfonyl fluoride, 1 nmol/L Na3VO4, and aprotinin 10 
Ag/mL) from human tumors and RPPA was performed as described previously33-37. Lysis buffer 
was used to lyse frozen tumors by Precellys homogenization. Tumor lysates were adjusted to 1 
µg/µL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. 
Tumor lysates were manually diluted in five-fold serial dilutions with lysis buffer. An Aushon 
Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides 
(Grace Bio-Labs). Slides were probed with 171 validated primary antibodies (Table VIII.1) 
followed by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or 
Rabbit anti-Goat IgG). Signal was captured using a DakoCytomation-catalyzed system and DAB 
colorimetric reaction. Slides were scanned in CanoScan 9000F. Spot intensities were analyzed 
and quantified using Microvigene software (VigeneTech Inc., Carlisle, MA), to generate spot 
signal intensities (Level 1 data). The software SuperCurveGUI35,37, available at 
http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 
values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve") 
was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each 
protein on the X-axis using the non-parametric, monotone increasing B-spline model33. During 
the process, the raw spot intensity data were adjusted to correct spatial bias before model fitting. 
A QC metric37 was returned for each slide to help determine the quality of the slide: if the score 
is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was repeated to 
obtain a high quality score. If more than one slide was stained for an antibody, the slide with the 
highest QC score was used for analysis (Level 2 data). Protein measurements were corrected for 
loading as described35,37,38 using median centering across antibodies (level 3 data). In total, 171 
antibodies and 410 samples were used. For the selection of the 171 antibody set, we focused on 
markers currently used for breast cancer classification due to their value in treatment decisions 
(ER, PR and HER2), markers implicated in breast cancer pathophysiology and markers 
implicated in the pathophysiology of other cancer lineages. Final selection of antibodies was also 
driven by the availability of high quality antibodies that consistently pass a strict validation 
process as previously described39. Antibodies are labeled as validated and use with caution based 
on degree of validation by criteria previously described39. Seven samples were redacted during 
sample collection and were excluded from further analysis. 
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Raw data (level 1), SuperCurve nonparameteric model fitting on a single array (level 2), 
and loading corrected data (level 3) were deposited at the DCC. 
 
RPPA Subtype discovery 
We used non-negative Matrix Factorization (NMF) to identify robust subtypes of breast cancer 
based on protein expression31. Through visual inspection of consensus and correlation matrices 
and based on the cophenetic coefficient plot, we identified clustering with seven clusters as the 
optimal solution (Figure VIII.1). The 403 samples in the RPPA data set were classified into 
seven groups after performing NMF using 100 iterations and using the divergence error function. 
With the sample order returned by NMF, we plotted a semi-supervised hierarchical clustering 
using the same data sets, with the antibodies clustered using a Pearson correlation coefficient 
based distance matrix (distance=(1-R)/2 where R is the Pearson correlation coefficient between 
two rows in the data) and Ward’s minimum variance based agglomeration algorithm. The 
PAM50 gene based subtypes, the clinical status of ER, PR, HER2 (based on IHC), tumor size, 
node status and the mutation status of five selected genes with abundant mutations, were also 
plotted with the samples ordered by NMF groups. Chi-square test p-values were used to compare 
frequencies of the mutations or other events across among the 7 groups.  

Figure VIII.1. Expression and correlation heatmaps of RPPA clustering data. Protein expression 
data for 403 samples and 171 proteins was clustered using non-negative matrix factorization and 
different numbers of k.  
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Table VIII.1. Antibody information for all proteins included on the RPPA platform. 
Full Slide Name (Antibody 

Name + Slide ID) Protein Name Gene Name 
Antibody 
validation 

status 

Antibody 
Origin 

Antibody 
Source 

(Company) 

Catalog 
Number 

14-3-3_epsilon-M-
C_GBL9013486 14-3-3_epsilon YWHAE Use with 

Caution Mouse Santa Cruz sc-2395 

4E-BP1_pS65-R-
V_GBL9013201 4E-BP1_pS65 EIF4EBP1 Validated Rabbit CST 9456 

4E-BP1_pT37-R-
V_GBL9013202 4E-BP1_pT37 EIF4EBP1 Validated Rabbit CST 9459 

4E-BP1_pT70-R-
V_GBL9013203 4E-BP1_pT70 EIF4EBP1 Validated Rabbit CST 9455 

4E-BP1-R-V_GBL9013200 4E-BP1 EIF4EBP1 Validated Rabbit CST 9452 

53BP1-R-C_GBL9013204 53BP1 TP53BP1 Use with 
Caution Rabbit CST 4937 

A-Raf_pS299-R-
NA_GBL9013439 A-Raf_pS299 ARAF NA Rabbit CST 4431 

ACC_pS79-R-V_GBL9013205 ACC_pS79 ACACA 
ACACB Validated Rabbit CST 3661 

ACC1-R-C_GBL9013206 ACC1 ACACA Use with 
Caution Rabbit Epitomics 1768-1 

AIB1-M-V_GBL9013344 AIB1 NCOA3 Validated Mouse BD Biosciences 611105 

Akt_pS473-R-V_GBL9013208 Akt_pS473 AKT1 AKT2 
AKT3 Validated Rabbit CST 9271 

Akt_pT308-R-V_GBL9013209 Akt_pT308 AKT1 AKT2 
AKT3 Validated Rabbit CST 9275 

Akt-R-V_GBL9013465 Akt AKT1 AKT2 
AKT3 Validated Rabbit CST 9272 

alpha-Catenin-M-
V_GBL9013471 alpha-Catenin CTNNA1 Validated Mouse Calbiochem CA1030 

AMPK_alpha-R-
C_GBL9013210 AMPK_alpha PRKAA1 Use with 

Caution Rabbit CST 2532 

AMPK_pT172-R-
V_GBL9013211 AMPK_pT172 PRKAA1 Validated Rabbit CST 2535 

ANLN-M-NA_GBL9013453 ANLN ANLN Validated Mouse Atlas CAB036211 

Annexin_I-R-V_GBL9013410 Annexin_I ANXA1 Validated Rabbit Invitrogen 71-3400 

AR-R-V_GBL9013213 AR AR Validated Rabbit Epitomics 1852-1 

ARID1A-M-V_GBL9013497 ARID1A ARID1A Validated Mouse Abgent AT1188a 

ATM-R-NA_GBL9013214 ATM ATM NA Rabbit Abcam ab32420 

B-Raf-M-NA_GBL9013421 B-Raf BRAF NA Mouse Santa Cruz sc-5284 

Bak-R-C_GBL9013429 Bak BAK1 Use with 
Caution Rabbit Epitomics 1542-1 

Bax-R-V_GBL9013216 Bax BAX Validated Rabbit CST 2772 

Bcl-2-M-V_GBL9013345 Bcl-2 BCL2 Validated Mouse Dako Dako M0887 

Bcl-X-R-C_GBL9013218 Bcl-X BCL2L1 Use with 
Caution Rabbit Epitomics 1018-1 

Bcl-xL-R-C_GBL9013219 Bcl-xL BCL2L1 Use with 
Caution Rabbit CST 2762 

Beclin-G-V_GBL9013414 Beclin BECN1 Validated Goat Santa Cruz sc-10086 
beta-Catenin-R-
V_GBL9013217 beta-Catenin CTNNB1 Validated Rabbit CST 9562 

