Supplementary	Table 1 Data collection and refinement statist
	MR1
Data collection	
Space group	$P2_{1}2_{1}2_{1}$
Cell dimensions	
a, b, c (Å)	59.15, 89.78, 171.34
α, β, γ (°)	90, 90, 90
Resolution (Å)	89.78-3.2 (3.37-3.2) *
R _{merge}	26.6 (68.6)
$R_{\rm pim}$	16.6 (42.5)
I/σI	4.5 (1.8)
Completeness (%)	98.1 (95.7)
Redundancy	3.4 (3.4)
Refinement	
Resolution (Å)	3.2
No. reflections	15334
$R_{\text{work}}/R_{\text{free}}$	19.6/25.8
No. atoms	
Protein	5762
6-formyl pterin	27
Phosphate	5
Chlorine	1
B-factors	
Protein	38.7
6-formyl pterin	46
R.m.s deviations	
Bond lengths (Å)	0.010
Bond angles (°)	1.16
*Uighost resolution	shall is shown in paranthasis

of statistics d ...

Highest resolution shell is shown in parenthesis.

Data was collected from a single crystal.

¹ $R_{p,i,m} = \Sigma_{hkl} [1/(N-1)]^{1/2} \Sigma_i | I_{hkl, i} - \langle I_{hkl} \rangle | / \Sigma_{hkl} \langle I_{hkl} \rangle$

² $R_{factor} = (\Sigma | |F_o| - |F_c| |) / (\Sigma |F_o|)$ - for all data except as indicated in footnote 3.

 3 5% of data was used for the $R_{\rm free}$ calculation

Values in parentheses refer to the highest resolution bin.

Supplementary Table 2. Contacts between MR1 and 6-formyl-pterin

6-formyl pterin	MR1	Bond
C9	Lys43 ^{NZ}	Covalent link
	Lys43 ^{CD}	VDW
	Lys43 ^{CE}	VDW
	Tyr7 ^{CD1}	VDW
	Tyr7 ^{CE1}	VDW
	Tyr7 ^{CZ}	VDW
C6	Lys43 ^{NZ}	VDW
	Lys43 ^{CE}	VDW
	Tyr7 ^{CD1}	VDW
	Tyr7 ^{CE1}	VDW
	Tyr7 ^{CZ}	VDW
N5	Lys43 ^{NZ}	VDW
	Tyr7 ^{CG}	VDW
	Tyr7 ^{CD1}	VDW
C4A	Trp69 ^{CZ3}	VDW
C4	Arg9 ^{NH2}	VDW
	Trp69 ^{CZ3}	VDW
	Arg94 ^{NH1}	VDW
	Ile96 ^{CD1}	VDW
04	Arg9 ^{NH2}	VDW
	Trp69 ^{CZ3}	VDW
	Arg94 ^{NH1}	VDW
	Arg9 ^{NE}	VDW
	Tyr7 ^{CB}	VDW
N3	Arg9 ^{NH2}	VDW
	Trp69 ^{CZ3}	VDW
	Arg94 ^{NH1}	H-bond
	Ile96 ^{CG1}	VDW
	Ile96 ^{CD1}	VDW
C2	Arg94 ^{NH1}	VDW
	Ile96 ^{CD1}	VDW
N2	Arg94 ^{NH1}	VDW
	Ile96 ^{CD1}	VDW
	Gln153 ^{OE1}	VDW
N8	Tyr62 ^{CZ}	VDW
	Tyr62 ^{CE1}	VDW
	Tyr62 ^{OH}	VDW
C7	Tyr62 ^{CZ}	VDW
	Lys43 ^{NZ}	VDW
	Tyr62 ^{CD1}	VDW
	Tyr62 ^{CE1}	VDW
	Tyr7 ^{cz}	VDW

• Atomic contacts determined using the CCP4i implementation of *CONTACT* and a cutoff of 4.0 Å for vdw interactions and 3.3 Å for h-bond interactions.

Supplementary Table 3

This table highlights the MAIT activating strains of bacteria/yeast and non-activating strains of bacteria as defined by Le Bourhis et al and Gold et al 2010. In the context of MAIT activation, a defining distinction between the activating/non-activating strains is that (with the possible exception of *L. acidophilus*; note that some ambiguity pertains to the nomenclature and thus presence/absence of the riboflavin metabolic pathway of *Lactobacillus* species [www.atcc.org/]) the former possess the riboflavin metabolic pathway whereas the latter do not.

<u>Activating Strains of bacteria:</u> Eschericia coli Pseudomonas aeroginosa Klebsiella pneumoniae

Lactobacillus acidophilus
Staphylococcus aureus
Staphylococcus epidermidis
Mycobacterium abscessus
Mycobacterium tuberculosis
Salmonella typhimurium

Non-activating Strains of bacteria: Streptococcus group A Enterococcus faecalis Listeria monocytogenes

Activating Strains of yeast: Candida albicans Candida glabrata Saccharomyces cerevisiae Please see http://www.genome.jp/kegg/pathway/map/map00740.html

for the KEGG Riboflavin Metabolic Pathway

For the organisms identified as MAIT activating (12) and non-activating (3), analysis of these categorical data using the Fisher's exact test yields a two-tailed P value of 0.0022.

* A Fishers exact test on all organisms excluding *L. acidophilus* (as the riboflavin pathway is uncertain in the strain of *L. acidophilus*) yields a two-tailed p value of 0.0027.

<u>References:</u> Le Bourhis et al. 2010 Gold et al. 2010 Supplementary Figure 1. Mass spectrometry analysis of MR1 refolded with 6-FP.

Shown are extracted ion chromatograms (EIC) of 190.0347 for 6-formyl pterin refolded with MR1 (upper panel) and 6-formyl pterin (190.0328) (lower panel), with counts on the Y-axis versus time on the X-axis. Background counts were obtained with EIC from control buffer-only samples (not shown).

Supplementary Figure 2. Increase of MR1 surface expression by stimulatory and nonstimulatory MR1 ligands.

C1R cells (10^5 /well in 200µl RF-10) were incubated for 4 hr at 37°C with compounds at 10 and 2 µM final concentration. **A.** MR1 expression was analysed by flow cytometry using the MR1-specific Ab 26.5 and **B.** compared to an isotype control 8A5 at 10 µg/ml followed by PE-conjugated goat-anti-mIgG (BD Pharmingen). Graphs show MFI of PE fluorescence, expressed as mean +/- SEM from triplicate samples.

Supplementary Figure 3

a) omit map of 6-FP contoured at 2.5 σ . b) final 2Fo-Fc map of 6-FP and Lys43 of MR1 contoured at 0.8 σ . c) final 2Fo-Fc map of MR1 residues that contact 6-FP contoured at 1.0 σ .

Supplementary Figure 4. Sequence and structural comparison of MR1 and avian MHC

а	MR1 avian_MHC	RTHSLRYFRLGVSDPIHGVPEFISVC GSHSLRYFLTGMTDPGPGMPRFVIVC ****** * ** * * * *	GYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHWE 60 GYVDDKIFGTYNSKSRTAQPIVEMLPQ-EDQEHWD 59
	MR1 avian_MHC	RYTQLLRGWQQMFKVELKRLQRHYNH TQTQKAQGGERDFDWNLNRLPERYNH ** * * * * **	HS-GSHTYQRMIGCELLEDGSTTGFLQYAYDGQDF 119 (SKGSHTMQMMFGCDILEDGSIRGYDQYAFDGRDF 119 * **** * * ** ***** * *** **
	MR1 avian_MHC	LIFNKDTLSWLAVDNVAHTIKQAWEA LAFDMDTMTFTAADPVAEITKRRWET * * ** * * * * * *	ANQHELLYQKNWLEEECIAWLKRFLEYGKDTLQRT 179 FEGTYAERWKHELGTVCVQNLRRYLEHGKAALKRR 179 * * * * * * * * * * *
	MR1 avian_MHC	EPPLVRVNRKETFPGVTALFCKAHGE VQPEVRVWGKEAD-GILTLSCHAHGE * *** ** * * * * * *	FYPPEIYMTWMKNGEEIVQEIDYGDILPSGDGTYQ 239 FYPRPITISWMKDGMVRDQETRWGGIVPNSDGTYH 238 *** * *** * ** * * * **
	MR1 avian_MHC	AWASIELDPQSSNLYSCHVEHSGVHN ASAAIDVLPEDGDKYWCRVEHASLPQ * * * * * * * * ***	AVLQVP 270 DPGLFSWEPQ 273
b	a1	c c	
	a2 Cello	USI SOO	Recension
Pink= avian MHC bound to a surfactant Cyan= MR1		C bound to a surfactant	Surface representation of avian MHC bound to a surfactant

a) Sequence alignment of MR1 with avian MHC. Identical residues are shown as *. b) overlay of $\alpha 1$ and $\alpha 2$ helices using the residues within the antigen binding cleft of MR1 with avian MHC (PDB code 3P73) and c) surface presentation of avian MHC bound to a surfactant. MR1, cyan; avian MHC, pink; surfactant, blue sticks.