Bid-R-C_GBL9013220 Bid BID Use with 
Caution Rabbit Epitomics 1008-1 

Bim-R-V_GBL9013221 Bim BCL2L11 Validated Rabbit Epitomics 1036-1 
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c-Jun_pS73-R-C_GBL9013232 c-Jun_pS73 JUN Use with 
Caution Rabbit CST 9164 

c-Kit-R-V_GBL9013262 c-Kit KIT Validated Rabbit Epitomics 1522 

c-Met_pY1235-R-
C_GBL9013234 c-Met_pY1235 MET Use with 

Caution Rabbit CST 3129 

c-Met-M-C_GBL9013381 c-Met MET Use with 
Caution Mouse CST 3127 

c-Myc-R-C_GBL9013271 c-Myc MYC Use with 
Caution Rabbit CST 9402 

C-Raf_pS338-R-
C_GBL9013300 C-Raf_pS338 RAF1 Use with 

Caution Rabbit CST 9427 

C-Raf-R-V_GBL9013299 C-Raf RAF1 Validated Rabbit Millipore 05-739 

Caspase-7_cleavedD198-R-
C_GBL9013224 

Caspase-
7_cleavedD198 CASP7 Use with 

Caution Rabbit CST 9491 

Caspase-8-M-C_GBL9013487 Caspase-8 CASP8 Use with 
Caution Mouse CST 9746 

Caspase-9_cleavedD330-R-
C_GBL9013478 

Caspase-
9_cleavedD330 CASP9 Use with 

Caution Rabbit CST 9501 

Caveolin-1-R-V_GBL9013227 Caveolin-1 CAV1 Validated Rabbit CST 3238 

CD31-M-V_GBL9013423 CD31 PECAM1 Validated Mouse Dako M0823 

CD49b-M-V_GBL9013489 CD49b ITGA2 Validated Mouse BD 611016 

CDK1-R-V_GBL9013228 CDK1 CDC2 Validated Rabbit CST 9112 
Chk1_pS345-R-
C_GBL9013230 Chk1_pS345 CHEK1 Use with 

Caution Rabbit CST 2348 

Chk1-R-V_GBL9013431 Chk1 CHEK1 Validated Rabbit CST 2345 

Chk2_pT68-R-C_GBL9013231 Chk2_pT68 CHEK2 Use with 
Caution Rabbit CST 2197 

Chk2-M-C_GBL9013347 Chk2 CHEK2 Use with 
Caution Mouse CST 3440 

cIAP-R-V_GBL9013479 cIAP BIRC2 Validated Rabbit Millipore 07-759 

Claudin-7-R-V_GBL9013233 Claudin-7 CLDN7 Validated Rabbit Novus NB100-91714 

Collagen_VI-R-
V_GBL9013235 Collagen_VI COL6A1 Validated Rabbit Santa Cruz SC-20649 

COX-2-R-C_GBL9013249 COX-2 PTGS2 Use with 
Caution Rabbit Epitomics 2169-1 

Cyclin_B1-R-V_GBL9013248 Cyclin_B1 CCNB1 Validated Rabbit Epitomics 1495-1 

Cyclin_D1-R-V_GBL9013247 Cyclin_D1 CCND1 Validated Rabbit Santa Cruz SC-718 

Cyclin_E1-M-V_GBL9013348 Cyclin_E1 CCNE1 Validated Mouse Santa Cruz SC-247 

DJ-1-R-C_GBL9013245 DJ-1 PARK7 Use with 
Caution Rabbit Abcam ab76008 

Dvl3-R-V_GBL9013457 Dvl3 DVL3 Validated Rabbit CST 3218 

E-Cadherin-R-V_GBL9013244 E-Cadherin CDH1 Validated Rabbit CST 4065 

eEF2-R-V_GBL9013243 eEF2 EEF2 Validated Rabbit CST 2332 

eEF2K-R-V_GBL9013242 eEF2K EEF2K Validated Rabbit CST 3692 

EGFR_pY1068-R-
V_GBL9013480 EGFR_pY1068 EGFR Validated Rabbit CST 2234 

EGFR_pY1173-R-
C_GBL9013240 EGFR_pY1173 EGFR Use with 

Caution Rabbit Epitomics 1124 

EGFR_pY992-R-
V_GBL9013246 EGFR_pY992 EGFR Validated Rabbit CST 2235 

EGFR-R-C_GBL9013241 EGFR EGFR Use with 
Caution Rabbit Santa Cruz SC-03 

eIF4E-R-V_GBL9013238 eIF4E EIF4E Validated Rabbit CST 9742 
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ER-alpha_pS118-R-
V_GBL9013237 ER-alpha_pS118 ESR1 Validated Rabbit Epitomics 1091-1 

ER-alpha-R-V_GBL9013236 ER-alpha ESR1 Validated Rabbit Lab Vision RM-9101-S 

ERCC1-M-C_GBL9013425 ERCC1 ERCC1 Use with 
Caution Mouse Lab Vision MS-671-PO 

ERK2-R-NA_GBL9013250 ERK2 MAPK1 NA Rabbit Santa Cruz sc-154 

FAK-R-C_GBL9013251 FAK PTK2 Use with 
Caution Rabbit Epitomics 1700-1 

Fibronectin-R-C_GBL9013445 Fibronectin FN1 Use with 
Caution Rabbit Epitomics 1574-1 

FOXO3a_pS318_S321-R-
C_GBL9013253 FOXO3a_pS318_S321 FOXO3 Use with 

Caution Rabbit CST 9465 

FOXO3a-R-C_GBL9013252 FOXO3a FOXO3 Use with 
Caution Rabbit CST 9467 

GAB2-R-V_GBL9013459 GAB2 GAB2 Validated Rabbit CST 3239 

GATA3-M-V_GBL9013350 GATA3 GATA3 Validated Mouse BD Biosciences 558686 

GSK3-alpha-beta_pS21_S9-R-
V_GBL9013254 

GSK3-alpha-
beta_pS21_S9 

GSK3A 
GSK3B Validated Rabbit CST 9331 

GSK3-alpha-beta-M-
V_GBL9013417 GSK3-alpha-beta GSK3A 

GSK3B Validated Mouse Santa Cruz SC-7291 

HER2_pY1248-R-
V_GBL9013467 HER2_pY1248 ERBB2 Validated Rabbit Upstate 

(Millipore) 06-229 

HER2-M-V_GBL9013468 HER2 ERBB2 Validated Mouse Lab Vision MS-325-P1 

HER3_pY1289-R-
V_GBL9013462 HER3_pY1289 ERBB3 Validated Rabbit CST 4791 

HER3-M-C_GBL9013491 HER3 ERBB3 Use with 
Caution Mouse Lab Vision MS-201-

P1ABX 

HSP70-R-C_GBL9013257 HSP70 HSPA1A Use with 
Caution Rabbit CST 4872 

IGF-1R-beta-R-
C_GBL9013259 IGF-1R-beta IGF1R Use with 

Caution Rabbit CST 3027 

IGFBP2-R-V_GBL9013258 IGFBP2 IGFBP2 Validated Rabbit CST 3922 

INPP4B-G-C_GBL9013415 INPP4B INPP4B Use with 
Caution Goat Santa Cruz SC-12318 

IRS1-R-V_GBL9013260 IRS1 IRS1 Validated Rabbit Upstate 
(Millipore) 06-248 

JNK_pT183_pT185-R-
C_GBL9013501 JNK_pT183_pT185 MAPK8 Validated Rabbit CST 4668 

JNK2-R-C_GBL9013261 JNK2 MAPK9 Use with 
Caution Rabbit CST 4672 

K-Ras-M-C_GBL9013379 K-Ras KRAS Use with 
Caution Mouse Santa Cruz sc-30 (F234) 

Ku80-R-C_GBL9013263 Ku80 XRCC5 Use with 
Caution Rabbit CST 2180 

LBK1-M-NA_GBL9013424 LBK1 STK11 NA Mouse Abcam ab15095 

Lck-R-V_GBL9013483 Lck LCK Validated Rabbit CST 2752 

MAPK_pT202_Y204-R-
V_GBL9013265 MAPK_pT202_Y204 MAPK1 

MAPK3 Validated Rabbit CST 4377 

MEK1_pS217_S221-R-
V_GBL9013267 MEK1_pS217_S221 MAP2K1 Validated Rabbit CST 9154 

MEK1-R-V_GBL9013266 MEK1 MAP2K1 Validated Rabbit Epitomics 1235-1 

MIG-6-M-V_GBL9013383 MIG-6 ERRFI1 Validated Mouse Sigma WH0054206M1 

Mre11-R-C_GBL9013268 Mre11 MRE11A Use with 
Caution Rabbit CST 4847 

MSH2-M-C_GBL9013419 MSH2 MSH2 Use with Mouse CST 2850 
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Caution 

MSH6-R-C_GBL9013269 MSH6 MSH6 Use with 
Caution Rabbit SDI 2203.00.02 

mTOR_pS2448-R-
C_GBL9013504 mTOR_pS2448 FRAP1 Validated Rabbit CST 2971 

mTOR-R-V_GBL9013270 mTOR FRAP1 Validated Rabbit CST 2983 

N-Cadherin-R-V_GBL9013432 N-Cadherin CDH2 Validated Rabbit CST 4061 

NF-kB-p65_pS536-R-
C_GBL9013273 NF-kB-p65_pS536 NFKB1 Use with 

Caution Rabbit CST 3033 

NF2-R-C_GBL9013272 NF2 NF2 Use with 
Caution Rabbit SDI 2271.00.02 

Notch1-R-V_GBL9013274 Notch1 NOTCH1 Validated Rabbit CST 3268 

Notch3-R-C_GBL9013275 Notch3 NOTCH3 Use with 
Caution Rabbit Santa Cruz sc-5593 

P-Cadherin-R-C_GBL9013223 P-Cadherin CDH3 Use with 
Caution Rabbit CST 2130 

p21-R-C_GBL9013276 p21 CDKN1A Use with 
Caution Rabbit Santa Cruz SC-397 

p27_pT157-R-C_GBL9013280 p27_pT157 CDKN1B Use with 
Caution Rabbit R&D AF1555 

p27_pT198-R-V_GBL9013278 p27_pT198 CDKN1B Validated Rabbit Abcam ab64949 

p27-R-V_GBL9013279 p27 CDKN1B Validated Rabbit Epitomics 1591-1 
p38_MAPK-R-
C_GBL9013281 p38_MAPK MAPK14 Use with 

Caution Rabbit CST 9212 

p38_pT180_Y182-R-
V_GBL9013282 p38_pT180_Y182 MAPK14 Validated Rabbit CST 9211 

p53-R-V_GBL9013437 p53 TP53 Validated Rabbit CST 9282 

p70S6K_pT389-R-
V_GBL9013285 p70S6K_pT389 RPS6KB1 Validated Rabbit CST 9205 

p70S6K-R-V_GBL9013284 p70S6K RPS6KB1 Validated Rabbit Epitomics 1494-1 

p90RSK_pT359_S363-R-
C_GBL9013438 p90RSK_pT359_S363 RPS6KA1 Use with 

Caution Rabbit CST 9344 

PAI-1-M-NA_GBL9013500 PAI-1 SERPINE1 NA Mouse BD Biosciences 612024 

PARP_cleaved-M-
C_GBL9013420 PARP_cleaved PARP1 Use with 

Caution Mouse CST 9546 

Paxillin-R-V_GBL9013288 Paxillin PXN Validated Rabbit Epitomics 1500-1 

PCNA-M-V_GBL9013360 PCNA PCNA Validated Mouse Abcam ab29 

PDCD4-R-NA_GBL9012498 PDCD4 PDCD4 NA Rabbit Rockland 600-401-965 

PDK1_pS241-R-
V_GBL9013289 PDK1_pS241 PDK1 Validated Rabbit CST 3061 

Pea-15-R-V_GBL9013290 Pea-15 PEA15 Validated Rabbit CST 2780 

PI3K-p110-alpha-R-
C_GBL9013291 PI3K-p110-alpha PIK3CA Use with 

Caution Rabbit CST 4255 

PKC-alpha_pS657-R-
V_GBL9013293 PKC-alpha_pS657 PRKCA Validated Rabbit Upstate 

(Millipore) 06-822 

PKC-alpha-M-V_GBL9013374 PKC-alpha PRKCA Validated Mouse Upstate 
(Millipore) 05-154 

PKC-delta_pS664-R-
V_GBL9013484 PKC-delta_pS664 PRKCD Validated Rabbit Millipore 07-875 

PR-R-V_GBL9013294 PR PGR Validated Rabbit Epitomics 1483-1 

PRAS40_pT246-R-
V_GBL9013295 PRAS40_pT246 AKT1S1 Validated Rabbit Biosource 441100G 
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PRDX1-R-NA_GBL9013449 PRDX1 PRDX1 NA Rabbit Sigma/Atlas HPA007730 