Supplementary Figure 5. Comparison of Ag-binding clefts of MR1, HLA-A2 and CD1d

Antigen binding cleft of MR1 (a), HLA-A2 (b) and CD1d (c) showing aromatic residues in yellow on the α 1 and α 2 helices.

Supplementary Figure 6. Comparison of how 6-FP binds MR1 and abacavir binds HLA B*57:01

a) antigen binding cleft of HLA-B*57:01 bound to abacavir. b) antigen binding cleft of MR1 bound to 6-FP. HLA-B*57:01, grey; peptide, blue; abacavir, green; MR1, cyan; 6-FP, magenta.

Supplementary Figure 7. Sequence alignment of MR1 from different species

••••••		
human chimpanzee orangutan sheep bovine pig rat mouse Tasmanian devil opossum	RTHSLRYFRLGVSDPIHGVPEFISVGYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHWE RTHSLRYFRLGVSDPIHGVPEFISVGYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHWE RTHSLRYFRLGVSDPIRGVPEFISVGYVDSHPITTYDSVTQQKEPRAPWMAENLAPDHWE RTHSLRYFRLGISEPGYGIPEFISAGYVDSHPITMYNSVSQLKEPRAPWMAENLAPDHWE RTHSLRYFRLGISDPGHEMPEFISVGYVDSHPITMYNSVSQLKEPRAPWMAENLEPDHWE RTHSLRYFRLAISDPGPCVPEFISVGYVDSHPITTYDSVSRQKEPRAPWMAENLAPDHWE RTHSLRYFRLAISDPGPCVPEFISVGYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHWE RTHSLRYFRLAISDPGPCVPEFISVGYVDSHPITTYDSVTRQKEPRAPWMAENLAPDHWE RTHSLRYFRLAISDPGPVPEFISVGYVDSHPITTYDSVTRQKEPKAPWMAENLAPDHWE RTHSLRYFRLAVSDPGPVVPEFISVGYVDSHPITTYDSVTRQKEPKAPWMAENLAPDHWE RTHSLRYFRLGVSDSTQGIPEFISVGYVDSHPITSYDSIRRQKMPQASWMEENLGSDHWE -THSLRYFRLGLSDSNQGMPEFISVGYVDSHPITSYDSNGRQKMPQASWMEENLGSDHWE ********* * ***** **** *** *** ***	60 60 60 60 59 60 60 59
human chimpanzee orangutan sheep bovine pig rat mouse Tasmanian devil opossum	R¥TQLLRGWQQMFKVELKRLQRHYNHSG-SHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQMFKVELKRLQRHYNHSG-SHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQAFKVELKRLQRHYNHSG-SHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQAFKVELKQLQHHYNHSG-FNTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQAFKVELKQLQHHYNHSG-HHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQTFKAELKQLQRHYNHSG-LHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQTFKAELRHQRHYNHSG-LHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQTFKAELRHQRHYNHSG-LHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQTFKAELRHQRHYNHSG-LHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQTFKAELRHQRHYNHSG-LHTYQRMIGCELLEDGSTTGFLQYAYDGQDF RYTQLLRGWQQTFKIELRALRHQRHYNHSG-LHTYQRMIGCELLEDGSTTGFLQYAYDGDF RYTQLLRGWQQTFKIELRALRHYNHYNHTGGFHIYQRMIGCELLEDGSTTGFLQYAYDGKDF XYQLLRGWQQTFKIELRALQNHYNHTGGFHIYQRMIGCELLEDGSTTGFLQYAYDGKDF XYTQLLRGWQQTFKIELRALQNHYNHTGGFHIYQRMIGCELLEDGSTTGFLQYAYDGKDF	119 119 119 119 119 118 119 120 119