PTCH-R-C_GBL9013296 PTCH PTCH1 Use with 
Caution Rabbit SDI 2113.00.02 

PTEN-R-V_GBL9013297 PTEN PTEN Validated Rabbit CST 9552 

Rab25-R-C_GBL9013298 Rab25 RAB25 Use with 
Caution Rabbit Covance 

Custom 
Covance 
Custom 

Rad50-M-C_GBL9013362 Rad50 RAD50 Use with 
Caution Mouse Millipore 05-525 

Rad51-M-C_GBL9013385 Rad51 RAD51 Use with 
Caution Mouse Chem Biotech na 71 

Rb_pS807_S811-R-
V_GBL9013301 Rb_pS807_S811 RB1 Validated Rabbit CST 9308 

Rb-M-V_GBL9013387 Rb RB1 Validated Mouse CST 9309 

RBM3-M-NA_GBL9013452 RBM3 RBM3 Validated Mouse Atlas CAB030038 

S6_pS235_S236-R-
V_GBL9013303 S6_pS235_S236 RPS6 Validated Rabbit CST 2211 

S6_pS240_S244-R-
V_GBL9013411 S6_pS240_S244 RPS6 Validated Rabbit CST 2215 

S6-R-NA_GBL9013302 S6 RPS6 NA Rabbit CST 2217 

SCD1-M-NA_GBL9013502 SCD1 SCD1 Validated Mouse Santa Cruz sc-58420 

SETD2-R-NA_GBL9013256 SETD2 SETD2 NA Rabbit Abcam ab69836 
Shc_pY317-R-

NA_GBL9013304 Shc_pY317 SHC1 NA Rabbit CST 2431 

Smac-M-V_GBL9013476 Smac DIABLO Validated Mouse CST 2954 

Smad1-R-V_GBL9013485 Smad1 SMAD1 Validated Rabbit Epitomics 1649-1 

Smad3-R-V_GBL9013305 Smad3 SMAD3 Validated Rabbit Epitomics 1735-1 

Smad4-M-C_GBL9013389 Smad4 SMAD4 Use with 
Caution Mouse Santa Cruz sc-7866 

Snail-M-C_GBL9013426 Snail SNAI2 Use with 
Caution Mouse CST 3895 

Src_pY416-R-C_GBL9013307 Src_pY416 SRC Use with 
Caution Rabbit CST 2101 

Src_pY527-R-V_GBL9013306 Src_pY527 SRC Validated Rabbit CST 2105 

Src-M-V_GBL9013358 Src SRC Validated Mouse Upstate 
(Millipore) 05-184 

STAT3_pY705-R-
V_GBL9013308 STAT3_pY705 STAT3 Validated Rabbit CST 9131 

STAT5-alpha-R-
V_GBL9013309 STAT5-alpha STAT5A Validated Rabbit Epitomics 1289-1 

Stathmin-R-V_GBL9013310 Stathmin STMN1 Validated Rabbit Epitomics 1972-1 

Syk-M-V_GBL9013477 Syk SYK Validated Mouse Santa Cruz sc-1240 

Tau-M-C_GBL9013349 Tau MAPT Use with 
Caution Mouse Upstate 

(Millipore) 05-348 

TAZ_pS89-R-C_GBL9013444 TAZ_pS89 WWTR1 Use with 
Caution Rabbit Santa Cruz sc-17610 

Transglutaminase-M-
V_GBL9013418 Transglutaminase TGM2 Validated Mouse Lab Vision MS-224 

Tuberin-R-C_GBL9013314 Tuberin TSC2 Use with 
Caution Rabbit Epitomics 1613-1 

VASP-R-C_GBL9013315 VASP VASP Use with 
Caution Rabbit CST 3112 

VEGFR2-R-C_GBL9013446 VEGFR2 KDR Use with 
Caution Rabbit CST 2479 

XBP1-G-C_GBL9013416 XBP1 XBP1 Use with 
Caution Goat Santa Cruz sc-32136 
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XIAP-R-C_GBL9013317 XIAP XIAP Use with 
Caution Rabbit CST 2042 

XRCC1-R-C_GBL9013403 XRCC1 XRCC1 Use with 
Caution Rabbit CST 2735 

YAP_pS127-R-
C_GBL9013442 YAP_pS127 YAP1 Use with 

Caution Rabbit CST 4911 

YAP-R-V_GBL9013441 YAP YAP1 Validated Rabbit Santa Cruz sc-15407 
YB-1_pS102-R-
V_GBL9013443 YB-1_pS102 YBX1 Validated Rabbit CST 2900 

YB-1-R-V_GBL9013448 YB-1 YBX1 Validated Rabbit SDI 1725.00.02 

 
IX. Batch effects analysis for TCGA breast cancer data sets 

 
We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch 
effects in the breast cancer data sets. Five different data sets were analyzed: mRNA expression 
(Agilent G4502A microarray), mRNA expression (RNA-seq Illumina GA), miRNA expression 
(RNA-seq Illumina GA), DNA methylation (Infinium HM27 microarray), and SNPs (GW SNP 
6). All of the data sets were at TCGA level 3, the level which of the analyses in the paper are 
based. We assessed batch effects with respect to two variables; batch ID and TSS. 

For hierarchical clustering, we used the average linkage algorithm with 1 minus the 
Pearson correlation coefficient as the dissimilarity measure. We clustered the samples and then 
annotated them with colored bars at the bottom. Each color corresponded to a batch ID or a TSS. 
For PCA, we plotted the first four principal components, but only plots of the first two 
components are shown here. To make it easier to assess batch effects, we enhanced the 
traditional PCA plot with centroids. Points representing samples with the same batch ID (or TSS) 
were connected to the batch centroid by lines. The centroids were computed by taking the mean 
across all samples in the batch. That procedure produced a visual representation of the 
relationships among batch centroids in relation to the scatter within batches. The results for the 
five data sets follow. 
 
mRNA Expression (Agilent G4502A microarray) 
Figures IX.1-3 show clustering and PCA plots for the Agilent G4502A mRNA expression 
platform. None of the batches or tissue source sites stood apart from the others, indicating no 
serious batch effects were present. 

 

 
Legends 

 
Figure IX.1. Hierarchical clustering plot 
for mRNA expression (Agilent microarray) 
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Figure IX.2. First two principal components 
for mRNA microarray expression, with 
samples connected by centroids according to 
batch ID. 

Figure IX.3. First two principal components 
for mRNA microarray expression, with 
samples connected by centroids according to 
TSS. 

 
miRNA Expression (RNA-seq Illumina GA) 
The following figures show clustering and PCA plots for RNA-seq miRNA data (Figures IX.5-
7). Genes with zero values were removed and the read counts were log2-transformed before 
generating the figures. Unlike the other data types, miRNA expression does show small amounts 
of clustering by batch ID in the hierarchical clustering plot. However, the PCA plots do not show 
any batches that significantly stand out from the others. For that reason, we didn’t consider batch 
effects to be so strong as to warrant any batch effects correction. The trade off with batch effects 
correction algorithms is the possibility of losing important biological variation in the data, along 
with the technical variation. 
 

 

 
 
 

 
 
Figure IX.4. Hierarchical clustering of 
samples for miRNA expression from 
RNA-seq data. 
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Fig. IX.5. PCA: First two principal 
components for miRNA expression from 
RNA-seq data, with samples connected by 
centroids according to batch ID. 

 
Fig. IX.6. PCA: First two principal 
components for miRNA expression from 
RNA-seq data, with samples connected by 
centroids according to TSS. 

 
DNA Methylation (Infinium HM27 microarray) 
The following figures show clustering and PCA plots for the Infinium DNA methylation 
platform (Figures IX.7-9). None of the batches or tissue source sites stood apart from the others, 
indicating no serious batch effects were present. 
 
 

 

 
 

 
 
 
Fig. IX.7. Hierarchical clustering plot 
for DNA methylation data. 
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Fig. IX.8. PCA for DNA methylation, with 
samples connected by centroids according to 
batch ID. 

 
Fig. IX.9. PCA for DNA methylation, with 
samples connected by centroids according to 
TSS. 

 
SNPs (GW SNP 6) 
The following figures show clustering and PCA plots for the SNP platform (Figures IX.10-12). 
At level 3, the TCGA SNP data resemble copy number data when we use chromosomal segment 
counts (rather than actual SNPs). We mapped the chromosomal segments to genes (using build 
hg18) and then used them to construct the plots shown in Figs. 13-15. Once again, none of the 
batches or tissue source sites stood apart from the others, indicating no serious batch effects were 
present. 
 

 

Legends 
 

 
 
Fig. IX.10. Hierarchical clustering 
plot for SNP data. 
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Fig. IX.11. PCA for SNPs, with samples 
connected by centroids according to batch ID. 

Fig. IX.12. PCA for SNPs, with samples 
connected by centroids according to TSS. 

 
Conclusions 
Overall, the TCGA batch effects in the breast cancer data sets are minimal. In 4 out of 5 data 
sets, no major batch effects were observed by either clustering or PCA plots. In miRNA 
expression, some small clusters of batches were observed in the hierarchical clustering plot, but 
not in the PCA plots. We didn’t consider those effects to be strong enough to warrant batch 
effects correction. Batch effects correction algorithms run the risk of removing important 
biological variation along with technical variation. Based on the above figures, we believe 
overall that technical batch effects in the data sets are reasonably small and unlikely to influence 
high-level analyses in a major way. 
 

X. Cross Platform Subtype Analysis 
 

Subtype calls from each of the 5 platforms analyzed for subtypes within each data type were 
used to identify relationships between the different classifications. Subtypes defined from each 
platform were coded into a series of indicator variables for each subtype. The matrix of 1 and 0s 
was used in ConsensusClusterPlus R-package40,41, to identify structure and relationship of the 
samples. Parameters for Consensus cluster were 80% sample resampling with 1000 iterations of 
hierarchical clustering based on a Pearson correlation distance metric. Correlation of subtypes 
with clinical features and mutations was done using a Pearson’s Chi-Squared test or Fisher’s 
Exact test in R. 
 
 

XI. PARADIGM Analyses 
 

PARADIGM integrated pathway analysis of copy number and expression data 
Integration of copy number, mRNA expression and pathway interaction data was performed on 
the 463 samples using the PARADIGM software42. Briefly, this procedure infers integrated 
pathway levels (IPLs) for genes, complexes, and processes using pathway interactions and 
genomic and functional genomic data from a single patient sample. The mRNA data was 
converted to relative mRNA expression levels by subtracting each gene’s median computed over 
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22 tumor-adjacent normal controls from its level observed in each patient sample. Level 3 copy 
number data (segmented and normalized to reflect the difference in copy number between a 
gene’s level detected in tumor versus normal blood) was mapped to the genome using the UCSC 
hg19 Knowngenes track. Gene-level copy number estimates were then derived by taking the 
median of all segments falling within the length of the gene. Both expression and gene-level 
copy number data were then rank transformed before use by the PARADIGM analysis. 

Pathways were obtained in BioPax Level 3 format, and included the NCIPID and 
BioCarta databases from http://pid.nci.nih.gov and the Reactome database from 
http://reactome.org. Gene identifiers were unified by UniProt ID then converted to Human 
Genome Nomenclature Committee’s HUGO symbol using mappings provided by HGNC 
(http://www.genenames.org/). Interactions from all of these sources were then combined into a 
merged Superimposed Pathway (SuperPathway). Genes, complexes, and abstract processes (e.g. 
“cell cycle” and “apoptosis”) were retained and henceforth referred to collectively as pathway 
concepts. Before merging gene concepts, all gene identifiers were translated into HUGO 
standard identifiers wherever possible. The belief propagation algorithm employed by 
PARADIGM can be run with cycles and contradictory interactions. Therefore, for the sake of 
completeness and simplicity, all interactions were included and no attempt was made to resolve 
conflicting influences if they existed in the resulting SuperPathway. A breadth-first traversal 
starting from the concept with the highest number of interactions was performed to build one 
single component. The resulting pathway structure contained a total of 16352 concepts, 
representing 6906 proteins, 7345 complexes, 1449 families, 55 RNAs, 15 miRNAs and 582 
processes. 

The PARADIGM algorithm infers an integrated pathway level (IPL) for each gene that 
reflects a gene’s activity in a tumor sample relative to the normal controls. Including only 
pathway concepts with relative activities distinguishable from normal (0.05 absolute activity) in 
at least one patient sample and non-zero activity in at least 10% of the samples yielded over 
12,000 concepts. To identify patient subtypes implicated from shared patterns of pathway 
inference, we ran Consensus clustering using the median-centered IPLs implemented with the 
ConsensusClusterPlus package41 in R [http://www.R-project.org] with 80% subsampling over 
1000 iterations of hierarchical clustering based on a Pearson correlation distance metric. 
Heatmap display of the top 1000 varying IPLs was generated using the heatmap.plus package in 
R. 
 
Pathway-based biomarkers of basal-like versus luminal subtypes. 
IPLs differentially activated between the basal and luminal (A+B) subtypes were identified using 
the t-test and Wilcoxon Rank Sum test with Benjamini-Hochberg(BH) FDR correction. Only 
features deemed significant (FDR corrected p<0.05) by both tests were selected. Pathways 
enriched among differentially activated IPLs were assessed using the EASE score43 with BH 
FDR correction; and sub-networks were constructed to identify regulatory hubs based on 
interconnectivity and visualized using Cytoscape44. Pathway-based biomarkers differentiating 
luminal A and B subtypes were similarly identified (Supplemental Figure 14). 
 
Machine learning classifiers based on mRNA expression classify serous ovarian samples as 
basal-like 
We first asked whether mRNA expression data supports the hypothesis that basal cancers share 
common molecular signatures with the TCGA serous ovarian samples. To address this, we asked 
whether machine-learning classifiers, trained to recognize basal from luminal samples using 
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mRNA expression also classify ovarian samples as basal even though the ovarian samples were 
not used during training. To this end, we implemented a Nonnegative Matrix Factorization 
(NMF) approach adapted for supervised learning as previously described45 using the Weka Java 
library46. We tested the ability of the predictor to identify both luminal and basal samples held 
out of training in a cross-validation test. To conduct such a test, we first partitioned the data into 
a set of 300 samples used for cross-validation accuracy estimation and another distinct set of 80 
separated out for a second-stage validation. The 80 validation samples made up of 13 basal-likes 
and 67 luminals represent an important set for performing a second accuracy evaluation to ensure 
that models selected to maximize cross-validation performance generalize to unseen cases. With 
the 300 samples we repeated 5 different runs of 5-fold cross-validation in which 80% of the 300 
samples were separated out and used to train the model while the remaining 20% was used to 
measure the model’s accuracy. In every case, the basal-like predictor trained on 80% of the 
samples correctly predicted every sample in the held-out 20%. In addition, the model was found 
to be 100% accurate when tested on the 80-sample validation set. In every case, the predicted 
samples received scores more extreme than any seen among scores computed from chimeric 
background samples. Thus, serous ovarian samples look indistinguishable to the NMF machine-
learning classifier trained to recognize basal from luminal breast cancer supporting the 
hypothesis that basal-like and serous ovarian tumors share common molecular signatures. 