human chimpanzee orangutan sheep bovine pig rat mouse Tasmanian devil opossum	LIFNKDTLSWLAVDNVAHTIKQAWEANQHELLYQKNWLEEECIAWLKRFLEYGKDTLQRT LIFNKDTLSWLAVDNVAHTIKQAWEANQHELLYQKNWLEEECIAWLKRFLEYGKDILQRT LIFNKDTLSWLAVDNVAHTIKRAWEANQHELQYQKNWLEEECIAWLKRFLEYGKDTLQRT IIFNKDTLSWIAMDNVANIIRRAWEANRHELQYQKNWLEEECIAWLKRFLEYGKDTLQRT IIFNKDTLSWMANDNVADIIRRVWEANRHELQYQKNWLEEECIAWLKRFLEYGKDTLQRT IIFNKDTLSWMANDNVAHITKQAWEANWHELQYQKNWLEEECIAWLKRFLEYGKDTLQRT IVFDKDTLSWLAMDNVAHITKRAWEANLHELQYQKNWLEEECIAWLKRFLEYGRDTLRT LIFNKDTLSWLAMDNVAHITKQAWEANLHELQYQKNWLEEECIAWLKRFLEYGRDTLRT LIFNKDTLSWLAMDNVAHITKQAWEANLHELQYQKNWLEEECIAWLKRFLEYGRDTLRT LIFNKDTLSWLAMDNVAHITKQAWEANLHELQYQKNWLEECIAWLKRFLEYGRDTLRT LIFDKDSLSWIAVDNVARLTKQAWEANLHELQYQKNWLEECIAWLKRFLEYGRDTLRT LIFDKDSLSWIANDNVARLTKQAWEANRNELRYQKNWLETCIAWLKFLDFGKDSFQRT IVFNKESLSWIAMDNVARLTKQAWEANRNELRYQKNWLETCIAWLKFLDFGKDTLQRT * * *** * * * * * * * * * * * * * * *	179 179 179 179 179 178 179 179 180 179
human chimpanzee orangutan sheep bovine pig rat mouse Tasmanian devil opossum	EPPLVRVNRKETFPGVTALFCKAHGFYPPEIYMTWMKNGEEIVQEIDYGDILPSGDGTYQ EPPLVRVNRKETFPGVTALFCKAHGFYPPEIYMTWMKNGEEIVQEIDYGDILPSGDGTYQ EPPLVRVNRKETFPGVTTLFCKAHGFYPPEIYMTWMKNGEEIVQEMDYGDILPSGDGTYQ EPPKVRVNYKETFPGITTLYCRAHGFYPPEISINWMKNGEEIVQDTDYGGILPSGDGTYQ EPPKVRVNHKETFFGITTLYCRAHGFYPPEISINWMKNGEEIVQEMDYGDILPSGDGTYQ EHPVVRTTRKETFPGITTLFCRAHGFYPPEISMTWMKNGEEIVQEVDYGGVLPSGDGTYQ EHPVVRTTRKETFPGITTLFCRAHGFYPPEISMTWMKNGEEIAQEVDYGGVLPSGDGTYQ EHPVRTTRKETFPGITTLICRAYGFYPPEISMTWMKNGEEIAQEVDYGGVLPSGDGTYQ EHPVRTTRKETFPGITTLICRAYGFYPPEISMTWMKNGEEIAQEVDYGGVLPSGDGTYQ ENPLLRGSCKKSSLGITTLICRAYGFYPPEITMTWIKNGELIQEIEYGDILPSGDGTYQ ETPLLSGSCKKSSTGITTLICKAYGFYPPEITMTWIKNGELIQEIEHGDILPSGDGTYQ	239 239 239 239 239 239 239 239 239 239
human chimpanzee orangutan sheep bovine pig rat mouse Tasmanian devil opossum	AWASIELDPQSSNLYSCHVEHCGVHMVLQVPQ271TWASVELDPQSSNLYSCHVEHCGVHMVLQVPQ271TWASFELDPQSSNLYSCHVEHCGVHMVLQVPQ271TWVSVELDSQNGDIYSCHVEHGGVHMVLQGFQ271TWVSVELDPQNGDIYSCHVEHGGVHMVLQGFQ271TWVSVELDSQSSDVYSCHVEHCGLQMVLEAPQ271TWLSVNLDPQSNDVYSCHVEHCGLQMVLEAPQ271TWLSUNLDPQSNDVYSCHVEHCGLQMVLEAPQ271TWLSIEIDPQSKDHYFCQVEHNDFLKVLHVPI272TWVSVELDDQSKDHYSCQVEHNNFLKVLHVPI272TWVSVELDPQSKDHYSCQVEHNNFLKVLHVPI271	

Sequence alignment of MR1 from various species. Identical residues are shown as *. Residues that contact 6-FP are conserved in all species and are highlighted in yellow.