Because our goal was to classify new samples as either basal-like or not, it was necessary 
to develop an appropriate background model so that we could determine if new samples are 
significantly similar to basal-like samples seen during training. We therefore simulated 
“chimeric” samples in which half of the mRNA levels were drawn from basal patients and the 
other half of the mRNA levels were drawn from luminal patients. While we expect the classifier 
scores on such chimeric samples to hover around zero (halfway between basal and luminal 
classification) the simulation provides an estimate of the variability of the classification scores 
needed when assessing significance of new classifications. Comparing the scores of the TCGA 
breast samples to the chimeric background did indeed reveal that most of the true TCGA breast 
samples were classified into their correct sub-types with scores exceeding chance expectation. 

We applied the TCGA-breast classifiers to external datasets to determine if they could 
robustly classify serous ovarian samples collected by TCGA as well as multiple other tumor 
types. Indeed we found that most of the ovarian samples were classified as basal-like with 411 
samples predicted as significantly basal out of the 441 that were predicted (i.e. outside the range 
of the background distribution). Next, data was collected from the T-GEN expO dataset that 
included samples on colorectal, lung squamous cell carcinoma, kidney, prostate, ovarian, and 
breast. Note that this test therefore also provides an external validation of the basal predictors on 
breast samples not included as part of this publication. To check if the chimeric distribution 
estimated with the TCGA basal-luminal predictors is reasonable in this setting, we also generated 
chimeric samples from the external data and verified that the chimeric samples do indeed fall in 
the range estimated using only the TCGA basal-luminal chimeras. Chimeric samples from 
external data were made by randomly shuffling tissue subtypes in the T-GEN cohort. Reflecting 
the cross-platform accuracy of the models, the classifiers trained from the TCGA samples were 
accurate in identifying the PAM50 subtypes in external datasets (72 out of 81 T-GEN basal-likes 
correctly predicted). In addition to most of the ovarian samples receiving high basal classifier 
scores in the T-GEN dataset (134 out of 204), two other tumor types also had a number of 
samples receiving significant basal-like scores including 81% of the colon (235 out of 289) and 
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74% of the lung (96 out of 129). These results suggest that basal cancers share a common 
molecular program with other cancers perhaps of epithelial origin.  
 
Genes with shared expression patterns in basal-like and serous ovarian are significantly 
interconnected by known pathway interactions. 
Integrated pathway levels generated from PARADIGM for the 377 TCGA ovarian samples were 
obtained; and the average IPL across samples was computed. Among the ~14K features present 
in the ovarian dataset, 5763 mapped to IPLs showing significant differential activation between 
basal vs. luminal (A+B) breast cancers identified as described above. Restricting to these IPLs, a 
linear fit of average ovarian activity onto the basal-like vs. luminal differential score was 
performed (Figure XI.1). A basalness score was computed as the orthogonal projection of the 
average ovarian activity onto the linear fit. Features with basalness scores at least two standard 
deviations from the mean were defined as significant; and regulatory sub-networks within the 
SuperPathway structure linking these features were identified and displayed using Cytoscape. 
 

Figure XI.1. Basal-like versus ovarian comparison. A. PARADIGM inferences differential for 
basal-like versus luminal are highly concordant with overall inferred activity in the TCGA serous 
ovarian cohort. Scatterplot of average ovarian activity vs. basal-like – luminal differential scores. 
Average ovarian activity was computed across 377 samples; and plotted against the mean 
difference in activity between basal and luminal breast cancers for the 5763 features identified as 
differentially activated between these breast cancer subtypes. Regression line of ovarian activity 
on the basal-luminal differential was fit (red line) and the orthogonal projection of a given point 
(blue arrow) onto the linear fit was determined to calculate the basalness score (b). Highlighted 
in red are specific points representing important regulatory hubs (MYC/Max, HIF1A/ARNT, 
FOXM1) significantly activated in basal breast cancers; and highlighted in blue is the FOXA1 
hub with significantly higher activity in luminal breast and lower in ovarian cancers. (B) Basal-
like -Luminal predictors significantly classify serous ovarian samples as basal-like. A basal-
luminal classifier was trained on 80% randomly selected TCGA BRCA data. (C) Basal-like 
prediction scores classify several tumors from multiple tissue types as Basal-like. Plotted in red 
hues are prediction scores from remaining 20%BRCA+OV TCGA. BRCA samples are colored 
by subtype. In blue hues are prediction scores from T-GEN GEO data. Margins of the chimeric 
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background distributions from 20%BRCA+OV and T-GEN GEO are shown in orange and blue 
dashed lines, respectively. 
 
Assessing the significance of pathway-based biomarker network maps 
We assessed the significance of the pathway marker maps using 1000 simulated cohorts each 
containing a different random assignment of labels (e.g. basal/luminal) to random patient 
samples so that the number of generated subtypes matched the number in the original data set. 
Random patient samples in the simulated cohort were constructed by permuting the gene names 
within a patient sample, which effectively scrambled the association of data tuples to the 
pathway topology. We then assessed significance by asking whether the identified pathway 
signature had more concepts interconnected together than would be expected by chance. We first 
collected all pathway features passing the two tests of significance above without multiple test 
adjustment. We then retained significant links as any regulatory connection from the 
SuperPathway connecting two significantly-scoring features. We then identified the largest 
connected component (LCC) of the graph defined as the subgraph with the most number of 
pathway features identified from a depth-first traversal of the resulting significant links. The 
procedure was repeated for each of the 1000 simulated cohorts, obtaining a distribution of the 
LCC sizes for use as a background distribution. The observed LCC sizes derived from 
SuperPathway networks for the Basal-like versus luminal (A+B), for the Basal-like comparison 
to serous ovarian, and the Luminal B versus Luminal A were all found to be significantly higher 
than expected given the background control of their respective simulated cohorts (Figure XI.2). 
 

Figure XI.2. Genes differentially activated in basal-like tumors compared to luminal tumors and 
Luminal B’s versus Luminal A’s are significantly interconnected in known pathways. The 
collection of all pathway features from the PARADIGM SuperPathway that had significant 
differential activity in one subtype versus another was collected. The size of the largest 
connected component (LCC) in the SuperPathway (x-axis in A-C) for these features was 
recorded (red vertical line in A-C). A background distribution of the LCC size was determined 
using random re-labelings of the patient subtypes and using random patient data; the frequency 
of the background distribution was then plotted for quantized values of the LCC size (y-axis; 
black bars in A-C). (A) Significance of the LCC size for the Basal-like versus Luminal (A+B) 
comparison. (B) LCC size significance for the networks derived with the basalness score in 
which pathway features were scored according to whether they were both differential in the 
Basal-like versus luminal comparison and activated in serous ovarian TCGA samples. (C) LCC 
size significance of the Luminal B versus Luminal A comparison . 
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Inter-sample correlations between TCGA mRNA profiles and “TGEN expO” profiles 
For the inter-sample mRNA correlations featured in main Figure 7C, the “expO” dataset from T-
Gen was obtained from the Gene Expression Omnibus (GSE2109). The analysis focused on the 
profiles of breast, colon, lung, kidney, ovarian (including serous) and prostate, n=1337 profiles in 
all, including 204 ovarian and 89 serous ovarian. For each of the two mRNA profile datasets 
(TCGA breast and TGEN expO), we first normalized genes across samples to standard 
deviations from the centroid mean of the major groups. We then took the Pearson’s correlation of 
each expO profile (using all the genes) with each TCGA breast profile. 
 

XII. Integrated Pathway Analysis 
 

Gene transcription signatures of pathways were defined as follows. P53 pathway: “IARC” 
signature, canonical bound and up-regulated p53 gene targets, as catalogued in the p53 IARC 
database (http://www-p53.iarc.fr/TargetGenes.html); “GSK” signature, from Glaxo-Smith-Kline 
(GSK) cell line database, coupled with “R14” p53 database of mutations in cell lines (N=248 cell 
lines with TP53 status), where a t-test of P<0.01 was used to determine genes higher in wt versus 
mutant cell lines; “Kannan” signature, from MSigDB (“UP” targets), 
http://www.broadinstitute.org/gsea/msigdb/cards/KANNAN_TP53_TARGETS_UP.html; 
“Troester” signature, list of genes reported repressed by TP53 knockdown in MCF7 cells (from 
Troester et al.47. RB pathway: “Lara” signature, from GEO database GSE9562, comparing 
mouse keratinocyte cultures with RB1 knockout versus wt (P<0.01, fold>1.5); “Chicas” 
signature, from GSE19864 profiles of RNAi-mediated suppression of RB in IMR90 cells (using 
P<0.01, fold>1.5); “Herschkowitz” signature, genes differentially expressed in breast tumors 
with RB1 LOH48. PI3K pathway: Gene signatures were described previously in Creighton et 
al.49; “Saal” PTEN loss signature, genes correlated with Pten protein levels in breast cancer; 
“CMap” PI3K/mTOR signature, genes modulated in vitro by inhibitors to PI3K or mTOR, 
according to CMap dataset (P<0.01, comparing PI3K/mTOR-inhibited cells with the rest of the 
Cmap profiles); “Majumder” Akt signature, genes modulated in a mouse model of inducible Akt 
(P<0.01).  

For a given gene transcription signature, we extracted the expression values from the 
TCGA gene expression array dataset. For each gene, we normalized expression values to 
standard deviations from the median across tumors. For signatures with genes moving in one 
direction (the p53 signatures), we computed the average normalized expression of the signature 
genes within each tumor. For signatures with “up” and “down” genes (the Rb and PI3K 
signatures), we computed our previously described “t-score”8,49. For evaluating the significance 
of correlation between specific molecular features and pathway signatures, we first normalized 
the gene signature scores across tumors to standard deviations from the median across tumors, 
and a “summary score” for each pathway was then computed as the average of the individual 
normalized signature scores. 

The PI3K RPPA proteomic signature consisted of the signature described previously49, with 
the addition of p4EBP1 and INPP4B. For each tumor, the PI3K protein score was the sum of the 
phosphoprotein levels of Akt, mTOR, GSK3, S6K, S6 and 4EBP1, minus the total levels of 
pathway inhibitors PTEN and INPP4B (all proteins levels being first normalized to standard 
deviations from the median across tumors); in other words, PI3K score = [pAkt + pmTOR + 
pGSK3 + pS6K + pS6 + p4EBP1] – [INPP4b + PTEN]. 
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XIII. Integrated Analysis 
 

Subtype Enriched Alterations 
Given the tremendous heterogeneity displayed by breast tumors, we analyzed the overall 
spectrum of genomic alterations across different subtypes looking for subtype-specific patterns.  
Our approach relies on the general abstraction of gene alteration per sample where each 
alteration belongs to one of the 3 categories: 

• Category 1: Gene is altered by mutations. 
• Category 2: Gene is primarily altered by copy number alterations, and mRNA 

expression levels correlate with copy number changes. 
• Category 3: “Wild-card” events (e.g. gene shows aberrant mRNA expression and/or 

methylation status independent of mutations and copy number). 
 

Categories 1 and 2 rely on two systematic approaches: for mutations we selectively analyzed 
the list of SMGs identified by the algorithm MuSiC (http://gmt.genome.wustl.edu/genome-
music/current/), for copy number we analyzed frequently amplified and deleted Region of 
Interest (ROI) as identified by GISTIC (Beroukhim, 2007). Category 3 allows the user to specify 
a genomic event of interest. In our analysis wild cards events included: 

• AKT3 over-expression  (>1 Standard Deviation, SD, from the average) 
• RB1 down-regulation   (<3 SD) 
• PTEN down-regulation  (<3 SD) 
• EGFR over-expression  (>2 SD) 
• BRCA1 hyper-methylation 
All our analyses were run on the 463 samples dataset (three metastasis were not included). 

 
To systematically look for subtype-specific genomic events, we develop a method: Subtype 

Enriched Alterations (SEA). Subtype enrichment is tested in two steps: (1) the distribution of 
alterations is compared to the expected given the number of samples that belong to each subtype 
by a goodness-of-fit test, (2) a hypergeometric p-value is derived for the subtype with highest 
percentage of alterations when compared against all the others. Alterations in category are tested 
separately and treated independently. PAM50 subtypes results are showed in Table XIII.1. 
 

This analysis confirmed previous findings indicating TP53 mutations and MYC amplification 
as basal-like events, CCND1 amplification more frequent in luminal, PIK3CA and MAP3K1 
mutations enriched in luminal A, and ERBB2 amplification as marker of the HER2-enriched 
subtype. Other interesting subtype enriched alterations include 12p amplification in basal-like 
tumors, 4q amplification in HER2-enriched, and KCNB2 mutations in luminal B tumors. 

We noticed remarkably similarities between basal-like and serous ovarian cancer that goes 
beyond TP53 mutation, to include AKT3 over-expression, CCNE1 amplification, and BRCA1 
mutation and hyper-methylation. BRCA1 hyper-methylation which was present in a relatively 
large percentage of basal-like samples never co-occurs with BRCA1/2 mutations. 
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Table XIII.1: Subtype enriched alterations (SEA) analysis across breast cancer intrinsic 
subtypes. The table shows all the events such that at least one between the FDR corrected chi-
square p-value and the nominal hypergeometric p-value is < 0.05. 