Supplementary Figure 8. Specific activation of Jurkat.MAITs by APCs infected with Salmonella.

(A) HeLa antigen presenting cells infected by *Salmonella* fail to activate Jurkat cells expressing an Epstein-Barr virus-specific TCR. HeLa cells, or HeLa cells transduced with MR1 (HeLa-MR1) were either not infected (open bars), or were infected with *Salmonella typhimurium* at a multiplicity of infection of 10 (stippled bars), 100 (hatched bars) or 1000 (black bars), following which Jurkat cells expressing either a MAIT TCR (MAIT; utilizing a TRBV6-1 β chain) or the virus-specific T cell receptor LC13 were added for 18 hours before staining for CD69 cell surface expression and analysis by flow cytometry. Shown is mean fluorescence intensity of staining (MFI CD69-APC) on the Y-axis versus cell treatment on the X-axis.

(B) C1R antigen presenting cells transduced with MR1 and infected by *Salmonella* fail to activate Jurkat cells expressing an Epstein-Barr virus-specic TCR. C1R cells transduced with MR1 were either not infected (Nil) or infected with *Salmonella typhimurium* at a multiplicity of 10 (Salm. MOI 10), following which Jurkat cells expressing either a MAIT TCR (Jurkat.MAIT; utilizing a TRBV6-1 β chain) or the virus-specific T cell receptor LC13 (Jurkat.LC13) were added for 18 hours before staining for CD69 cell surface expression and analysis by flow cytometry. Shown is mean fluorescence intensity of staining (MFI CD69-APC, expressed as mean +/- SEM from triplicate samples) on the Y-axis versus cell treatment on the X-axis. Jurkat.LC13 cells were also separately incubated with the activating Epstein-Barr virus peptide FLRGRAYGL (FLR, at 285 nM) and C1R cells expressing the restriction element HLA-B8.

Supplementary Figure 9. Negative (i) and positive (ii) ion mode data (50-1000amu) (i)

MR1 refolded in the presence of minimal medium (green mass spectra) or in the presence of filtered supernatant from *Salmonella* cultured in the same minimal medium (red mass spectra), was loaded onto an XBridge C18 reversed phase column (Waters) and bound metabolites detected in an Agilent electrospray ionization time-of-flight (ESI TOF) mass spectrometer operating in both negative (i) or positive (ii) ion modes. Mass spectra were collected from 8-12 minutes (the 329.1100 m/z negative ion mode species has a retention time of 10.4 minutes). No m/z species unique to MR1 plus *Salmonella* supernatant were detected outside this elution time window (i.e. from 5-8 minutes and 12-16 minutes (not shown). (elution gradient performed was: 0-100% B [B: 80% acetonitrile] from 5-15 minutes) Shown in i) are mass spectra collected in negative ion mode from A) 50-260 m/z; B) 260-460 m/z; C) an expanded panel focusing on m/z from 325 to 335 to highlight the unique 329.1100 species detected with MR1 plus *Salmonella* supernatant; D) 460-660 m/z; E) an expanded panel focusing on m/z from 484 to 494 to highlight that no specific MR1 plus *Salmonella* supernatant m/z species are present within the460-660 m/z panel; F) 660-860 m/z; B) 260-460 m/z; C) 460-660 m/z; D) 660-860 m/z; and G) 860-1060 m/z; C) 460-660 m/z; D) 660-860 m/z; and E) 860-1060 m/z.

Supplementary Figure 10. Anti-MR1 blocking of Jurkat.MAIT (TRBV6.4 and TRBV20) activation by riboflavin intermediates

MR1-specific blocking of MAIT cell activation

C1R-huMR1.19 cells (10^{5} /well) were preincubated with the MR1-specific Ab 26.5 ($20\mu g/ml$), isotype control W6/32 or no Ab for 2 hr. Jurkat.MAIT cells (10^{5} /well) expressing the TRBV6.4 (Left hand panel) or TRBV20 MAIT TCR (Right hand panel) were added along with supernatant (2.0μ l added) or compounds (RL-6,7-diMe, RL-6-Me-7-OH, 76 μ M final, or rRL-6-CH₂OH: 15.2 μ M final) in RF-10 and incubated overnight at 37°C. CD69 expression was analysed by flow cytometry. Graph shows MFI of gated Jurkat.MAIT cells (CD3⁺, GFP^{low}) expressed as mean +/- SEM from triplicate samples. In each case activation of MAIT cells was blocked by MR1-specific Ab 26.5, but not by the isotype control W6/32. These results were part of an experiment conducted on same day as data shown in Figure 5a,b.