 
 
Mutually Exclusivity Modules in Cancer (MEMo) 
To analyze genomic alterations in a pathway context we use the algorithm MEMo50. MEMo 
(Mutual Exclusivity Modules) automatically identifies mutually exclusive alterations targeting 
frequently altered genes that are likely to belong to the same pathway. We first ran MEMo across 
all breast tumors, selecting alterations affecting at least 2% of the samples (10 samples out of 
463). Again, genomic events were defined as in the previous section following the “gene 
alteration per sample” abstraction. On this dataset, MEMo identified up to 22 statistically 
significant modules (FDR-corrected p-value ≤ 0.1; Table XIII.2). Twenty of these modules 
highly overlapped, sometimes differing for only one gene. Nicely, these modules together 
recapitulated the RTK/PI(3)K signaling and p38/JNK1 signaling which are interlinked through 
Akt. Top-scoring modules include core components of the RTK/PI(3)K cascade: EGFR, IGF1R, 
ERBB2, PIK3CA, PIK3R1, PTEN, and AKT1. We referred to this module, together with AKT3, 
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as the core module (Figure 6A). Besides RTK/PI(3)K modules, MEMo identified two modules 
including alterations at the apoptotic pathway. The first module includes AKT1, ATM, MDM4, 
MDM2, and TP53 (FDR-corrected p-value = 0.02); while the second includes ATM, CHEK2, 
MDM4, MDM2, and TP53 (FDR-corrected p-value = 0.1). After merging the two modules 
together, the mutual exclusivity is preserved and still significant (p-value = 0.002).   This module 
highlighted a broader extent of p53 signaling inactivation that goes beyond TP53 mutations. 
Finally, we ran MEMo exclusively on Basal-like tumors. In Basal-tumors MEMo identified only 
one significant module including ATM, BRCA1, BRCA2, CCNE1, and RB1 (FDR-corrected p-
value < 0.01). Surprisingly, the same module (with the exception of ATM) was also found as 
significant in serous ovarian cancer50. Again, deregulation of major cell-cycle checkpoints is 
reflected by high genomic instability. 
 
Table XIII.2: Mutually exclusivity modules identified by MEMo. 

 
 

XIV. Integrated Analysis and Interactive Exploration 
 
To gain greater insight into the underlying system-level phenomena that characterize the 
development and progression of breast cancer, we have integrated all of the data types produced 
by TCGA and described in this paper into a single “feature matrix”. From this single 
heterogeneous dataset, significant pairwise associations have been inferred using statistical 
analysis and can be visually explored in a genomic context using Regulome Explorer, an 
interactive web application (http://explorer.cancerregulome.org). In addition to associations that 
are inferred directly from the TCGA data, additional sources of information and tools are 
integrated into the visualization for more extensive exploration (e.g., literature-based 
associations, molecular interaction databases, miRBase, the UCSC Genome Browser, etc.). A 
few examples of the types of explorations that are possible are described below.  
 
Exploring significant associations between molecular features 
Filtering for significant associations between microRNA features and gene expression (mRNA) 
features in which there is a negative correlation relationship results in the circular view shown in 
Figure XIV.1A in which each arc indicates an association between a microRNA and a gene. 
Hovering over a single arc allows the user to see additional feature information, and clicking on 
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the arc produces a scatterplot of the underlying data. The majority of the arcs are due to 
microRNAs hsa-mir-17/18a at chromosome 13q31, hsa-mir-190b at 1q21, and hsa-mir-210 at 
11p15. While microRNAs can affect distal genes, one would expect copy-number aberrations to 
primarily affect the expression of proximal genes, and this can be seen in Figure XIV.1B in 
which the most significant associations between copy-number features (orange) and gene 
expression features (blue) are nearly always proximal and are concentrated in hot spots on 
chromosome arms 1q (e.g., PARP1) and 5q (e.g., REEP5 and IL6ST) and chromosomes 8 (e.g., 
BRF2 and RAD21), 16 (e.g., CENPN) and 17 (e.g., ERBB2 and MIEN1). These hotspots all 
include corresponding GISTIC regions, as shown in supplemental Figure 8. 

 

 
Figure XIV.1. Associations between molecular features. Statistically significant associations 
between features with genomic coordinates are indicated by arcs connecting pairs of dots which 
represent the features. Two examples are shown: significant associations between microRNA 
and mRNA expression levels (A), and between copy-number and mRNA expression (B). 
 
Exploring significant associations with a subtype 
The heterogeneous feature matrix also contains categorical variables including cluster 
assignments. Associations between molecular or other features and these categorical features can 
also be explored. In this case, statistically significant associations between molecular features 
(with genomic coordinates) and a categorical feature are shown as dots on a circular graph with a 
radial axis representing correlation coefficient or log10 (p-value). For example, CpG 
dinucleotides that are significantly differentially methylated in the hyper-methylated cluster 
shown in main Figure 2 can be identified by filtering for features associated with a binary feature 
that indicates membership in that cluster, as shown in Figure XIV.2A, or proteins that are 
significantly differentially expressed between the RPPA-inferred Reactive I and Reactive II 
groups shown in main Figure 3 can be identified as shown in Figure XIV.2B. 

A B 
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Figure XIV.2. Associations between molecular and categorical features. Methylation probes that 
are significantly hyper-methylated in methylation cluster 3 (A), and proteins that are 
significantly differentially expressed between the Reactive I and Reactive II groups (B). 
 

Feature Matrix Construction 
A feature matrix was constructed using all available clinical, sample, and molecular data for 832 
unique patient/tumor samples. The clinical information includes features such as age, stage, 
ER/PR/HER2 status and histology; while the sample information includes features derived from 
molecular data such as the PAM50 subtype, single- and cross-platform cluster assignments and 
mutation rates. The molecular data includes mRNA and microRNA expression levels (Agilent 
and Illumina data respectively), protein levels (RPPA data), copy number alterations (derived 
from segmented Affymetrix SNP data as well as GISTIC regions of interest and arm-level 
values), DNA methylation levels (Illumina Infinium Methylation array), and germline and 
somatic mutations. For each mutated gene, several binary mutation features indicating the 
presence or absence of a mutation in each sample were generated, depending on the type and 
position of the mutations. Mutation types considered were synonymous, missense, nonsense and 
frameshift. Protein domains (InterPro) including any of these mutation types were annotated as 
such, with nonsense and frameshift annotations being propagated to all subsequent protein 
domains. 
 
Pairwise Statistical Significance  
The statistical significance of each pairwise association is assessed using rank-ordered data and a 
statistical test appropriate to each data type pair, e.g. Fisher’s test (categorical-categorical), F-
statistic (continuous-continuous) and ANOVA (continuous-categorical).  
 
 
 
 
 

A B 
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XV. HER2-positive analyses 
 

Starting with the 466 freeze list, clinically HER2-positive tumors were selected. To identify 
genes that differ between 36 clinically HER2-positive HER2-enriched subtype and 32 clinically 
HER2-positive Luminal subtype, the samr package in R was used and 302 genes were found 
with a FDR of 0. SAM was also run on the RPPA data set of 29 clinically HER2-positive HER2-
enriched subtype and 24 clinically HER2-positive Luminal subtype identifying 36 proteins with 
a FDR < 5. Correlation of subtypes with clinical features and mutations was done using a 
Pearson’s Chi-Squared test for Fisher’s Exact test in R.  The SAM-derived gene and protein data 
sets were run with 10-fold cross validation to determine the smallest set of genes/proteins with 
the lowest cross-validation accuracy.  Genes/proteins are listed in Supplemental Tables 6 and 7. 
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