Supplementary Figure 11. The D5 Mab is specific for Vα7.2 α-chain.

(A) The D5 mAb binds to soluble MAIT TCRs.

ELISA plates coated with the soluble refolded TCRs MAIT-TRBV6-1, MAIT-TRBV6-4, MAIT-TRBV20, LC13, or control HLA-B8 at 10 μ g/ml were probed with the mAb D5, the TCR constant domain-reactive mAb 12H8, or a control mAb 3E12 (reactive against HLA-B57). Bound antibody was detected with a secondary HRP-conjugated anti-mouse IgG antibody and o-phenylenediamine substrate, with absorption at 492 nm shown on the Y-axis.

(B) Staining of TCR-transduced cell lines with the mAb D5.

SKW and Jurkat cells were either not transduced, or transduced with a panel of alpha and beta TCR genes encoding the T cell receptors: RL42 (Gras, JI 2012), CF34 (Gras, Immunity 2009), LC13 (Kjer-Nielsen, Immunity 2003), TK3 (Gras JEM 2010), 2G8 (Eckle, unpublished), or ELS4 (Tynan, NI 2007) (SKW cells, upper panels); or MAIT-TRBV6-1, MAIT-TRBV6-4, MAIT-TRBV20 (Reantragoon JEM 2012), or SB27 (Tynan NI 2005) (Jurkat cells, lower panels) as indicated, and stained by indirect immunofluorescence with the mAb D5 (the secondary antibody used was PE-conjugated anti-mouse IgG antibody), and subsequently analysed by flow cytometry. Shown are histogram FACS plots with intensity of staining on the X-axis. Shown below is the gene usage of the TCRs used to confirm specificity of the D5 MAb. Note that ELS4 shares the same TCR α -chain as the MAIT TCR, thereby confirming specificity of the D5 Mab for TRAV1-2 (V α 7.2)

		SKW3 parental	RL42	CF34	LC13
	TRAV		12-1	14	26-2
	TRAJ		23	49	52
	TRBV		6-2	11-2	7-8
	TRBJ		2-4	2-3	2-7
		ТКЗ	2G8	ELS4	
ŀ	TRAV	20	5*01	1-2	
•	TRAJ	58	29*01	6	
	TRBV	9	13*01	10-3*02	
	TRBJ	2-2	2-2*01	1-5*01	
		MAIT 6-1	MAIT 6-4	MAIT20	
TR	AV	1-2	1-2	1-2	
TR	AJ	33	33	33	
TR	BV	6-1	6-4	20-1	
TR	BJ	1-2	2-1	2-1	
		SB27	Jurkat parenta		
	TRAV	19			
	TRAJ	34			

TRBV

TRBJ

6-1

2-7

Supplementary Figure 12. Riboflavin metabolites, non-MAIT cells and MAIT cells

Upper panels: gating strategies for CD4+; D5+/CD161-; and D5-/CD161- populations of CD3-positive lymphocytes.

Lower three sets of panels: ICS. PBMCs were mixed with C1R cells expressing MR1 (10^5 each/well) and *Salmonella* supernatant (Salm. S/N; 2 µl); or compounds (RL-6,7-diMe, RL-6-Me-7-OH, 6-FP: 76.2 µM final, rRL-6-CH₂OH: 0.152 µM final); or PMA and ionomycin (PMA/Ion; 2 ng/ml and 1 ng/ml respectively) in 220 µl RF-10 and incubated at 37 °C. After 1 hr incubation, 10 µM brefeldin A was added and cells incubated overnight. Cells were stained for surface markers, fixed in 1% paraformaldehyde and permeabilised with 1% saponin prior to intracellular cytokine staining. Plots show gated cells from the same three non-MAIT populations with staining for IFN γ or TNF on the Y-axis versus CD161-APC staining on the X-axis for one representative sample from three.

Supplementary Figure 13. Synthesis of the ribityl lumazines

3, 5%